
 
 

 

  

Abstract—An important aspect in the control of 
multivariable (MIMO) systems is the pairing of the input and 
output variables for decentralized control. This paper 
addresses the problem of pairing if performance of the system 
is degraded, or modified, as changes or abrupt variations occur 
in the interacting loops. Typical cases are stability of the 
process in the face of one or more loop failures – the integrity 
problem, or if one or more control loops are switched to 
‘manual’ by operators for maintenance and all other loops are 
maintained operating in stable conditions. Therefore a 
nonlinear, eventually time varying component is introduced 
inside each control loop to model such operations and the 
problem is solved in the framework of absolute stability 
theorems, mainly by using the Cook circle theorems. A global 
index, called Absolute Relative Gain Array (ARGA), is 
proposed for solving both integrity problems and robustness to 
parameter variations and nonlinearity effects. ARGA index has 
been tested on several examples from the literature. 

 
  

I. INTRODUCTION 
N important issue in multivariable (MIMO) control 

in industrial systems is the pairing of the input and 
output variables for decentralized multi-loop SISO 
controllers [1]–[3]. The problem of loop pairing between 
controlled and manipulated variables is usually solved by 
the Relative Gain Array (RGA) method, introduced in 1966 
by Bristol [4] and its several extensions. 

 Many improved approaches, RGA-like, have been 
proposed and described in all process control textbooks, for 
defining different measures of dynamic loop interactions.  

In [5] a global index, called Relative Omega Array 
(ROmA), was proposed. The logic behind ROmA index was 
to measure interactions in MIMO systems, capturing 
information from critical frequencies variation in the 
passage from open loop to closed loop.  

A decentralized structure is usually preferred for large 
scale industrial processes, since it is simple and requires few 
parameters to tune; moreover especially in case of sensor or 
actuator failures a process engineer can easily modify the 
controller parameters in order to counteract the abnormal 
operating condition.  

This paper analyzes the problem of the integrity of the 
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process, i.e., its stability robustness in the face of one or 
more loop failures. From an operating point of view, failure 
tolerance with respect to sensor or actuator failures is a 
critical condition in the life of an industrial plant, but often 
non-nominal conditions  have to be considered, i.e. cases 
where one or more control loops are switched to ‘manual’ 
by operators for maintenance and all other loops are 
maintained operating in stable conditions.        

Based on RGA-like methods many authors proposed 
solutions for eliminating unstable pairings under failure 
conditions, usually considering only the static problem (see 
[6] and references therein).  

The main objective of this paper is to provide a method 
for solving both integrity problems and robustness to 
parameter variations and nonlinearity effects; the technique 
proposed relies on the theoretical framework of nonlinear 
MIMO circle theorems.  

The key step in the development of this method is the 
characterization of the abnormal conditions due to sensor or 
actuator failures or to the presence of nonlinear constraints 
(e.g.: saturations on the actuators) as a nonlinear, eventually 
time varying component inside each control loop. The 
nonlinear component can be time-dependent and even 
history dependent, but its response is confined within a 
certain sector ([7], [8]).  

This method retains the characteristics of ROmA index, 
able to capture information about dynamic interactions and 
extends such index including integrity problems, in the 
framework of absolute stability theorems mainly by using 
the MIMO circle theorems, as proposed by Cook [9].  

The new index, called ARGA (Absolute Relative Gain 
Array), solves the pairing problem taking into account the 
bounds of the absolute stability in the presence of dynamical 
interactions. 

II.  ARGA INDEX: DEFINITION 
The first step for defining ARGA index is the 

characterization of the nonlinear components. A failure 
condition in a loop is modeled by the diagonal matrix N of 
nonlinear terms as in the hypotheses of the circle theorems. 

Therefore the nonlinear components are described via an 
algebraic input/output function within a limited sector.  

Note that this approach includes all the cases due to loop 
changes originated by saturations in the loop or by manual 
exclusions of single loops for maintenance purposes.   

A loop shut down can be viewed as the transition from a 
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condition of a short circuit (output equals input) to a 
condition of an open circuit (output equals zero) in an 
electrical circuit. Therefore if a loop has a ‘soft’ or ‘hard’ 
disconnection, it can be represented by a non linear function 
confined within a sector [0, k]. 

Consider now a MIMO system, reachable, observable and 
open loop stable, described by the n x n transfer function 
matrix { }( ) ( )ijG s g s= .  

For each element gij(s) of the transfer function matrix the 
critical frequency ωπ,ij and the limit gain for absolute 
stability kij are evaluated in the hypothesis of non interacting 
loop and of nonlinearities confined within a sector [0, k]. 

This choice stems from the observation that in single-
input single-output systems the critical frequency ωπ,ij (rad/s) 
remains unchanged in the passage from open loop to closed 
loop. This property holds also for MIMO systems, whenever 
perfect decoupling occurs. Then we use critical frequencies 
in the passage from open loop to closed loop, for measuring 
interactions in MIMO systems.  

Difficulties in critical frequencies computation may 
eventually arise, since ωπ,ij does not necessarily exist or is 
computable. In such cases, as shown in [5], an additional 
time delay may be inserted in all channels. 

A preliminary evaluation of the critical frequency ωπ,ij and 
of the limit gain kij in case of circle criterion may be 
estimated from the Nyquist plot of the frequency response 
gij(jω), as shown in Fig.1. 

 
 

 
 

Fig.1. Critical frequency and stability bound in case of circle criterion 
and nonlinearity belonging to sector [0, kij] 
 
Bringing process control fundamentals into practice, 

Harriott [10] in 1964 noted that the performance is 
proportional to ωπ for a well designed control loop, where 
ωπ is the pulsation where the phase diagram of frequency 
response equals −π.  

Moreover an interesting result [11] was that performance 
indices of the indicial response (both IAE and ISE indices) 
show an inverse dependence on ωπ. After extensive tests it 
was verified that the best controller performance is 
achievable above all by a suitable reshaping of the 
frequency response.  

Therefore the selection of ωπ  as a meaningful parameter 
for describing the dynamic behavior of the process with 
performance indices is consistent and consequential.  

A second step of the method estimates the interactions of 
the other loops on the i-j channel. In the frequency domain 
the method of Cook [9] is considered. It employs the 
symmetric Gershgorin bands, for quantifying interactions. 
Gershgorin bands are superimposed on Cook circles 
centered on the appropriate point of each diagonal locus of 
the linear system G(jω).   

Absolute stability is guaranteed if the Gershgorin bands 
do not contain or intersect critical circles in the Rosenbrock 
sense, i.e., in case of open loop stable systems each critical 
circle must be external to the Gershgorin band. 

Cook circles are built to verify a dominance condition 
defined as 

( ) ( ) ( )
1 1

1
2

n n

ij ik kj
k k
k j k i

R g j g jω ω ω
= =
≠ ≠

⎧ ⎫
⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎩ ⎭

∑ ∑    (1) 

 
where ω∀  a mean row and column dominance is 
considered. Note that only the mean dominance case allows 
one to use the same critical circles as would appear in the 
original circle theorem, applied to each loop separately [9]. 
Cases of row, or column dominance would require enlarging 
critical circles by stability multipliers not a priori known, 
making absolute stability a difficult task to be fulfilled.       

A new performance index is therefore introduced as: 
 

,ij ij ija kπω= ⋅           (2) 

 
 A new evaluation of the critical frequency ,ijπω  and of the 

limit gain ijk  is then performed. 

A graphical interpretation of the Cook method for 
extracting the limit gain is shown in Fig. 2.   

  
 

 
 

Fig.2. Stability bound in case of Cook circles and nonlinearity belonging 
to sector [0, ijk ] 

  

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC17.4

5669



 
 

 

Note that the critical frequency ,ijπω is evaluated as the 

frequency for which the corresponding Cook circle 
intersects the negative real axis most on the left (see Fig.3). 

 
 

 
Fig.3. Evaluation of the critical frequency ,cr ijω  in case of Cook circles  

 
  This result is quite conservative, and it represents the 

worst case, when the interaction of the other loops on 
stability is maximum: this consideration leads to the safest 
choice of pairings. 

A product based on the interaction measurement is: 
 

,ij ij ijf kπω= ⋅           (3) 

 
By mimicking the RGA procedure, the products (3) are 

considered for creating a new matrix F ={fij} and the 
pairings can be easily verified introducing the matrix 
ARGA, in a way analogous to the RGA definition:  

 
                    TF F −Ψ= ⊗                                 (4) 

 
where ⊗ denotes Hadamard  (element-by-element) 

product. 
Note that the ARGA matrix retains all the properties of 

the RGA matrix and is purely numerical.  
 The most important rules for pairings can be summarized 

as: 
1. elements of ARGA matrix closest to 1 suggest the 

preferred pairings 
2. all elements of ARGA matrix chosen for pairings must 

be positive 
3. elements of ARGA matrix with values much greater than 

1 should be considered indices of  incorrect pairing 
 
Note that, as in RGA or in ROmA indices, ARGA index 

is invariant if we consider G(s)·e−sθ instead of G(s), where θ 
is an arbitrary small time delay. Indeed for a given matrix of 
nominal transfer functions it is possible that oscillation 
doesn’t occur.  

In practice, if the control is networked or is remote, we 
must always take into account some delay. Difficulties in 
computations of the closed loop bandwidth may arise, since 

ωπ,ijs do not necessarily exist or are computable. In such 
cases, as an application of the invariance property, an 
additional time delay may be inserted in all channels: the 
simplest choice is to select the minimal θ useful for ARGA 
computation.  

III. ARGA INDEX: EXAMPLES OF APPLICATION 
ARGA method has been tested on several examples from 

the literature: to illustrate the method 4 cases varying from 2 
x 2 systems up to 4 x 4 systems are proposed. 

 
Example 1. Wood and Berry process [12]: 
 

3

7 3

12.8 18.9
16.7 1 21 1( )
6.6 19.4
10.9 1 14.4 1

s s

s s

e e
s sG s

e e
s s

− −

− −

⎡ ⎤−
⎢ ⎥

+ +⎢ ⎥=
⎢ ⎥−⎢ ⎥

+ +⎣ ⎦

 

 
The steady-state RGA is: 
 

2.0094 1.0094
1.0094 2.0094

−⎡ ⎤
Λ = ⎢ ⎥−⎣ ⎦

 

 
The ROmA index is: 
 

1.1133 0.1133
0.1133 1.1133

T ROmAF F − −⎡ ⎤
= =Ψ= ⊗ ⎢ ⎥−⎣ ⎦

  

 
The matrix F is: 
 

0.2405 0.0355
0.0029 0.0891

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
and ARGA index is: 
 

1.005 0.005
0.005 1.005

TF F ARGA− −⎡ ⎤
Ψ = ⊗ = =⎢ ⎥−⎣ ⎦

 

 
Pairings suggested by the ROmA matrix are in perfect 

agreement with the RGA rule and both of them suggest the 
use of a diagonal pairing (y1-u1, y2-u2) in good agreement 
with the physical behavior of the process.  

ARGA index confirms such pairing also in terms of 
integrity and of absolute stability. 

 
Example 2 Process described by the following matrix 

transfer function [13]:  
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2

1
1 1( )

1
1 1

s

s

e
s sG s

e
s s

−

−

⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥−
⎢ ⎥

+ +⎣ ⎦

 

 
The steady-state RGA is: 

 

0.5 0.5
0.5 0.5
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

 

 
The ROmA index is: 
 

0.0461 1.0461
1.0461 0.0461

TF F − −⎡ ⎤
Ψ = ⊗ = ⎢ ⎥−⎣ ⎦

= ROmA 

 
By comparing this matrix with the traditional RGA matrix 

it may be observed that the suggested pairings is the off-
diagonal one: y1-u2, y2-u1. This result is in good agreement 
with the results of Meeuse [13], in a critical case where the 
steady-state RGA does not suggest any preferential pairing. 
The matrix F is: 

 
0.7778 1.7663
1.7663 0.4977

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
and ARGA index is: 
 

0.1417 1.1417
1.1417 0.1417

TF F − −⎡ ⎤
Ψ = ⊗ = ⎢ ⎥−⎣ ⎦

 

 
ARGA index again confirms the off-diagonal pairing 

suggested by ROmA also in terms of integrity and of 
absolute stability. 

 
Example 3 Process described by the following matrix 

transfer function [14]: 
 

5

5

2.5 1
(1 15 )(1 2 ) 1 4( )

1 4
1 3 1 20

s

s

e
s s sG s

e
s s

−

−

⎡ ⎤
⎢ ⎥

+ + +⎢ ⎥=⎢ ⎥−⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 

 
The steady-state RGA is: 
 

0.9091 0.0909
0.0909 0.9091
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

 

 
It suggests the use of a diagonal pairing (y1-u1, y2-u2), but 

a practical implementation [14] leads to off-diagonal pairing 

(y1-u2, y2-u1).  
In this example the static RGA doesn’t suggest the correct 

pairing. 
Matrix ROmA is: 
 

0.0012 1.0012
1.0012 0.0012

TF F − −⎡ ⎤
Ψ = ⊗ = ⎢ ⎥−⎣ ⎦

 

 
An off-diagonal pairing is suggested, opposite to the 

inaccurate pairing given by the steady-state RGA. 
The matrix F is: 

 
0.1236 3.6628
4.7134 0.1466

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
and ARGA index is: 

 
0.0011 1.0011
1.0011 0.0011

TF F − −⎡ ⎤
Ψ = ⊗ = ⎢ ⎥−⎣ ⎦

 

 
ARGA index again confirms the off-diagonal pairing 

suggested by ROmA also in terms of integrity and of 
absolute stability. 

In the following figures Nyquist diagrams including Cook 
circles which define the Gershgorin bands are represented, 
for helping the reader to visualize the dominance properties.   

  

 
Fig. 4. Nyquist plot of element 1-2  (pairing 1-2 / 2-1) . 
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Fig. 5. Nyquist plot of element 2-1 (pairing 1-2 / 2-1). 

 
From Fig. 4 and Fig.5 it can be shown how large are the 

margins of absolute stability in both loops chosen for pairing 
in case of example 3.  

In bold line are represented the limit cases for the 
evaluation of the critical parameters ,ijπω and ijk . 

The sectors of absolute stability are: [0, 2.5141] for the 
element 1-2 and [0, 2.974] for the element 2-1. 

In Fig. 6 and Fig.7 the case of incorrect diagonal pairing 
is represented.  

 

 
Fig. 6. Nyquist plot of element 1-1  (pairing 1-1 / 2-2). 

 

 
Fig. 7. Nyquist plot of element 2-2  (pairing 1-1 / 2-2)  

 
The sectors of absolute stability are: [0, 0.635] for the 

element 1-1 and [0, 0.617] for the element 2-2. 
Comparing the sectors in case of off-diagonal and 

diagonal pairings, it can be noted that the off-diagonal 
pairing is the correct choice in terms of absolute stability 
integrity and therefore of integrity to abnormal operating 
conditions. 

 
Example 4 Process described by the following matrix 

transfer function [15]: 
 

( ) ( ) ( )2

0.5 0.6 0.1
1( ) 0.2 0.8 0.3

1 2 1 0.5 1 1.0 0.1 1.0
G s

s s s

−⎡ ⎤
⎢ ⎥= ⎢ ⎥+ + + ⎢ ⎥−⎣ ⎦

 

 
The steady-state RGA is: 
 

0.5020 0.3911 0.1069
0.1591 0.6258 0.2151
0.3390 0.0169 0.6780

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
It suggests the use of a diagonal pairing (y1-u1, y2-u2, y3-

u3).  
The matrix F is: 

 
0.5769 0.9343 0.0771
0.0764 1.2283 0.1088
0.8242 0.0531 0.9826

F
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and ARGA index is: 

 
1.1019 0.0217 0.1236
0.1110 0.9831 0.1279
0.0091 0.0048 0.9957

TF F −
−⎡ ⎤

⎢ ⎥Ψ = ⊗ = −⎢ ⎥
⎢ ⎥−⎣ ⎦
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ARGA index again confirms the diagonal pairing in terms 
of integrity and of absolute stability. 

 
Example 4 Process described by the following matrix 

transfer function [16]: 
 
 

( )

( )

( )

1.59 7.75 27.33 3.79

2

2.24 0.71 8.72 60

2

0.42 0.59

2

9.811 0.374 2.368 11.3
11.36 1 22.22 1 33.3 1 21.74 1

5.984 1.986 0.422 5.24
14.29 1 66.67 1 400 1250 1

( )
2.38 0.0204

1.43 1 7.14

s s s s

s s s s

s s

e e e e
s s s s

e e e e
s s ss

G s
e e

s s

− − − −

− − − −

− −

− − −
+ + + +

−
+ + ++

=

+ ( ) ( )

( ) ( )

0.68

2 2

3.79 0.48 0.52

2 2

0.513 0.33
11 2.38 1

11.3 0.176 15.54 4.48
1 11.11 121.74 1 6.9 1

s s

s s s s

e e
s s

e e e e
s ss s

− −

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥++ +
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥+ ++ +⎣ ⎦

 

 
The steady-state RGA is: 
 

 

0.1264 0.1013 0.0314 1.0063
0.0107 1.0935 0.0003 0.1045
0.7264 0.0025 0.1630 0.1081
0.1366 0.0054 0.8680 0.0099

− −⎡ ⎤
⎢ ⎥−⎢ ⎥Λ =
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
It suggests the use of a pairing (y1-u4, y2-u2, y3-u1, y4-u3).  

 
The matrix F is: 
 

 

0.2757 0.0021 0.0014 0.0079
0.0165 0.2189 0.0002 0.0008
0.0833 0.0347 0.0237 0.0309
0.0032 0.0069 0.2687 0.0402

F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and ARGA index is: 
 

1.0910 0.0006 0.0024 0.0928
0.0023 1.0024 0.0002 0.0048
0.0935 0.0018 0.1414 1.2368
0.0003 0.0001 1.1389 0.1392

TF F −

− −⎡ ⎤
⎢ ⎥−⎢ ⎥Ψ = ⊗ =
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

 
ARGA index suggest a pairing (y1-u1, y2-u2, y3-u4, y4-u3) 

different from static RGA in terms of integrity and of 
absolute stability. 

 

IV. CONCLUSION 
In this paper a new approach for the selection of the 

pairings between input and output variables in decentralized 
MIMO control schemes has been presented.  

ARGA index has the peculiarity to address some 
important items in loop pairing: 

• it retains all properties of ROmA index, including 
information about dynamic interactions with the choice 
of ωπ  the critical frequency as a meaningful parameter 
for describing the dynamic behavior of the process;  

• it introduces nonlinearities inside each loop for modeling 
changes originated by saturations in the loop or by 
manual operations of single loops for maintenance 
purposes or in case of failures. Therefore ARGA index 
includes the limit gains for ensuring the absolute stability 
inside a sector including nonlinearities. 

 
ARGA index gives the best pairing in terms of integrity to 

loop changes: absolute stability is the theoretical framework 
leading to the safest choice of pairing. 

To authors’ knowledge, the results obtained could not 
easily be established in any other way.   
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