
The Use of Nonnegative Garrote

for Order Selection of arx Models

Christian Lyzell, Jacob Roll, and Lennart Ljung

Division of Automatic Control

Linköpings Universitet

SE–581 83 Linköping, Sweden

{lyzell,roll,ljung}@isy.liu.se

Abstract— Order selection of linear regression mod-
els has been thoroughly researched in the statistical
community for some time. Different shrinkage meth-
ods have been proposed, such as the Ridge and Lasso
regression methods. Especially the Lasso regression
has won fame because of its ability to set less impor-
tant parameters exactly to zero.

However, these methods do not take dynamical sys-
tems into account, where the regressors are ordered
via the time lag. To this end, a modified variant of the
nonnegative garrote method will be analyzed.

I. INTRODUCTION

Estimating the orders of arx models is a widely
studied and old topic, see e.g. [1] and [4]. One can
efficiently estimate many arx models of different orders,
by building up a large data covariance matrix, and then
selecting submatrices of that. If we decide upon a certain
sequence in which to increase the model orders, all such
models can be estimated simultaneously in an efficient
manner by qr-factorization, see e.g. [5].

So what more can be said about this old problem? In
this contribution we take a relatively recent statistical
method for regularization, Nonnegative Garrote [3], as a
starting point for a new excursion in the area.

With this method it is possible to define sequences of
natural ordering of model complexity that are not one-
dimensional. We may certainly say that a model with
more poles than another is more complex/flexible, and
similarly for zeros. But is a model with, say, 2 poles and
4 zeros more or less complex than one with say 3 poles
and 2 zeros?

We define a procedure for testing all model orders,
ordered independently in terms of number of zeros and
in number of poles. While the obtained models are
regularized, the procedure still gives insight into which
parameters are the most important ones for giving a good
fit to data.

The presentation is organized as follows: Section II
defines the problem dealt with in this paper: II-A gives
a short review of the arx model structure, II-B a de-
scription of the original nonnegative garrote method, as
presented in [3], is given. Also, a modification of the

method for arx model structure is proposed in Sec-
tion II-C. Section III presents an algorithm for efficiently
solving the modified nonnegative garrote problem. In
Section IV the algorithm is validated on simulated arx

model data. In addition, an example on real life data
collected from a “Fan and Plate” process is presented.
Finally, in Section V conclusions are drawn and future
work outlined.

II. PROBLEM STATEMENT

A. The arx model structure

In this paper, we will focus on the arx model struc-
ture [4]

y(t) + a1y(t − 1) + · · · + ana
y(t − na)

= b1u(t − 1) + · · · + bnb
u(t − nb) + e(t), (1)

where u(t), y(t) and e(t) denote the input, the output and
the noise signals, respectively. It is well known that (1)
can be rewritten as a linear regression

y(t) = ϕT (t)θ + e(t), (2)

where

θ =
(

a1 · · · ana
b1 · · · bnb

)T
,

ϕ(t) =
(

−y(t−1) ··· −y(t−na) u(t−1) ··· u(t−nb)
)T

.

The fir model structure is a special case of the arx

family when no output lag is present.
Given a dataset ZN , {u(0), y(0), . . . , u(N), y(N)},

the least square (ls) parameter estimate for the linear
regression model (2) is then

θ̂N , arg min
θ

VN (θ, ZN), (3)

where

VN (θ, ZN) ,
1

N

N
∑

t=1

(y(t) − ϕT (t)θ)2. (4)

By batching the data

Y =
(

y(1) y(2) · · · y(N)
)T

, (5)

Φ =
(

ϕ(1) ϕ(2) · · · ϕ(N)
)T

, (6)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA04.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1974

the optimal solution to (3) can be written

θ̂N =
[

ΦT Φ
]−1

ΦT Y , Φ†Y, (7)

For more information about linear regression models and
the estimation of such, see e.g. [4].

B. The Nonnegative Garrote

The Nonnegative Garrote (nng) method was first
presented in [3] as a coefficient shrinkage method for
linear regression models in statistics. As the celebrated
Lasso method [7], it uses regularization to penalize the
size of the parameters. However, instead of affecting the
parameters directly, the nng method penalizes the least
squares solution by attaching weights to it, which in turn
are regularized. Thus, given the least square estimate θ̂
of a linear regression model (2), the nng problem can be
written as

min

N
∑

t=1

(

y(t) −

n
∑

j=1

wjϕj(t)θ̂j

)2

+ λ

n
∑

j=1

wj

s.t. w � 0,

(8a)

where λ is a model complexity parameter, and � denotes
componentwise inequality. As λ increases, the weights of
the less important regressors will shrink, and finally end
up exactly zero. For each given λ, the nng parameter
estimate has the elements wiθ̂i, 1 ≤ i ≤ n, where w is
the optimal solution to (8a). Thus, as λ increases, the
model becomes less complex.

C. Modification

In system identification, one is typically interested
in the estimation of dynamical systems, compared to
the static models used in statistics. In dynamic linear
regression models, the regressors are naturally ordered by
their time lag. The higher model order, the more saved
data is needed. The original nng method (8a) do not take
such orderings into consideration. It just sets the weights
of the less important regressors low, not considering their
order. To be able to penalize higher order lags first, one
could modify (8a) by adding some constraints on the
weights. For arx models, these constraints could be

1 ≥ w1 ≥ w2 ≥ · · · ≥ wna
≥ 0 (8b)

1 ≥ wna+1 ≥ wna+2 ≥ · · · ≥ wna+nb
≥ 0. (8c)

This is a natural extension of the nng method, for
order selection of arx models in system identification.
Note that, contrary to the method in [5], we can let
the ordering of y and u be independent. This yields
automatic order selection, and a natural way to choose
the importance between input lag and output lag, since
both get an equal chance.

The modified nng problem (8), can be rewritten as a
quadratic problem with linear inequality constraints, i.e.

min
1

2
wT Qw + fT w + λ1

T w

s.t. Aw � b,
(9)

where Q = 2Θ̂ΦT ΦΘ̂, f = −2Θ̂ΦT Y , Θ̂ , diag (θ̂), and
the inequality constraints are derived from (8b)–(8c).

Given the solution wλ to (9), for a specific λ, the
modified nng parameter estimate is θ̂λ = Θ̂wλ.

III. THE ALGORITHM

An efficient way to solve (9) is to use path following
parametric optimization. This idea is not new and the
application of parametric optimization to the original
nng problem (8a) has already been published in [9].

In the paper [6] it is shown that the problem

min L(x) + λJ(x)

s.t. Ax � b

Āx = b̄,

(10)

where L(x) is piecewise quadratic and J(x) is a piece-
wise affine function, both convex, has a piecewise affine
solution path, i.e. the optimal solution x to (10) is a
piecewise affine function of λ ∈ R+. In the modified nng

problem (9), L is quadratic and J is linear as functions
of w, which yields a somewhat simpler solution.

The Lagrangian to (9) is

L(w, µ) =
1

2
wT Qw + fT w + λ1

T w + µT (Aw − b), (11)

where µ is a vector of Lagrangian multipliers. This yields
the Karush-Kuhn-Tucker (kkt) conditions [2]

Qw + f + λ1 + AT µ = 0 (12a)

Aw − b � 0 (12b)

µj(Ajw − bj) = 0 (12c)

µ � 0, λ ≥ 0. (12d)

Now, let
J a = {j1, j2, . . . , jnJ }, (13)

be the set of active constraints (for µj). Solving (12) is
then equivalent to solving

(

Q AT
J a

AJ a 0

) (

w
µJ a

)

=

(

−f − λ1

bJ a

)

. (14)

Differentiation with respect to λ yields
(

Q AT
J a

AJ a 0

) (

∂w
∂λ

∂µJa

∂λ

)

=

(

1

0

)

. (15)

These equations are all that is needed to find the piece-
wise affine solution path. The algorithm presented in [6],
tailored for the modified nng problem, is given below in
Algorithm 1.

To find the initial solution, let λ = 0. Then (9) is an
ordinary least square problem with inequality constraints
with the obvious solution w = 1. To find µJ a we need
to solve (12a). Since

Qw + f = 2Θ̂ΦT ΦΘ̂1 − 2Θ̂ΦT Y = 2Θ̂ΦT (ΦΘ̂1 − Y)

= 2Θ̂ΦT (Φθ̂ − Y) = 0, (16)

where the last equality follows from the fact that the
regression matrix Φ is orthogonal to the residuals Φθ̂−Y ,
one finds that µJ a = 0.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA04.4

1975

Algorithm 1 Parametric Optimization for the modified
Nonnegative Garrote

1) Initialization: Set λ = 0, w0 = 1, µJ a = 0 and
J a = {1, 2, . . . , p−1}. Let S = {(λ, w)} = {(0,1)}.

2) Directions: Solve (15) for ∂w
∂λ

and ∂µJa

∂λ
.

3) Step length: Find the minimal δλ ≥ 0 satisfying
one of the following:

a) If Aj(wλ + ∂w
∂λ

δλ) = bj and Aj
∂w
∂λ

> 0 for
some j /∈ J a. Then move the corresponding j
to J a.

b) If µj +
∂µj

∂λ
δλ = 0 and

∂µj

∂λ
< 0 for some j ∈

J a. Then remove the corresponding j from
J a.

If no feasible solution δλ ≥ 0 exists, set δλ = ∞.
4) Update: Set λ := λ+ δλ, wλ := wλ + ∂w

∂λ
δλ, µJ a :=

µJ a + ∂µJa

∂λ
δλ and add the new solution S :=

{S, (λ, w)}.
5) Termination criterion: Stop if λ = ∞, else continue

from step 2.

IV. Simulations

In this section, two examples where the modified nng

algorithm is applied to simulated system is presented.
Additionally, a final example on real life data is given.

In the two simulation examples, the arx(9,3) model

A(q)y(t) = B(q)u(t) + e(t), (18a)

where the noise is white Gaussian with variance 0.1 and

A(q) = 1 − 1.25q−1 + 0.4375q−2 − 0.3594q−3

+ 0.1719q−4 + 0.3125q−5 − 0.2764q−6 (18b)

+ 0.1360q−7 − 0.0769q−8 + 0.0137q−9

B(q) = 1 + 0.25q−1 − 0.25q−2 (18c)

will used as the true system.
The system (18) was simulated using white Gaussian

noise of unit variance as input, with 2N data points
where N = 1000. The input and output were then
divided equally into estimation ZN

e and validation data
ZN

v .
To validate the different model outcomes, we will use

fit = 100

1 −

√

∑N
t=1(y(t) − ŷ(t|θ(λ)))2

√

∑N
t=1(y(t) − ȳ))2

 (19)

which is a measure of how much better the model de-
scribes the process compared to the mean of the output.

For the parameter estimation of the initial arx models
(θ̂ in (8)), the system identification toolbox (sitb) in
Matlab was used.

A. Simulation: Perfect model order

Using the command arx(Ze,[9,3,0]) in Matlab,
which is the true model structure and order (18), one
gets the least square estimate of the parameter vector θ̂.

Plugging this estimate into the nng problem (9) yields a
piecewise affine solution path wλ and the fit values (19),
calculated for validation data ZN

v , shown in Figure 1.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100
λ

2
λ

3
λ

4 λ
5

λ
6 λ

7

λ
8λ
9

λ
10

λ
11λ

12

λ
13

λ
14λ
15

λ
16

fit(λ)

λ−values where solution path changes

Fig. 1. The fitλ values for the breakpoints and 1000 uniformly
logarithmic distributed values of λ, calculated on validation data,
for the simulation in Section IV-A.

In Table I, the parameter estimates θ̂λ for different
values of λ (λ = 0 yields the ls estimate θ̂).

We see that a model reduction could be made, without
to much loss in fit value, by choosing λ = λ6. This is an
arx(6,3) model, with a fit value of 95.9 on validation
data. This implies that the nng method may be used
as an alternative method for model reduction of arx

models.

Let us now consider a case where overfitting occurs.

B. Simulation: Overfitting

Now, by running the command arx(Ze,[20,10,0]) in
Matlab, which is an overfitted model of (18), one gets
the least square estimate θ̂ of the parameter vector.
Plugging this estimate into the nng problem (9) yields a
piecewise affine solution path wλ and the fit values (19),
calculated for validation data ZN

v , shown in Figure 2.
The nng parameter estimates θ̂λ for some interesting

breakpoints λ are given in Table II. In Figure 2, we
see that there is a maximum in fit value at λ = λ29,
which corresponds to the correct model order according
to Table II. Thus, it is interesting to see that the nng

method was able to find the correct model order in this
case, and that the estimates for this λ value are quite
near the true parameters.

In sitb there are commands (struc, arxstruc, and
selstruc) for automatic order selection for arx models.
Running these on the same data as above yields a
different solution path compared to Table II. This could
be explained by the fact that once a weight has been
reduced to zero by the nng algorithm, it stays zero, while
arxstruc has full freedom in choosing na and nb just as

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA04.4

1976

TABLE I
The estimated nng parameters in the simulation in Section IV-A for the some of the interesting breakpoints λ and their

fit value.

λ λ1 λ2 λ5 λ6 λ9 λ12

0 0.34204 5.1801 10.2184 64.5728 101.4516
-1.2625 -1.2593 -1.2343 -1.2135 -1.0506 -0.99427
0.42517 0.41876 0.37972 0.34957 0.14967 0.1071
-0.32125 -0.31437 -0.27963 -0.26101 -0.10834 -0.08092
0.14716 0.14401 0.1281 0.11957 0.048297 0.037069
0.33351 0.32411 0.2903 0.27097 0.10945 0.084008

θ̂λ -0.29512 -0.27663 -0.19921 -0.15468 0 0
0.14266 0.12037 0.025542 0 0 0

-0.080447 -0.053124 0 0 0 0
0.01583 0 0 0 0 0
1.0017 1.0017 1.0017 1.0017 0.99346 0.9732
0.23916 0.23916 0.23916 0.23916 0.2372 0.23236
-0.27722 -0.27722 -0.27044 -0.25955 -0.11118 0

fitλ 99.45 98.68 95.97 95.91 83.90 81.72

TABLE II
The estimated nng parameters in the simulation in Section IV-B for the some of the interesting breakpoints λ and their

fit value.

λ λ1 λ21 λ29 λ37 λ40 λ41

true 0 0.03540 0.2060 7.8785 52.5885 56.2759
-1.2500 -1.2823 -1.2803 -1.2754 -1.2389 -1.1015 -1.0946
0.4375 0.5125 0.5087 0.4993 0.4349 0.3323 0.3238
-0.3594 -0.43171 -0.4285 -0.4206 -0.3614 -0.2780 -0.2728
0.1719 0.2255 0.2237 0.2197 0.1888 0.0913 0.0890
0.3125 0.2728 0.2706 0.2634 0.2284 0.1104 0.1077
-0.2764 -0.2407 -0.2387 -0.2324 -0.1398 0 0
0.1360 0.1271 0.1158 0.1070 0 0 0
-0.0769 -0.1643 -0.0820 -0.0602 0 0 0
0.0137 0.1009 0.02405 0.00684 0 0 0

-0.0403 -0.0088 0 0 0 0
0.0520 0.0114 0 0 0 0
-0.0222 -0.0049 0 0 0 0
-0.0193 -0.0042 0 0 0 0

θ̂λ 0.0145 0.0032 0 0 0 0
-0.0087 -0.0019 0 0 0 0
0.0034 0 0 0 0 0
0.0010 0 0 0 0 0
0.0037 0 0 0 0 0
-0.0062 0 0 0 0 0
-0.0001 0 0 0 0 0

1.0000 0.9933 0.9933 0.9933 0.9920 0.9803 0.9779
0.2500 0.2210 0.2210 0.2210 0.2207 0.2181 0.2176
-0.2500 -0.2281 -0.2281 -0.2281 -0.2213 -0.0100 0

0.0030 0.0022 0 0 0 0
-0.0056 -0.0040 0 0 0 0
0.0020 0.0014 0 0 0 0
0.0224 0.0163 0 0 0 0
0.0189 0.0063 0 0 0 0
-0.0680 -0.0041 0 0 0 0
-0.0305 0 0 0 0 0

fitλ 97.36 98.27 98.71 95.24 84.97 84.75

long as na + nb is constant. The automatic choice given
by selstruc yields the correct model order (18).

There is a slight performance difference, in terms of
comparing complexity, for the low model orders used
here in favor for the sitb implementation. But as the
number of parameters grow, the favor turns to the nng

method. The reason for this is that the complexity of an
exhaustive search, as implemented in sitb, is quadratic in
the number of models, while the complexity of the nng

method is linear in the number of parameters.

C. Fan and plate data

In this final example, real life data collected from a
“Fan and Plate” process, shown in Figure 3, is used. This
simple process is used as a laboratory exercise in the
undergraduate modeling course at Linköping University.
The process input is the motor’s driving voltage and the
output is a gauge voltage which is proportional to the
angle of the plate.

For the identification, the input is chosen as random
binary noise of length 1000 with sampling time of 0.04 s.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA04.4

1977

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90

100
λ

21
λ

29
λ

37

λ
40

λ
41

fit(λ)

λ−values where solution path changes

Fig. 2. The fitλ values for the breakpoints and 1000 uniformly
logarithmic distributed values of λ, calculated on validation data,
for the simulation in Section IV-B.

Fig. 3. The fan and plate process.

Two thirds of the samples are used for estimation and
the remaining samples are used for validation.

The input delay was determined to be nk = 2. Esti-
mating an initial arx(50,50,2) model and plugging it into
the modified nng algorithm, results in the one step ahead
prediction fit values (19), on validation data, are shown
in Figure 4. The choices of the aic and mdl selection
criteria , see e.g. [4], which is an arx(9,3,2) model, are
also presented.

Using the sitb toolbox, letting na and nb roam free
up to order 50, via the arxstruc command, the mdl and
the aic criterion choices is an arx(7,4,2) model.

For validation, the simulation results on validation
data for the different models is presented in Figure 5. The
nng algorithm has only been used for order selection,
i.e. the models have been re-estimated using the arx

command for the corresponding model orders.
The mdl criterion evaluated on the nng results yields

a recommended model with comparable order and a
similar performance compared to the choice when mdl

was used together with the arxstruc command.

0 10 20 30 40 50 60 70 80
70

75

80

85

90

95

100

A
R

X
(9

,3
,2

)

AIC & MDL

M
o

d
e

l
fi
t

Index of the break points λ

Fig. 4. The one step ahead prediction model fit value (19) for
the modified nng algorithm on fan and plate validation data. The
horizontal axis is the index i for the break points λi.

31 32 33 34 35 36 37 38 39 40

−8

−6

−4

−2

0

2

4

y1. (sim)

y
1

Zv; measured

arx93; fit: 68.07%

arx74; fit: 67.52%

Fig. 5. Simulation for the different model orders on validation data.
The nng choices has been re-estimated on the estimation data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new method for order selection of
arx models was presented and an efficient algorithm
given. The method is a modified variant of the nng

method [3], where constraints on the weights were added
according to the natural order of the regressors in arx

models. Different examples were given, both on data from
simulations and from a real life process, and the results
look promising, both for model reduction and finding the
true model order.

The regularization parameter λ was used to penalize
both the pole and the zero polynomials, thus letting
the ordering of the output lags and the input lags be
independent. This could be extended by splitting the
J(w) in (10) into two sums with two different λ, one for
weights on the poles and one for the zeros. This would

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA04.4

1978

need to make use of a multiparametric programming
algorithm and although they are not as simple as the
one presented for a single parameter, efficient algorithms
exist [8].

The new method is easily extended to the multivari-
able case. Here, one could still use one regularization
parameter λ and it would be interesting to observe the
behavior of the algorithm.

References

[1] K. Åström and P. Eykhoff. System identification – a survey.
Automatica, 7:123–162, 1971.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[3] L. Breiman. Better subset regression using the nonnegative
garrote. Technometrics, 37(4):373–384, 1995.

[4] L. Ljung. System Identification, Theory for the User. Prentice
Hall, 1999.

[5] S. Niu, L. Ljung, and Å. Björck. Decomposition methods for
solving least-squares parameter estimation. IEEE Transac-
tions On Signal Processing, 44(11):2847–2852, 1996.

[6] J. Roll. Piecewise linear solution paths for parametric piece-
wise quadratic programs with application to direct weight
optimization. Technical Report LiTH-ISY-R-2816, Linköpings
Universitet, 2007. To appear in Automatica.

[7] R. Tibshirani. Regression shrinkage and selection via the lasso.
J. R. Statist. Soc. B, 58(1):267–288, 1996.

[8] P. Tøndel, T.A. Johansen, and A. Bemporad. Further results
on multiparametric quadratic programming. In Conference on
Decision and Control, pages 3173–3178, Maui, Hawaii, 2003.

[9] M. Yuan and Y. Lin. Model selection and estimation in
regression with grouped variables. J. R. Statist. Soc. B,
68(1):49–67, 2006.

[10] K. Zhoe, J. C. Doyle, and K. Glover. Robust and Optimal
Control. Prentice Hall, 1995.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA04.4

1979

