
A tailored inexact interior-point method for systems analysis

Janne Harju Johansson

Department of Electrical Engineering

Linköping University

581 83 Linköping, Sweden

harju@isy.liu.se

Anders Hansson

Department of Electrical Engineering

Linköping University

581 83 Linköping, Sweden

hansson@isy.liu.se

Abstract— Within the area of systems analysis there are sev-
eral problem formulations that can be rewritten as semidefinite
programs. Increasing demand on computational efficiency and
ability to solve large scale problems make the available generic
solvers inadequate. In this paper structure knowledge is utilized
to derive tailored calculations and to incorporate adaptation
to the different properties that appear in a proposed inexact
interior-point method.

I. INTRODUCTION

In this paper a structured semidefinite programming (SDP)

problem is defined and a tailored algorithm is proposed and

evaluated. The problem formulation, can for example be

applied to analysis of polytopic linear differential inclusions

(LDIs). The reformulation from systems analysis problems

to SDPs is described in [9] and [17].

The software packages available to solve SDP problems

are numerous. For example, if YALMIP, [27], is used as

an interface, nine available solvers can be applied. Some

examples of solvers are SDPT3, [33], DSDP, [2] and Se-

DuMi, [32], [29] all of which are interior-point methods.

These solvers solve the optimization problem on a general

form. The problem size will increase with the number of

constraints and the number of matrix variables. Hence, for

large scale problems, generic solvers will not have an accept-

able solution time or terminate within an acceptable number

of function calls. It is necessary to utilize the problem

structure to speed up the performance. Here an algorithm is

described that uses inexact serch directions for an infeasible

interior-point method. A memory efficient iterative solver is

used to compute the search directions in each step of the

interior-point method. In each step of the algorithm, the error

tolerance for the iterative solver decreases, and hence the

initial steps are less expensive to calculate than the last ones.

Iterative solvers for linear systems of equations are well

studied in the literature. For applications to optimization and

preconditioning for interior-point methods see [12], [7], [11]

[5], [19], [22] and [35]. Here a SDP problem is studied

and hence are the algorithms in [12], [7], [11] and [5]

not applicable. In [19], [22] and [35] a potential reduction

method is applied and an iterative solver for the search

directions is used. In [19] a feasible interior-point method is

used and hence the inexact solutions to the search direction

equations need to be projected into the feasible space at

a high cost. In [22] and [35] this was circumvented by

solving one linear system of equations for the primal search

This work was supported by CENIIT.

direction and another linear system of equations for the dual

search direction, however also at a higher computational cost.

Furthermore, solving the normal equations in [19] resulted in

an increasing number of iterations in the iterative solver when

tending towards the optimum. In this paper the augmented

equations are solved, which results in an indefinite linear

system of equations. No increase in the number of iterations

in the iterative solver has been observed. The behavior of

constant number of iterations in the iterative solver has also

been observed in [21] and [11]. In [12] the same behavior

was noted for linear programming. There the augmented

equations are solved when the iterate is close to the optimum.

A problem similar to the one discussed in this paper

has been investigated in [34], [36] and [19]. However, the

problem classes do not coincide since the constraints in this

work share the matrix variable P , defined later in the paper.

In [25] some preliminary results were presented. However,

it was noted that the convergence of the iterative solver was

only satisfactory initially in the algorithm and hence further

work was needed to cover a larger class of problems. The two

stage method described in this paper overcomes this problem

in many cases.

The remaining part of the paper is organized as follows.

First the optimization problem is formulated and some math-

ematical preliminaries are presented. Then a brief discus-

sion of optimality conditions and the inexact interior-point

method is presented. When the overall algorithm is defined

the equations to find the search directions are given and

the solution of that linear system of equations is discussed.

A new preconditioner is suggested and described in detail.

Finally some computational results are presented where the

proposed algorithm is compared to the SDPT3 solver.

II. PROBLEM FORMULATION

Denote the space of symmetric matrices of size n as S
n.

The optimization problem to be solved is

min cT x + 〈C,P 〉 (1)

s.t. Fi(P) + Gi(x) + Mi,0 = Si, i = 1, . . . , ni

Si � 0

where the decision variables are Si ∈ S
n+m, P ∈ S

n and

x ∈ R
nx ,

Fi(P) =

[

Li(P) PBi

BT
i P 0

]

=

[

AT
i P + PAi PBi

BT
i P 0

]

(2)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB16.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3071

and

Gi(x) =

nx
∑

k=1

xkMi,k, (3)

with Ai ∈ R
n×n, Bi ∈ R

n×m, C ∈ S
n and Mi,k ∈ S

n+m.

The inner product 〈C,P 〉 is Trace(CP), and Li : S
n → S

n

is the Lyapunov operator Li(P) = AT
i P +PAi with adjoint

L∗

i (X) = AiX + XAT
i . Furthermore, the adjoint operators

of Fi and Gi are

F∗

i (Zi) =
[

Ai Bi

]

Zi

[

In

0

]

+
[

In 0
]

Zi

[

AT
i

BT
i

]

(4)

and

G∗

i (Zi)k = 〈Mi,k, Zi〉, k = 1, . . . , nx (5)

respectively, where Zi ∈ S
n+m.

When we study (1) on a higher level of abstraction the

operator A(P, x) = ⊕ni

i=1
(Fi(P)+Gi(x)) is used. Its adjoint

is A∗(Z) =
∑ni

i=1
(F∗

i (Zi),G∗

i (Zi)) where Z = ⊕ni

i=1
Zi.

Also define S = ⊕ni

i=1
Si and M0 = ⊕ni

i=1
Mi,0.

For later use we define z = (x, P, S, Z) and the corre-

sponding finite-dimensional vector space Z = R
nx×S

n+m×
S

n+m × S
n+m with its inner product 〈·, ·〉Z .

Throughout the paper it is assumed that the mapping A
has full rank.

III. INEXACT INTERIOR-POINT METHOD

In this work a primal-dual interior-point method is imple-

mented. For such algorithms the primal and dual problems

are solved simultaneously. The primal and dual for (1) with

the higher level of notation are

min cT x + 〈C,P 〉 (6)

s.t A(P, x) + M0 = S

S � 0

and

max − 〈M0, Z〉 (7)

s.t A∗(Z) = (C, c)

Z � 0

respectively. If strong duality holds, the Karush-Kuhn-Tucker

conditions defines the solution to the primal and dual op-

timization problems, [10]. The Karush-Kuhn-Tucker condi-

tions for the optimization problems in (6) and (7) are

A(P, x) + M0 = S (8)

A∗(Z) = (C, c) (9)

ZS = 0 (10)

S � 0, Z � 0 (11)

For later use, define the complementary slackness ν as

ν =
〈Z, S〉

n
(12)

To derive the equations for the search directions in the next

iterate, z+ = z + ∆z is defined and inserted into (8)–(11).

Then a linearization of these equations is made. In order

to obtain a symmetric update of the matrix variables we

introduce the symmetrization operator H : R
n×n → S

n that

is defined as

H(X) =
1

2

(

R−1XR + (R−1XR)T
)

(13)

where R ∈ R
n×n is a so called scaling matrix. For a thor-

ough description of scaling matrices, see [37] and [38]. The

described procedure results in a linear system of equations

for the search directions

A(∆P,∆x) − ∆S = −(A(P, x) + M0 − S) (14)

A∗(∆Z) = (C, c) −A∗(Z) (15)

H(∆ZS + Z∆S) = σνI −H(ZS) (16)

It is known that if the operator A has full rank, Z ≻ 0 and

S ≻ 0, then the linear system of equations in (14)–(16) has

a unique solution. See Theorem 10.2.2 in [37] for details.

Now we are ready to define the algorithm. The algorithm

is based on a set Ω defined as

Ω = {z = (x, P, S, Z) | S � 0, Z � 0, (17)

‖A(P, x) + M0 − S‖2 ≤ βν,

‖A∗(Z) − (C, c)‖2 ≤ βν,

γνI � H(ZS) � ηνI}

where the scalars β, γ and η will be defined later on.

Below the overall algorithm, which is taken from [30], is

summarized, and adapted to semidefinite programming.

Algorithm: Interior-point method

0. Initialize the counter j = 1 and choose 0 < η <
ηmax < 1, γ ≥ n, β > 0, κ ∈ (0, 1), 0 < σmin <
σmax < 1/2, ǫ > 0, 0 < χ < 1 and z0 ∈ Ω.

1. Evaluate stopping criteria. If fulfilled, terminate the

algorithm.

2. Choose σ ∈ (σmin, σmax).
3. Compute the scaling matrix R.

4. Solve (14)–(16) for search direction ∆zj with a residual

tolerance ǫσβν/2.

5. Choose a step length αj as the first element in the

sequence {1, χ, χ2, . . .} such that zj+1 = zj+αj∆zj ∈
Ω and such that

νj+1 ≤
(

1 − ακ(1 − σ)
)

νj .

6. Update the variables, zj+1 = zj + αj∆zj and the

counter j := j + 1.

7. Return to step 1.

Note that any iterate generated by the algorithm is in Ω,

which is a closed set, since it is defined as an intersection

of closed sets, see [23].

Convergence

For a detailed description and a convergence proof, see

[23].

IV. SEARCH DIRECTIONS

It is the solution of (14)–(16), which is performed in step 4
of the algorithm, that requires the most effort in an interior-

point method. In order to study (14)–(16) in more detail

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.5

3072

rewrite them as

Wi∆ZiWi + Fi(∆P) + Gi(∆x) = D1,i, ∀i (18)
ni
∑

i=1

F∗

i (∆Zi) = D2 (19)

ni
∑

i=1

G∗

i (∆Zi) = D3 (20)

where Wi = RiR
T
i ∈ S

n. In this work Wi are the Nesterov-

Todd (NT) directions. For details on the NT scaling matrix

see [28]. Note that the linear system of equations (18)–(20)

is indefinite.

V. ITERATIVE SOLVER

The number of available algorithms to solve a linear sys-

tem of equations with an iterative solver is large. Choosing

solver is highly problem dependent. Properties such as defi-

nite/indefinite coefficient matrix, Hermitian or non-Hermitian

coefficient matrix determine which algorithm is applicable.

Additionally the choice of preconditioner will affect what

algorithm that is to be used. In [20] algorithms are explained

and studied in detail and in [1] the implementational details

are discussed.

In the described problem an indefinite system is to be

solved, hence algorithms for indefinite systems will be the

main focus. Additionally the preconditioner will be indef-

inite, which restricts the choice even further. Examples of

iterative solvers that handle an indefinite coefficient matrix

and an indefinite preconditioner are the bi-conjugate gradient

method and its stabilized version (BiCG and BiCGstab), the

quasi minimal residual (QMR) method, and various versions

of the generalized minimal residual (GMRES) method.

Here the symmetric quasi-minimal residual method

(SQMR) is chosen. SQMR is the only solver that utilizes

that the coefficient matrix is symmetric. Another positive

property is that SQMR does not require as much storage

as the theoretically optimal GMRES solver. An undesired

property is that the residual is not included in the algorithm.

Hence, it must be calculated if a guaranteed residual is

required from the iterative solver.

In [15] and [16] the original SQMR algorithm description

is presented. To simplify the description, we rewrite (18)–

(20) as B(∆z) = b and denote the invertible preconditioner

P(∆z) = p. The described algorithm is SQMR without

look-ahead for the linear system of equations using operator

formalism.

Algorithm: SQMR

0. Choose ∆z0 ∈ Z and preconditioner P(·). Then set

r0 = b − B(z0), t = r0, τ0 = ‖t‖2 =
√

〈r0, r0〉,
q0 = P−1(r0), ϑ0 = 0, ρ0 = 〈r0, q0〉, and d0 = 0.

For j = 1, 2, . . .
1. Compute t = B(qj−1), vj−1 = 〈qj−1, t〉.

if vj−1 = 0, then Terminate

else

αj−1 =
ρj−1

vj−1

and rj = rj−1 − αj−1t
end

2. Set t = rj , ϑj = ‖t‖2/τj−1, cj = 1/
√

1 + ϑ2
j , τj =

τj−1ϑjcj , dj = c2
jϑ

2
j−1dj−1 + c2

jαj−1qj−1 and ∆zj =
∆zj−1 + dj .

if ∆zj has converged, then Terminate

end item[3.] if ρj−1 = 0, then Terminate

else

uj = P−1(t), ρj = 〈rj , uj〉, βj =
ρj

ρj−1

, and qj =
uj + βjqj−1.

Here b, p, r, t, q, d ∈ Z and τ , ϑ, ρ, v, α, c ∈ R.

VI. PRECONDITIONING

The construction of a good preconditioner is highly prob-

lem dependent. A preconditioner should reflect the main

properties of the original equation system and still be in-

expensive to evaluate. There is a wide variety of precondi-

tioners in the literature. In [4] the general class of saddle

point problems are studied and some preconditioners are

discussed. Here only the preconditioners applicable to an

indefinite system of equations are discussed.

There are many strategies to approximate the linear system

of equations to obtain a preconditioner. A popular choice is

to approximate the symmetric and positive definite (1, 1)-
block of the coefficient matrix with some less complicated

structure. Common approximations are to use a diagonal

matrix or a block-diagonal matrix. A collection of such

methods can be found in [7], [14], [13], [5] and [26].

The preconditioner used in the initial stage of the defined

algorithm uses this approximation.

Another strategy of preconditioning is to replace the

coefficient matrix with a non-symmetric approximation that

is easier to solve, as described in [3] and [8].

Finally, incomplete factorizations can be used. This is

recommendable especially for sparse matrices, see [31] for

further details.

In this work a two phase algorithm is described. The

two separate phases are due to the change of properties

when the iterates tend toward the optimum. The use of

two separate preconditioners have previously been applied

to linear programming problems in [12] and [6].

Preconditioner I

This preconditioner is based on the assumption that the

Wi matrices can be described by a scalar value, Wi =
wi · In+m, ∀i and that the constraints are closely related

Fi ≈ F̄ , ∀i and Gi ≈ Ḡ, ∀i. This results in a preconditioner

that can be condensed to solving a linear system of equations

of the same size as if there were only one constraint in the

optimization problem with a simple scaling matrix. For a

thorough description and simulation results, see [25], where

it was noted that the described assumption is only valid in

the initial steps of the algorithm. An explanation is that when

the iterates tend to the boundary of the feasible region the

eigenvalues of Wi for the active constraint are not close to

each other. A clustering of the eigenvalues into two clusters

has been noted. Hence, the assumption that Wi can be

described by a scalar value is not valid. Similar behaviour has

been noted in [18]. However, when the assumption is valid

the preconditioner is much faster than solving the original

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.5

3073

system of equations. Thus it is used as a preconditioner for

the initial phase of the algorithm.

Preconditioner II

The inspiration to Preconditioner II is found in [18]. In that

work the analysis does not consider block structure in the

coefficient matrix. Furthermore, the problem is reformulated

to obtain a definite coefficient matrix since the chosen solver

requires a definite preconditioner. Here we will construct

an indefinite preconditioner by identifing the constraints that

indicate large eigenvalues for the scaling matrices and look at

the linear system of equations on a block structure introduced

by the constraints to construct an indefinite preconditioner.

First define the symmetric vectorization operator

svec(X) = (X11,
√

2X12, . . . ,X22,
√

2X23, . . .)
T . The

svec operator yield a symmetric coefficient matrix when

applied to (18)–(20). For notational convenience define

Dvec =

svec(D1,1)
...

svec(D1,ni
)

svec(D2)
D3

and ∆ =

svec(∆Z1)
...

svec(∆Zni
)

svec(∆P)
∆x

.

To illustrate how Preconditioner II works, the vectorized ver-

sion of (18)–(20) is studied. The linear system of equations

for the search directions in a vectorized form can be written

as

H1 F1 G1

. . .
...

...

Hni
Fni

Gni

FT
1 . . . FT

ni

GT
1 . . . GT

ni

∆ = Dvec (21)

where Hi, Fi and Gi denote appropriate submatrices.

To simplify the expressions in this section, define

Ni =
(

Fi Gi

)

(22)

Simple matrix manipulations give the solution of (21) as

(

svec(∆P)
∆x

)

=

(

∑

i

NT
i H−1

i Ni

)−1

× (23)

(

∑

i

NT
i H−1

i svec(D1,i) −
(

svec(D2)
D3

))

and

svec(Zi) = H−1

i

(

svec(D1,i) − Ni

(

svec(∆P)
∆x

))

(24)

It has been observed in simulations that the eigenvalues of

Wi grow large when the iterates tend towards the optimum.

This implies that the eigenvalues of Hi grow large and hence

will H−1

i Ni ≈ 0. Fi and Gi do not change during the

iterations and have elementvise moderate values which give

the result.

To derive the preconditioner, assume that H−1

i Ni ≈ 0 is

valid for all i 6= s. As an intermediate result, note that
∑

i

NT
i H−1

i Ni ≈ NT
s H−1

s Ns (25)

Then the approximate solution is
(

svec(∆P)
∆x

)

=

(

NT
s H−1

s Ns

)−1

× (26)

(

NT
s H−1

s svec(D1,s) −
(

svec(D2)
D3

))

and

svec(Zi) =

H−1

i svec(D1,i), i 6= s

H−1

i

(

svec(D1,i) − Ni

(

svec(∆P)

∆x

)

)

, i = s

(27)

This can be interpreted as the solution to an approximation of

(21). Written on vectorized form, the approximative solution

(26)–(27) is the solution to

H1

. . .

Hs Fs Gs

. . .

Hni

FT
s

GT
s

∆ = Dvec (28)

This linear system of equations have a nice structure. ∆P ,

∆x and ∆Zs can be found by solving a system of equations,

as if we had a single constraint. The remaining dual variables

∆Zi, i 6= s are easily found by matrix inversions.

The constraint s is found by studying the eigenvalues of

the Wi matrices. A large condition number indicates that the

assumption is valid. This results in that the preconditioner

solves

Wi∆ZiWi = D1,i, i 6= s (29)

Ws∆ZsWs + Fs(∆P) + Gs(∆x) = D1,s (30)

F∗

s (∆Zs) = D2 (31)

G∗

s (∆Zs) = D3 (32)

The solution of (30)–(32) is a well studied problem. By using

the results in [24], (30)–(32) can be solved at a total cost of

O(n3). Finally, the dual variables ∆Zi in (29) are easily

obtained by matrix inversions.

Algorithm: Preconditioner II

1. Identify the constraint with the smallest condition num-

ber and denote it by s.

2. Solve (30)–(32) to obtain ∆P , ∆x and ∆Zs.

3. Compute ∆Zi = W−1

i D1,iW
−1

i , i 6= s

VII. COMPUTATIONAL EVALUATION

All experiments are performed on a Dell Optiplex GX620

with 2GB RAM, Intel P4 640 (3,2GHz) CPU running under

CentOS 4.1. Matlab version 7.4 (R2007a) is used with

YALMIP version 3 (R20070810), [27], as interface to the

solver. As comparison SDPT3 Version 4.0 (beta), [33], is

used as underlying solver. Since the intention is to solve large

scale optimization problems, the tolerance for termination is

set to 10−3 for the relative and absolute residual. It is noted

that both SDPT3 and the written solver terminate due to the

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.5

3074

relative residual beeing below the desired tolerance in all the

problems in this simulation study.

A comparison of absolute solution times is not always

fair since the choice of implementation language is crucial.

In SDPT3 the expensive calculations are implemented in

C while the overview algorithm is written in Matlab. For

the algorithm described and evaluated in this work the

main algorithm, the iterative solver and Preconditioner I

are written in Matlab. However the construction of the H
matrix from basis matrices of low rank is implemented in

C and that is the operation that requires the most compu-

tational effort. Obviously an implementation in C of the

block-diagonalization and the low rank decomposition would

improve the described solver. The similarity in the level

of implementation in C makes a comparison in absolute

computational time applicable.

The parameters in the algorithm are set to κ = 0.01,

σmax = 0.9, σmin = 0.01, η = 10−6, χ = 0.9, ǫ = 10−8

and β = 107 · βlim where βlim = max(‖A(P, x) + M0 −
S‖2, ‖A∗(Z)−(C, c)‖2). The choice of parameter values are

based on knowledge obtained during the development of the

algorithm and through continuous evaluation. Note that the

choice of σmax is not within the convergence proof given in

[23], however the choice is motivated by faster convergence

in practice and as good convergence as with σmax ≤ 0.5.

This can be motivated by the fact that values close to zero and

one correspond to predictor and corrector steps respectively.

Switching between the preconditioners is made after ten

iterations. This is equivalent to five predictor-corrector steps.

A more elaborate switching technique could improve the

convergence but for practical use the result is satisfactory.

The only information that Preconditioner II is given is

if the active constraint has changed. This information is

obtained by the main algorithm.

To obtain the solution times, the Matlab command

cputime is used. Input to the solvers are the system

matrices, so any existing preprocessing of the problem is

included in the total solution time.

In order to monitor the progress of the algorithm the

residual for the search directions is calculated in each itera-

tion in the iterative solver. If further improvement is desired

one could use the in SQMR for free available Biconjugate

Gradient (BCG) residual. However this results in that the

exact residual is not known and hence the convergence might

be affected.

Initialization

For comparable results, the initialization scheme given in

[33] is used for the dual variables,

Zi = max
(

10,
√

n + m, max
k=1,...,nx

(n + m)(1 + |ck|)
1 + ‖Mi,k‖F

)

In+m

where ‖ · ‖F denotes the Frobenius norm of a matrix. The

slack variables are chosen as Si = Zi while the primal

variables are initialized as P = In and x = 0̄.

Examples

To evaluate the suggested inexact algorithm with an it-

erative equations solver, randomly generated optimization

problems are solved. The procedure to generate the examples

is described below. For the examples in this section all

randomly generated matrices have a condition number of 10.

Algorithm: Generate example

1. Define the scalar value δ.

2. Generate the mean system matrices Ā,B̄ and M̄k using

gallery.m.

3. Generate the system matrices Ai, Bi and Mi,k as Ai =
Ā ± δ · ∆A, Bi = B̄ ± δ · ∆B and Mi,k = M̄i,k ± δ ·
∆Mi,k

. The matrix ∆A is a diagonal matrix where the

diagonal is generated by rand.m while ∆B and ∆Mi,k

are generated by gallery.m.

4. Define c and C such that a feasible optimization prob-

lem is obtained.

Results

To make an exhaustive investigation, different problem

parameters have been investigated:

n ∈ {10, 16, 25, 35, 50, 75, 100, 130, 165}
m ∈ {1, 3, 7}
ni ∈ {2, 5}
δ ∈ {0.01, 0.02, 0.05}

For each case there are 15 generated examples in order to

find the average solution time. Naturally all the simulations

cannot be given in detail. As an example the case δ = 0.02,

ni = 5 and m = 3 with varying n is shown in Figure 1.

10 16 25 35 50 75 100 130 165

10
0

10
1

10
2

10
3

Size of A matrix

T
im

e
 [

s
]

Inexact

SDPT3

Fig. 1. Solution times for randomly generated problems. Here the problem
parameters are set to ni = 5 and m = 3. The solution times for SDPT3
and the inexact solver using two different preconditioners are plotted as a
function of n.

First the properties of the SDPT3 solver is discussed. This

solver is well tested and numerically stable. It solves all the

problems generated up to n = 75. However, the solver does

not solve the larger problems since the solution times tend

to be unacceptable and for even larger problem the solver

cannot proceed. When n and/or the number of constraints ni

is large, the solver will terminate due to memory restrictions.

This motivate the use of inexact methods using an iterative

solver since an iterative solver will require a substantial less

amount of memory.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.5

3075

The suggested algorithm can solve large problems with

much lower computational time required. A negative prop-

erty that has been noted is that it will not converge on all

the generated problems. Although, when convergence occurs

the solver is always faster than SDPT3 for large problems,

n ≥ 50. For the 2420 generated problems 11% does not

converge due to numerical problems. Naturally the inability

to converge is not uniformly distributed. For δ = 0.01 every

problem is solved and the worst case is when n = 165,

ni = 5, m = 7 and δ = 0.05 with a failure rate of 47%. This

is natural since this example is the one where the assumptions

made in Preconditioner II might not be valid. Best results are

obtained for ni = 2 with a failure rate of 8%.

VIII. CONCLUSIONS

A new preconditioner has been proposed to a primal-dual

inexact interior-point method. The use of this preconditioner

close to the optimum enables the solution of large scale

problems. Although the algorithm does not converge due

to numerical problems for some cases, several problems

that are unsolvable with generic software are solved with

the proposed algorithm. The results show that structure

exploitation and the use of two separate preconditioners for

the iterative solver gives an efficient algorithm.

REFERENCES

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
Philadalphia: Society for Industrial and Applied Mathematics., 1994.

[2] S. J. Benson and Y. Yinyu. DSDP5: Software for semidefinite
programming. Technical report, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, September 2005.

[3] M. Benzi and G. H. Golub. A preconditioner for generalized saddle
point problems. SIAM Journal on Matrix Analysis and Applications,
26(1):20–41, 2004.

[4] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle
point problems. Acta numerica, 14:1 – 137, 2005.

[5] L. Bergamaschi, J. Gondzio, and G. Zilli. Preconditioning indefinite
systems in interior point methods for optimization. Computational
Optimization and Applications, 28(2):149 – 171, 2004.

[6] S. Bocanegra, F. F. Campos, and A. R. L. Oliveira. Using a hybrid
preconditioner for solving large-scale linear systems arising from
interior point methods. Computational Optimization and Applications,
36(2-3):149–164, 2007.

[7] S. Bonettini and V. Ruggiero. Some iterative methods for the solution
of a symmetric indefinite KKT system. Computational Optimization
and Applications, 38(1):3 – 25, 2007.

[8] M. A. Botchev and G. H. Golub. A class of nonsymmetric precondi-
tioners for saddle point problems. SIAM Journal on Matrix Analysis
and Applications, 27(4):1125–1149, 2006.

[9] S. Boyd, E. G. Laurent, E. Feron, and V. Balakrishnan. Linear Matrix
inequalities in System and Control Theory. SIAM, 1994.

[10] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[11] S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino. On
the iterative solution of KKT systems in potential reduction software
for large-scale quadratic problems. Computational Optimization and
Applications, 38(1):27 – 45, 2007.

[12] J. S. Chai and K. C. Toh. Preconditioning and iterative solution
of symmetric indefinite linear systems arising from interior point
methods for linear programming. Computational Optimization and
Applications, 36(2-3):221–247, 2007.

[13] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen.
Implicit-factorization preconditioning and iterative solvers for regu-
larized saddle-point systems. SIAM Journal on Matrix Analysis and
Applications, 28(1):170–189, 2006.

[14] A. Forsgren, P. E. Gill, and J. D. Griffin. Iterative solution of
augmented systems arising in interior methods. SIAM Journal on
Optimization, 18(2):666–690, 2007.

[15] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual
method for non-hermitian linear systems. Numerische Mathematik,
60(3):315 – 339, 1991.

[16] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method
for symmetric indefinite linear systems. In Proceedings of the 14th
IMACS World Congress on Computational and Applied Mathematics,
pages 1253–1256. IMACS, 1994.

[17] P. Gahinet, P. Apkarian, and M. Chilali. Parameter-dependent Lya-
punov functions for real parametric uncertainty. IEEE Transactions
on Automatic Control, 41(3):436 – 442, 1996.

[18] P. E. Gill, W. Murray, D. B. Ponceleón, and M. Saundeers. Precon-
ditioners for indefinite systems arising in optimization. SIAM journal
on matrix analysis and applications, 13(1):292 – 311, 1992.

[19] J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-
Todd potential-reduction method with inexact search directions. In
Proceedings of the 42nd IEEE Conference on Decision and Control,
page 6, Maui, Hawaii, USA, December 2003.

[20] A. Greenbaum. Iterative methods for solving linear systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[21] A. Hansson. A primal-dual interior-point method for robust optimal
control of linear discrete-time systems. Automatic Control, IEEE
Transactions on, 45(9):1639–1655, 2000.

[22] A. Hansson and L. Vandenberghe. A primal-dual potential reduction
method for integral quadratic constraints. In Proceedings of the
American Control Conference, pages 3013–3017, Arlington, Virginia,
USA, 2001.

[23] J. Harju and A. Hansson. An inexact interior-point method, a
description and convergence proof. Technical Report LiTH-ISY-R-
2819, Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden, September 2007.

[24] J. Harju, R. Wallin, and A. Hansson. Utilizing low rank properties
when solving KYP-SDPs. In IEEE Conference on Decision and
Control, San Diego, USA, December 2006.

[25] J. Harju Johansson and A. Hansson. Structure exploitation in semidef-
inite programs for systems analysis. In IFAC World Congress, Seoul,
Korea, July 2008. Accepted for publication.

[26] C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint precondition-
ing for indefinite linear systems. SIAM Journal on Matrix Analysis
and Applications, 21(4):1300 – 1317, 2000.

[27] J. Löfberg. YALMIP : A toolbox for modeling and optimization in
Matlab. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[28] Y. Nesterov and M. J. Todd. Self-scaled barriers and interior-
point methods for convex programming. Mathematics of Operations
Research, 22(1):1 – 42, 1997.

[29] I. Pólik. Addendum to the SeDuMi user guide, version 1.1, 2005.
[30] D. Ralph and S. J. Wright. Superlinear convergence of an interior-

point method for monotone variational inequalities. Complementarity
and Variational Problems: State of the Art, 1997.

[31] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston, USA, 1996.

[32] J. F. Sturm. Using SeDuMi 1.02, a matlab toolbox for optimization
over symmetric cones, 2001.

[33] K. C. Toh, M. J. Todd, and R. H. Tütüncü. On the implementation
and usage of SDPT3 — a Matlab software package for semidefinite-
quadratic-linear programming, version 4.0. 2006.

[34] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hansson, and
T. Roh. Positive Polynomials in Control, chapter Interior-point algo-
rithms for semidefinite programming problems derived from the KYP
lemma. Lecture Notes on Control and Information Sciences. Springer
Verlag, 2005.

[35] L. Vandenberghe and S. Boyd. A primal-dual potential reduction
method for problems involving matrix inequalities. Mathematical
Programming, 69:205 – 236, 1995.

[36] R. Wallin and A. Hansson. KYPD: A solver for semidefinite programs
derived from the Kalman-Yakubovich-Popov lemma. In IEEE Con-
ference on Computer Aided Control Systems Design, Taipei, Taiwan,
September 2004. IEEE.

[37] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of
Semidefinite Programming: Theory, Algorithms, and Applications, vol-
ume 27 of International series in operations research & management
science. KLUWER, 2000.

[38] Y. Zhang. On extending some primal–dual interior-point algorithms
from linear programming to semidefinite programming. SIAM Journal
on Optimization, 8(2):365–386, 1998.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.5

3076

