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Abstract— In this paper we use filtered Lyapunov functions,
introduced in previous works, to construct a general framework
for the global stabilization of nonlinear systems. Filtered Lya-
punov functions are Lyapunov functions which may depend on
parameters satisfying differential equations. The main feature
of filtered Lyapunov functions is that it is easy to construct
and combine them even for nontriangular systems to obtain
composite filtered Lyapunov functions which may be used for
Lyapunov-based design of stabilizing controllers. Tools for the
design of composite filtered Lyapunov functions are given and
used to prove new global stabilization results via dynamic
feedback.

Index Terms— Filtered Lyapunov functions, interconnected
systems, dynamic feedback stabilization

I. INTRODUCTION

The problem of constructing composite Lyapunov func-
tions for interconnected systems has been the subject of
many papers ([8], [12], [11],[14], [9]) and books ([15]).
Dissipativity ([8]) and Lyapunov-based small-gain theorems
([12], [13] , [18], [3]) and finite gap conditions ([1]) establish
elegant methods for the stability analysis of interconnected
systems but do not point out any constructive procedure
for a Lyapunov function of the interconnection, since in
most cases the stability of the interconnection is proved by
using a Lyapunov function defined on the system trajectories
or resulting from smoothing out procedures ([17]). A con-
structive design of composite Lyapunov functions has been
proposed in [14] and [11] in the case of triangular systems
Σ1 : ẋ = f(x) + h(x, z), Σ2 : ż = a(z). In [14] the
composite Lyapunov function is the sum of suitable nonlinear
rescalings of the Lyapunov functions of each system Σ1 and
Σ2 but it is assumed that h(x, z) contains no linear terms
in z (see also section 5.1.3 of [15]). In [11] no assumption
is required on the term h(x, z) and the composite Lyapunov
function is the sum of the Lyapunov functions of each system
Σ1 and Σ2 plus a suitable cross term. However, the definition
of this cross term is given through a line integral along the
trajectories of the interconnected system. Recently in [9]
and [10] the constructive aspect of a composite Lyapunov
function have been studied for nontriangular systems Σ1 :
ẋ = f(x) + h(x, z), Σ2 : ż = a(z) + b(x, z), where
each single system is ISS/iISS ([16], [2]) and a small-gain
condition plus some additional conditions are satisfied. The
proposed composite Lyapunov function is the sum of a
nonlinear rescaling of the Lyapunov functions of each system
Σ1 and Σ2. The state rescaling can be computed using certain
maps which charaterize the ISS/iISS property of each system
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Σ1 and Σ2. However, while in the case of both ISS systems
Σ1 and Σ2 the small-gain condition is the same one used
in [12], [13] , [18] and [3] and no additional conditions
are required, in the case of either Σ1 or Σ2 being iISS the
required conditions are stronger than the tight ones given [1]
(examples 4.2 and 4.1). In [1] it is shown that if either Σ1 or
Σ2 is iISS then at least a ”finite gap” condition must hold if
we want to conclude stability of the interconnection on the
basis of geometric conditions involving the nullclines of the
dissipation inequalities characterizing the iISS properties of
Σ1 and Σ2.

Recently a new type of Lyapunov function has been
introduced in [4]. Filtered Lyapunov functions are Lya-
punov functions which depend on time-varying parameters
satisfying suitable differential equations. These differential
equations can be implemented as dynamical filters. The
flexibility of this new type of Lyapunov functions can be
seen in the design of composite Lyapunov functions for
interconnected systems Σ1 : ẋ = f(x) + h(x, z), Σ2 : ż =
a(z) + b(x, z) consisting of a “filtered” combination of the
Lyapunov functions W1(x) and W2(z) for Σ1 and Σ2, i.e.
θ[W1(x) + dW2(z)] where d > 0 and θ is the output of
a filter implemented by using the mixed terms in x and z
appearing in the time derivatives Ẇ1(x) and Ẇ2(z).

Following the preliminary work [4], we want to give the
following contributions in this paper.
• We establish more profound results on the construction

of filtered Lyapunov functions than in [4]. We consider
the case of triangular systems Σ1 : ẋ = f(x) + h(x, z),
Σ2 : ż = a(z), where h(x, z) may contain linear terms
in z, and the case of nontriangular systems satisfying
different types of small-gain and finite gap conditions
([12], [18], [3], [1]). In particular, in the case of both ISS
systems Σ1 and Σ2 we show how a filtered Lyapunov
function can be easily designed for the interconnection
of Σ1 and Σ2: in this case, the constructive result of [9]
and [10] gives already a Lyapunov function as the sum
of suitable rescalings of the Lyapunov functions for Σ1

and Σ2. In the case of either Σ1 and Σ2 being iISS the
conditions required in [9] and [10] are stronger than
the finite gap conditions given in [1] (examples 4.2 and
4.1). In a more detailed paper we will show that we are
able to construct a filtered Lyapunov function 1) if the
finite gap condition of [1] holds and 2) the finite gap
condition of [1] does not hold but global asymptotic
stability of the interconnection is known and a local
small-gain condition is satisfied. In this paper we limit
ourselves to give some examples which let understand
this.
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• Secondly, using the design of filtered Lyapunov func-
tions, we obtain constructive results concerning global
stabilization of different classes of nonlinear systems.
In doing this, we follow closely [11]. As a first class of
systems we consider

ẋ = f(x) + h(x, z) + g(x, z)v
ż = a(z) + c(x, z)v (1)

with x ∈ Rn, z ∈ Rm, v ∈ Rr the control vector,
f : Rn → Rn, a : Rm → Rm, h : Rn × Rm → Rn,
g : Rn × Rm → Rn×r and c : Rn × Rm → Rm×r

locally Lipschitz continuous functions. Note that the
“core” system ẋ = Fx + h(x, z), ż = a(z) is the
uncontrolled dynamics of (1). Our stabilization results
are based on the knowledge of a filtered Lyapunov
function for the core system, designed according to
the lines stipulated in this paper. In particular, if a
Lyapunov function W (x, z) is known for the core
system with nonpositive time derivative Ẇ (x, z) then a
feedback control which preserves global stability in (1)
is v = −gT (x, z)(∂W

∂x (x, z))T − (cT (x, z)∂W
∂z (x, z))T .

By adding suitable detectability assumptions, we prove
the global asymptotic stability of the closed-loop sys-
tem.
As a second class of systems, we consider

ẋ = f(x) + h(x, z) + g(x, z, y)y
ż = a(z) + b(x, z) + c(x, z, y)y
ẏ = v (2)

with x ∈ Rn, z ∈ Rm, y ∈ Rr, v ∈ Rr the control
vector, f : Rn → Rn, a : Rm → Rm, h : Rn × Rm →
Rn, b : Rn × Rm → Rm, g : Rn × Rm × Rr → Rn×r

and c : Rn × Rm × Rr → Rm×r locally Lipschitz
continuous functions. In this case the core system ẋ =
f(x)+h(x, z), ż = a(z)+ b(x, z) is the zero dynamics
of (2) with output y. Although not shown in this paper,
our stabilization results are based on the knowledge
of a filtered Lyapunov function for the core system
ẋ = f(x) + h(x, z), ż = a(z) + b(x, z), designed
according to the lines stipulated in this paper. Since the
relative degree of (2)with output y is one and the zero
dynamics of (2) with output y is globally stable together
with a Lyapunov function obtained by our constructive
procedure, we use the feedback passivation approach
([6]) for stabilizing (2).

II. NOTATIONS

Before going further, we give some notations extensively
used throughout the paper.
• ‖v‖ =

√
vT v denotes the euclidean norm of any

given vector v and ‖v‖A :=
√

vT Av for any positive
semidefinite matrix A. Let Rs be the vector space
of s-dimensional real column vectors; R+ (resp. R≥)
denotes the set of positive (resp. nonnegative) real
numbers and C− (resp. C≤) the set of complex num-
bers with negative (resp. nonpositive) real part; Rn×m

denotes the set of n × m matrices. For any matrix
A ∈ Rn×n we denote by σ(A) its spectrum.

• By f ◦ g we denote composition of functions f and g
and by fg we denote product of functions f and g.

• Let X ⊂ Rq and Y ⊂ Rr. We denote by C0(X ,Y )
the set of continuous functions f : X → Y ,
Cj(X ,Y ), j = 1, . . . ,∞, the set of j times con-
tinuously differentiable functions f : X → Y , by
Lj(X ,Y ), j = 1, . . . , p < +∞, the set of continuous
functions f : X → Y such that (

∫ ∞
0 ‖f(s)‖jds)

1
j <

+∞ and by L∞(X ,Y ) the set of continuous functions
f : X → Y such that sup s∈X ‖f(s)‖ < +∞.

• A function α ∈ C0([0, r], R≥), r ∈ (0,∞], is said to
be of class K+ (or α ∈ K+) if α(0) ∈ R≥ and it
is nondecreasing. A function α ∈ C0([0, r], R≥), r ∈
(0,∞], is said to be of class K (or α ∈ K ) if α(0) =
0 and it is increasing; a function α ∈ C0([0, r], R≥),
r ∈ (0,∞], is said to be of class K∞ (or α ∈ K∞) if
α ∈ K and lim s→+∞α(s) = +∞. A function α ∈
C0([0, r], R≥), r ∈ (0,∞], is said to be of class L (or
α ∈ L ) if α(0) = 0 and it is strictly decreasing and
lim s→+∞α(s) = 0.

III. FILTERED LYAPUNOV FUNCTIONS

In a context in which a system has exogenous inputs and
some of these may be the states of some other interconnected
system, it is natural to introduce Lyapunov functions which
may depend on parameters satisfying differential equations.
When interconnecting two systems Σ1 and Σ2 with Lya-
punov functions W1 and W2, a simple combination W1θ1 +
W2θ2, θ1, θ2 > 0, may be not a candidate Lyapunov function
for the interconnection Σ of Σ1 and Σ2 (see a detailed
discussion in [15]). In this section we investigate the problem
of constructing simple Lyapunov functions for triangular Σ.

A. Introducing filtered Lyapunov functions

Consider the system

Σ :
{

Σ1 : ẋ = f(x) + h(x, z)
Σ2 : ż = a(z)

(3)

with f(0) = h(x, 0) = 0, a(0) = 0, x ∈ Rn and z ∈
Rm, f ∈ C0(Rn, Rn), h ∈ C0(Rn × Rm, Rn) and a ∈
C0(Rm, Rm) locally Lipschitz functions. Assume
(A) the existence of proper and positive definite W ∈
C2(Rn, R≥) and V ∈ C2(Rm, R≥), with ∂2V

∂z2 (0) = P > 0
(i.e. V (z) is locally quadratic around zero), τ ∈ K+, ϕ ∈
C0(Rn, R≥) and κ ∈ K , with κ(s) = κ0s for all s near
the origin (i.e. κ(s) is linear near zero), for which along the
trajectories of Σ

Ẇ (x) ≤ −ϕ(x)

+(τ ◦ V )(z)
[
(κ ◦ V )(z) +

√
(κ ◦ V )(z)W (x)

]
V̇ (z) ≤ −(κ ◦ V )(z). (4)
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Remark 3.1: By following the proof of lemma A.1 of
[11] it is possible to show that the the trajectories (x(t), z(t))
of Σ are bounded for all t ≥ 0.

A composite Lyapunov function W (x) + Ψ(x, z) + V (x)
for Σ can be designed as pointed out in [15] by defining
the cross term Ψ(x, z) as a suitable line integral along the
trajectories of Σ. However, the calculation of the cross term
Ψ(x, z) is not feasible in most cases, since it is defined on
the state trajectories (x(t), z(t)). Also the simpler Lyapunov
function α(W (x)) + β(V (x)) proposed in [14] cannot be
used for Σ, since h(x, z) may contain linear terms in z (see
section 5.1.3 of [15]). Finally, since (A) does not imply that
Σ1 be either iISS or ISS ([16], [2]) even the constructive
procedure of [9] and [10] cannot be invoked.

In order to investigate different and simpler ways of im-
plementing a Lyapunov function for Σ, consider the filtered
combination of the Lyapunov functions W (x) and V (z)

W̃ (x, z, θ) = θ[W (x) + dV (z)], (5)

with c ∈ R+, d > τ(c) and θ being the output of the
following dynamical filter

θ̇(t) = −
[max{(τ ◦ V )(z(t))− τ(c), 0}(κ ◦ V )(z(t))

cd

+(τ ◦ V )(z(t))
√

(κ ◦ V )(z(t))
]
θ(t), θ(0) = 1 (6)

Therefore, on account of (A) along the trajectories of (3)-(6)

˙̃W (x, z, θ) ≤ −θ{ϕ(x) + [d− τ(c)](κ ◦ V )(z)} (7)

We want to prove the following claim.
Claim 3.1: θ(t) is positive, bounded by 1 and nonincreas-

ing for all t ≥ 0 and for each trajectory (x(t), z(t)) of Σ.
Proof: Fix a trajectory (x(t), z(t)) of (3). By the second

of (4) it is easy to conclude that for each c > 0 the trajectory
z(t) is captured in finite time T ≥ 0 by the set {z : 0 ≤
V (z) ≤ c}. Therefore, since τ ∈ K+, (τ ◦ V )(z(t)) ≤ τ(c)
for all t ≥ T and

exp{
∫

t
0

max{(τ ◦ V )(z(s))− τ(c), 0}(κ ◦ V )(z)
cd

ds}

= exp{
∫

T
0

max{(τ ◦ V )(z(s))− τ(c), 0}(κ ◦ V )(z)
cd

ds}(8)

for all t ≥ T . Moreover, by the second of (4) and since
κ(s) = κ0s for all s near the origin, c ∈ R+ can be selected
so that

V (z(t)) ≤ c exp{−κ0(t− T )} (9)

for all t ≥ T . On account of (8)-(9) and linearity of κ(s)
near the origin, integration of (6) yields that θ(t) is defined
and positive for all t ≥ 0. By (6) θ(t) is also decreasing and
bounded by 1 for all t ≥ 0.

The fact that θ(t) is bounded, positive and nonincreasing
for all t ≥ 0 however does not prevent θ(t) from going to
zero as t → ∞. This fact is crucial when using the filtered
Lyapunov function W̃ (x, z, θ) for concluding asymptotic
convergence to zero of (x(t), z(t)) (section III-C). The an-
swer to this issue follows from the local exponential stability
of Σ2 and it is contained in the next claim (not proved here).

Claim 3.2: Along each trajectory (x(t), z(t)) we have
inf t≥0θ(t) > 0.

Example 3.1: Consider the system ([11])

ẋ =
x2z

1 + x2

ż = −z (10)

It is easy to see that along the trajectories of (10) Ẇ (x) ≤
2
√

V (z)W (x) and V̇ (z) ≤ −V (z), with V (z) = z2 and
W (x) = x2. Therefore, we define W̃ (x, z, θ) = θ[x2 +
4z2], with θ̇ = −2|z|θ and θ(0) = 1. Note that z(t) =
z(0)e−t and therefore θ(t) = exp{2|z(0)|(e−t − 1)} with
inft≥0 θ(t) = exp{−2|z(0)|} > 0. The simpler construction
of a composite Lyapunov function α(W (x)) + β(V (x))
proposed in [14] cannot be applied, since the term h(x, z) =
x2z

1+x2 is linear in z.
However if h(x, z) contains a term like H0z, then the first

of (4) cannot be satisfied even in simple cases, while this is
not a limitation in [11]. By restricting to f(x) = Fx ([11])
and noting that in virtue of (4) A = ∂a

∂z (0) and F satisfy a
nonresonance condition, in the next section we show how to
add a term zT Ψ0z+zT Ψ1x in our filtered Lyapunov function
to fix this limitation. The idea of introducing such a term to
cope with linear terms H0z in h(x, z) has been suggested in
[15].

B. Linear cross term

Consider the system

Σ :
{

Σ1 : ẋ = Fx + h(x, z)
Σ2 : ż = a(z)

(11)

with h(x, 0) = 0, a(0) = 0, ∂h
∂z (0, 0) = H0, ∂a

∂z (0) = A,
x ∈ Rn and z ∈ Rm, F ∈ Rn×n, h ∈ C0(Rn × Rm, Rn)
and a ∈ C0(Rm, Rm) locally Lipschitz functions such that

‖h(x, z)−H0z‖ ≤ γ1(‖z‖) + γ2(‖z‖)‖x‖ (12)

for all x, z and for some locally at 0 Lipschitz γ1,γ2 ∈ K
((A1) in [11])). Assume
(B1) the existence of proper and positive definite W ∈
C2(Rn, R≥) and V ∈ C2(Rm, R≥), with ∂2W

∂x2 (0) = Q > 0
and ∂2V

∂z2 (0) = P > 0, τ ∈ K +, ϕ ∈ C0(Rn, R≥),
M ∈ Rn×m, τ ∈ K+ and κ ∈ K , with κ(s) = κ0s for
all s near the origin, such that along the trajectories of Σ

Ẇ (x) ≤ −ϕ(x) + xT Mz

+(τ ◦ V )(z)
[
(κ ◦ V )(z) +

√
(κ ◦ V )(z)W (x)

]
V̇ (z) ≤ −(κ ◦ V )(z). (13)

Remark 3.2: By following the proof of lemma A.1 of
[15]) it is possible to show that the trajectories (x(t), z(t))
of (11) are bounded for all t ≥ 0.

By the first of (13) with z = 0 we conclude that σ(F ) ⊂
C≤ and by the second of (13) we conclude that σ(A) ⊂ C−.
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Let Ψ0 ∈ Rm×m symmetric and Ψ1 ∈ Rm×n be such that

Ψ0A + AT Ψ0 = −1
2
[Ψ1H0 + HT

0 ΨT
1 ]

Ψ1F + AT Ψ1 = −MT (14)

The matrix equations (14) admit a unique solution on account
of the fact that σ(A) ⊂ C− and σ(A) ∩ σ(−F ) = {∅}.
Moreover, on account of (12) and linearity of κ ∈ K near
the origin, we can find λ ∈ K+ such that for all x, z

‖zT Ψ1[h(x, z)−H0z] + (2zT Ψ0 + xT ΨT
1 )(a(z)−Az)‖

≤ (λ ◦ V )(z)
[
(κ ◦ V )(z) +

√
(κ ◦ V )(z)W (x)

]
. (15)

Define

W̃ (x, z, θ) = θ[W (x) + zT Ψ0z + zT Ψ1x + dV (z)] (16)

θ̇(t) = −
[max{(τ̃ ◦ V )(z(t))− τ̃(c), 0}(κ ◦ V )(z(t))

cd

+(τ̃ ◦ V )(z(t))
√

(κ ◦ V )(z(t))
]
θ(t), θ(0) = 1 (17)

with τ̃(s) := τ(s) + λ(s) and c ∈ R+ and d > τ̃(c) such
that W (x) + zT Ψ0z + zT Ψ1x + dV (z) is positive definite.
The choice of such a d is possible since W (x) + zT Ψ0z +
zT Ψ1x+ dV (z) is locally quadratic around zero on account
of W (x) and V (z) being locally quadratic around zero by
(B1).

By (B1) we have along the trajectories of (11)-(17)

˙̃W (x, z, θ) ≤ −θ{ϕ(x) + [d− τ̃(c)](κ ◦ V )(z)}. (18)

From this point we can argue as in section III-A to draw
similar conclusions. We sum up the discussion of sections
III-A and III-B into the following proposition.

Proposition 3.1: Consider the system (11) with a(0) = 0,
h(x, 0) = 0, ∂h

∂ξ (0, 0) = H0, ∂a
∂ξ (0) = A, x ∈ Rn and

ξ ∈ Rm, F ∈ Rn×n, h ∈ C0(Rn × Rm, Rn) and a ∈
C0(Rm, Rm) locally Lipschitz function such that (12) holds
for all x, ξ and for some locally at 0 Lipschitz γ1,γ2 ∈ K .
Under assumptions (B1) the function W̃ (x, ξ, θ), defined in
(16)-(17), satisfies (18) for some τ̃ ∈ K+ and d ∈ R+ and, in
addition, inft≥0 θ(t) > 0 along each trajectory of (11).

If Fx is replaced by any locally Lipschitz function f :
Rn → Rn such that f(0) = 0 and M = 0 and Q ≥ 0 in
(B1), the function W̃ (x, ξ, θ), defined in (5)-(6), satisfies (7)
for some d ∈ R+ and, in addition, inft≥0 θ(t) > 0 along each
trajectory of (11).

A filtered Lyapunov function can be used for designing
dynamic state feedback stabilizing control laws. The main
idea is illustrated through the following paradigm.

C. Using filtered Lyapunov functions for asymptotic stabi-
lization with stable uncontrolled system

Consider the system (1) with a(0) = 0, h(x, 0) = 0,
g(x, 0) = g0, c(x, 0) = c0, ∂h

∂z (x, 0) = H0, ∂a
∂z (0) = A,

f(x) = Fx, x ∈ Rn, z ∈ Rm, v ∈ Rr is the control vector,
F ∈ Rn×n, a ∈ C0(Rm, Rm), h ∈ C0(Rn × Rm, Rn), g ∈
C0(Rn × Rm, Rn×r) and c ∈ C0(Rn × Rm, Rm×r) locally
Lipschitz functions with h(x, z) and H0 satisfying (12) for

all x, z and for some locally at 0 Lipschitz γ1,γ2 ∈ K .
Assume (B1) and, in addition,
(B2) W (x) is quadratic

(B3) the pair
( (

F H0

0 A

)
,

(
g0

c0

) )
is stabilizable.

Remark 3.3: Note that the uncontrolled system (1) is
exactly equal to the core system (11). Condition (B3) guar-
antees that a certain zero-state detectability property with
respect to the output v can be achieved for (11) after
feedback.

As remarked, the uncontrolled system (1) is globally
stable. We want to find a state feedback controller which
globally asymptotically stabilizes (1). Let Ψ0 and Ψ1 be
as in (14), W̃ (x, z, θ) as in (16)-(17), with d > τ̃(c) such
that W (x) + zT Ψ0z + zT Ψ1x + dV (z) is positive definite
and τ̃(s) := τ(s) + λ(s), where λ ∈ K+ is a continuous
increasing function satisfying (15) for all x, z. Define the
following dynamic state feedback control law

v = −
{

gT (x, z)[(
∂W

∂x
(x))T + ΨT

1 z]

+cT (x, z)[d(
∂V

∂z
(z))T + 2Ψ0z + Ψ1x]

}
θ

θ̇ = −
[max{(τ̃ ◦ V )(z)− τ̃(c), 0}

√
(κ ◦ V )(z)

cd

+(τ̃ ◦ V )(z)
]√

(κ ◦ V )(z)θ, θ(0) = 1. (19)

(any other control v as in (19) multiplied by some gain p ∈
R+ or some positive definite function of θ can be assumed as
well). We want to prove that the closed-loop system (1)-(19)
is globally asymptotically stable 1. By direct calculations, we
have along the trajectories of (1)-(19)

˙̃W (x, z, θ) ≤ −θ{ϕ(x) + [d− τ̃(c)](κ ◦ V )(z)} − ‖v‖2(20)

First, we prove boundedness of the trajectories (x(t), z(t))
of (1)-(19). By LaSalle invariance principle and using as-
sumptions (B1)-(B3) we easily prove the following claims.

Claim 3.3: The trajectories (x(t), z(t)) of (1)-(19) are
bounded for all t ≥ 0 and along each such trajectory
inft≥0 θ(t) > 0.

Claim 3.4: The trajectories (x(t), z(t)) of (1)-(19) glob-
ally asymptotically and locally exponentially tend to the ori-
gin.

Claims 3.3 and 3.4 prove that the closed-loop system
trejectories (x(t), z(t)) of (1)-(19) are bounded for all times
and asymptotically driven to the origin. Therefore, global
asymptotic stability of (1)-(19) follows if it is Lyapunov
stable (partially with respect to x, z). From (20) and since
θ(0) = 1 it follows that

θ(t)[W (x(t)) + dV (z(t))] ≤ W (x(0)) + dV (z(0)) (21)

On the other hand by local exponential convergence to the
origin of z(t) and the existence for each trajectory z(t) of
T ∈ R+ such that (τ̃ ◦ V )(z(t)) ≤ τ̃(c) for all t ≥ T , we
obtain ψ ∈ L such that θ(t) ≥ ψ(‖z(0)‖) for all t ≥ 0.

1By global (asymptotic) stability of (1)-(19) we mean partial global
(asymptotic) stability with respect to x and z: def. 55.2 of [7]
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Therefore, since V and W are proper and positive definite,
there exist ζ1, ζ2 ∈ K∞ such that

ζ1(‖(x(t), z(t)‖) ≤ W (x(t)) + dV (z(t))

≤ W (x(0)) + dV (z(0))
ψ(z(0))

≤ ζ2(‖(x(0), z(0)‖) (22)

which implies Lyapunov stability of (1)-(19). We can collect
the above conclusion into the following result.

Theorem 3.1: Consider the system (1) with h(x, 0) = 0,
a(0) = 0, g(x, 0) = g0, c(x, 0) = c0, ∂h

∂z (x, 0) = H0,
∂a
∂z (0) = A, f(x) = Fx for all x ∈ Rn, z ∈ Rm,
F ∈ Rn×n, and a : Rm → R, h ∈ C0(Rn × Rm, Rn),
g ∈ C0(Rn × Rn, Rn×r) and c ∈ C0(Rn × Rm, Rm×r)
locally Lipschitz functions with h(x, z) and H0 satisfying
(12) for all x, z. Under assumptions (B1)-(B3) the closed-loop
system (1)-(19) is globally asymptotically stable and locally
exponentially stable.

D. Filtered Lyapunov function: definitions

The discussions of sections III-A, III-B and III-C motivate
the following definition. This definition has been given under
different but equivalent form in [4]. Let Σ(z,χ) be a given
system with state z ∈ Rn and inputs χ ∈ Rm.

Definition 3.1: We say that W̃ ∈ C∞(Rn ×R≥, R≥) is a
smooth filtered Lyapunov function for Σ(z,χ) if
(i) W̃ (z, θ) = θW (z) with proper and positive definite W ∈
C∞(Rn, R≥),
(ii) there exists locally Lipschitz Γ ∈ C0(Rn, R≥) such that
θ̇(t) = −Γ(z(t))θ(t), θ(0) ∈ R+, for each trajectory z(t) of
Σ(z,χ),
(iii) there exist ϕj ∈ C∞(Rn, R≥) and αj : C∞ ∈ (Rn ×
Rm, R≥) such that ϕj(0) = αj(z, 0) = 0 for all z and along
the trajectories of Σ(z,χ)

˙̃W (z, θ) ≤ θ{−ϕj(z) + αj(z,χ)}. (23)
In the next section we see how to construct filtered

Lyapunov functions for nontriangular interconnections, using
the filtered Lyapunov functions of the simpler dynamics (core
systems) in which these systems can be decomposed.

IV. FILTERED LYAPUNOV FUNCTIONS FOR
INTERCONNECTED SYSTEMS: GENERAL CONDITIONS

Let Σj(zj ,χj), j = 1, 2, be given systems with smooth
filtered Lyapunov functions W̃j(zj , θj). We can assume that
χj = (zi,χ), j 6= i, for some exogenous inputs χ ∈ Rm,
in other words we consider (zi,χ) as inputs for Σj , and let
z = (z1, z2). Therefore, by definition 3.1 there exist Γj ∈
C0(Rnj , R≥), j = 1, 2, such that θ̇j = −Γj(zj)θj and ϕj ∈
C∞(Rnj , R≥) and αj ∈ C∞(Rnj×Rni×Rm, R≥), j = 1, 2,
such that ϕj(0) = αj(zj , zi, 0) = 0, i 6= j, for all z and
along the trajectories of Σj(zj ,χj)

˙̃W j(zj , θj) ≤ θj [−ϕj(zj) + αj(zj ,χj)] (24)

By smoothness of ϕj and αj , j = 1, 2, and since
αj(zj , zi, 0) = 0 for all z, we can assume the existence
of γj ∈ C∞(Rnj × Rni , R≥), ϕ̃ji ∈ C∞(Rnj , R≥), i =

1 . . . , nj , and α̃j ∈ C∞(Rnj × Rni × Rm, R≥), j = 1, 2,
such that

ϕj(zj) =
∑ nj

i=1ϕ̃ji(zj)z2
ji,

αj(zj ,χj) = γj(z) + α̃j(z,χ)

The main result of this section is inspired by the ideas
presented in section III and points out the construction of
a filtered Lyapunov function for the interconnection Σ(z,χ)
of Σ1(z1,χ1) and Σ2(z2,χ2) as a “ filtered” linear combi-
nation of W̃1(z1, θ1) and W̃2(z2, θ2). The conditions under
which this construction is possible are the following: 1) the
trajectories z(t) are bounded for all times and are captured
in finite time by some neighbourhood of the origin and 2) a
local small-gain condition is satisfied. Property 1) follows
straightforwardly from global asymptotic stability of the
interconnection, which should be ascertained by using sta-
bility analysis tools such as small-gain or iISS/ISS theorems.
Property 2) can be easily checked from the maps γj and ϕj ,
j = 1, 2. Under conditions 1)-2) the parameter θ(t) of the
filtered Lyapunov function of the interconnection Σ is not
guaranteed to have a positive limit set. Therefore, we need
the additional: 3) integrability of the maps Γj(zj), j = 1, 2,
along the trajectories z(t). To a deeper analysis, this is not
at all a strong requirement especially if we put our result in
perspective of an iterative design: at a first level we construct
a filtered Lyapunov function for two systems Σ1 and Σ2 with
Lyapunov functions W1 and W2 and, therefore, we simply
take θ1 = θ2 = 1 and Γ1(z1) = Γ2(z2) ≡ 0, which trivially
satisfy condition 3) (sections III-A-III-B). At a second level
we try to construct a filtered Lyapunov function for the
interconnection of Σ1 and Σ2, on one hand, and Σ3, on
the other. Also in this case we simply take θ3 = 1 and
Γ3(z3) ≡ 0 and we are left with checking condition 3) on the
map Γ(z1, z2) associated to the filtered Lyapunov function
constructed for the interconnection of Σ1 and Σ2. On the
other hand, this follows directly from boundedness and local
exponential stability of the trajectories (z1(t), z2(t)), which
should be ascertained through the Jacobian linearization of
Σ around the origin.

The following result has been already proved under differ-
ent forms in [4] and includes as a particular case the second
part of proposition 3.1.

Theorem 4.1: Assume that Σj , j = 1, 2, has smooth
filtered Lyapunov function W̃j(zj , θj). Assume also that the
existence of ci > 0 and τi ∈ C0(R≥ × R≥, R≥), i = 1, 2,
with τi(r, ·), τi(·, s) ∈ K+ for each s and r, such that
(i) γj(z) ≤ τj(W1(z1),W2(z2))ϕi(zi), j, i = 1, 2, j 6= i, for
all z

(ii) τ1(c1, c2)τ2(c1, c2) < 1,
(iii) each trajectory z(t) of Σ(z,χ) is bounded for all t ≥ 0
and it is captured in finite time by the set R = {(z1, z2) :
τj(W1(z1),W2(z2)) ≤ τj(c1, c2), j = 1, 2}.
There exist d1 ∈ R+, d2 ∈ (d1τ1(c1, c2), d1

τ2(c1,c2)
) (d2 ∈

(d1τ1(c1, c2),+∞) if τ2(s, r) ≡ 0)

W̃ (z, θ) = θ[d1W1(z1) + d2W2(z2)] (25)
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is a smooth filtered Lyapunov function for Σ(z,χ). If in
addition

(iv) Γj(zj) ∈ L1(R≥, R≥), j = 1, 2, for each
trajectory of Σ(z,χ),

then along each trajectory of Σ(z,χ)

inf t≥0θ(t) > 0. (26)
Remark 4.1: Assumption i) requires that γ1 can be fac-

tored as ϕ2τ1 and γ2 as ϕ1τ2. A sufficient condition for
this being true is that ϕ2(0)

γ1(0)
, ϕ1(0)

γ2(0)
< ∞. If this is not the

case, one can replace in (24) the functions ϕ1,ϕ2 ∈ K ∩
C∞(R≥, R≥) with some other ϕ̃1, ϕ̃2 ∈ K ∩C∞(R≥, R≥)
such that ϕ̃j(s) ≤ ϕj(s), j = 1, 2, for all s ≥ 0 and
ϕ̃2(0)
γ1(0)

, ϕ̃1(0)
γ2(0)

< ∞.
Theorem 4.1 allows to prove global stabilization results

for minimum phase systems with relative degree one such
as (2) (with output y), where it is possible to identify a core
system (the zero dynamics) for which we can construct a
filtered Lyapunov function. This is possible under different
small-gain and finite gap conditions, which guarantee the
conditions of theorems 4.1. The filtered Lyapunov function of
the core system can be used to establish constructive global
stabilization results for (2) by using the feedback passivation
approach ([6]). For lack of space we limit ourselves to
give some examples of core systems for which a filtered
Lyapunov functions can be designed in virtue of theorem
4.1 and no other constructive procedure applies. In particular,
neither small-gain conditions of theorems 2 and 3 of [10] nor
conditions of theorem 3 of [9] are met. Yet, a simple filtered
Lyapunov function can be designed in virtue of theorem 4.1.

Example 4.1: (Local small-gain conditions with no es-
cape to infinity). Consider

Ẇ = −a
(1 + W )2 − 1

(1 + W )2
+ b[1 + V 8][(1 + V )2 − 1],

V̇ = −h
(1 + V )2 − 1

(1 + V )2
+ g

(1 + W )2 − 1
(1 + W )2

, (27)

where (W,V ) is assumed in the positive orthant and with
a, b, h, g ∈ R+ such that

(1 + c2)2 − 1
(1 + c2)2

>
g

ah
, [1 + c82](1 + c2)2 <

ha

bg
,

(1 + c1)2 − 1
(1 + c1)2

>
b

a
[1 + c82][(1 + c2)2 − 1] (28)

for some c1, c2 ∈ R+. These interconnections arise in the
stabilization problem of wide classes of nonlinear systems
including feedforward systems ([5]). In this case conditions
of [1] are not satisfied.

Example 4.2: (Global small-gain with infinite/finite gap
conditions). Consider the system (section 4.1 of [1]))

Ẇ ≤ − 2W

W + 1
+

V

V + 1
, V̇ ≤ − 2V

V + 1
+ W. (29)

where (W,V ) is assumed in the positive orthant. In this case
also conditions of [1] are satisfied.

Example 4.3: (No gap conditions). Consider the system
(section 4.1 of [1])

Ẇ = − W

1 + W
+ V, V̇ = −V +

( W 2

1 + W + W 2

)n

, (30)

for n ≥ 1 (if n ∈ (0, 1) unbounded trajectories do exist).
This is an example in which the nullclines of the left hand
sides of (30) have no gap at infinity. It should be clear
from this example that our constructive procedure can be
applied independently of how we guarantee the conditions
of theorem 4.1 (small-gain, finite gap and so on).
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