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Abstract— Considered is the so called radar deception prob-
lem to motivate a change in paradigm in the approach to
formation control that would address the key issue of dynamic
feasibility. In this problem a team of possibly heterogeneous
fixed winged Unmanned Aerial Vehicles (UAVs) cooperate to
deceive a ground radar network into seeing a spurious phantom
track in its radar space. A real-time motion planning algorithm
is developed for this collaborating multi-agent system. At the
heart of the proposed algorithm is the explicit consideration
of actuator and operating constraints of the individual agents.
Constrained dynamics of the multi-agent system are derived
such that these constraints are transparent in the dynamic
equations, to address the key issue of dynamic feasibility
in formation control. Simulations are given validating the
proposed approach.

I. INTRODUCTION

Collaborating multi-agent systems have received increased

attention in the recent past and have applications in ex-

ploration and mapping, search and rescue, surveillance, co-

operative manipulation, automated highways and network

centric warfare. Dynamic constraints that limit the maneu-

verability of a single agent can have a magnified effect in

limiting the maneuverability of such multi-agent systems in

accomplishing a prescribed group behavior. Most approaches

to formation control of multi-agent systems overlook this

critical aspect and the resulting reference trajectories may be

dynamically infeasible for the individual agents to track. This

is especially true when little flexibility is offered in satisfying

the formation constraints. The formation control problem of

radar deception through a collaborating team of multi-UAVs

is considered to motivate a change in paradigm in formation

control to address the key issue of dynamic feasibility. Here

a team of fixed winged UAVs cooperate to deceive a ground

radar network into seeing a spurious phantom track in its

radar space. It is assumed that each UAV engaging a radar it

is assigned to has the capability to intercept, introduce a time

delay and re-transmit the radar’s transmitted pulses thereby

making the radar detect a target at a false range. It is also

assumed that each UAV can remain stealth to all radars and

re-transmit these delayed radar signals only to the radar it

engages. The problem essentially involves all the extended

lines of sight, from the radars to the UAVs engaging them,

intersecting at a common point and tracing a path in space,

which is a constraint on the system configuration space. The

radar deception scenario is illustrated in Fig.1 for the case

of four UAVs engaging a radar network having four radar

D.H.A. Maithripala and S. Jayasuriya are with the Department of Me-
chanical Engineering, Texas A&M University, College Station, TX 77843-
3123, USA asanka@tamu.edu, sjayasuriya@tamu.edu

stations. This problem first appeared in [1], [2] while the
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Fig. 1. Radar deception through phantom track generation.

essential role dynamic feasibility plays in this problem was

first pointed out in [3]. Subsequently this problem has been

studied in [4], [5], [6], [7], [8] for the 2D scenario and the

only known 3D results are in [9].

This paper serves as an application paper to a general

theory developed by the authors in [10]. Briefly, [10] presents

a motion planning algorithm for a class of problems in

formation control based on a unifying, intrinsic formulation

of geometric constraints (including dynamic and formation

constraints). Results given here are the first to successfully

consider individual agent dynamics while giving real-time

solutions to the radar deception problem.

The approach proposed in this paper is to embed the

configuration and dynamic constraints of formation con-

trol into the design of reference trajectories to be used

simultaneously by the tracking controllers of the individual

agents. Theoretically (in the absence of model uncertainty,

and external disturbances) this can result in zero tracking

error. Based on this approach, a real-time motion planning

algorithm for the radar deception problem is developed to

design individual reference trajectories that can ideally result

in zero formation error at the tracking control stage. In actual

implementation, model uncertainty and disturbance rejection

will need to be accounted through feedback at this tracking

control stage. At the heart of the proposed algorithm is the

explicit consideration of actuator and operating constraints of

the individual agents and the derivation of constrained dy-

namics of the multi-agent system that makes these constraints

transparent, thereby addressing the key issue of dynamic

feasibility in formation control.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThTA06.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3959



This paper is organized into four sections of which this

introduction is section-I. The proposed motion planning

algorithm is outlined in section-II next and forms the bulk of

the presentation. Simulation results of the motion planning

algorithm are given in section-III followed by concluding

remarks in section-IV.

II. PROPOSED MOTION PLANNING ALGORITHM

Consider the case of N -UAVs engaging N -radars re-

stricted to the 2D plane. The unicycle model is proposed

to capture the dynamic, operating and actuator constraints of

the UAVs. Let (xi, yi, θi) give the configuration of the ith
UAV where (xi, yi) is the position and θi is its orientation.

Assume an imaginary UAV whose trajectory will realistically

mimic the trajectory of an actual aircraft. Let (x, y, θ) be the

position and orientation of this imaginary UAV. Let (x̄i, ȳi)
give the position of the ith ground radar which is stationary

by assumption.

The nonholonomic constraint of a unicycle representing

the ith UAV is ẋi sin θi− ẏi cos θi = 0. Its equivalent control

form along with mass and inertia effects are given by

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

v̇i =
1

mi

fi

ẇi =
1

Ji

τi

(1)

where mi, Ji, vi, wi, fi, τi are mass, inertia, speed, steer,

force and torque of the ith UAV.

Assuming the UAV to be fixed winged, its speed vi will

have to be lower bounded to avoid stall, a flight operating

constraint on the UAV. Stability of the UAV and actuator

limitations will upper and lower bound the steer wi as well as

the rate of steer ẇi. Actuator limitations will impose an upper

bound on the thrust force fi while the maximum attainable

drag force will impose a lower bound on fi. These actuator

and operating constraints are captured through

vi
min ≤ vi

−wi
max ≤ wi

−fi
min ≤ fi

−τi
max ≤ τi

≤ vi
max

≤ wi
max

≤ fi
max

≤ τi
max

(2)

where vmax
i , vmin

i , wmax
i , fmin

i , fmax
i , τmax

i are all positive

constants. The dynamical model of the imaginary UAV

representing the phantom can similarly be given by Eq.(1)

and Eq.(2) with the subscript i dropped.

Next the multi-agent system is separated into N geomet-

rically equivalent subsystems corresponding to the N radar-

UAV pairs, to facilitate distributed control. Each subsystem

now only has two UAVs, one representing the phantom and

the other the UAV engaging the radar. Consider the ith such

subsystem and call it A. A trajectory of A is a curve on Q, γ :
[a, b] → Q, whose tangent vector on Q along the curve γ we

denote by γ
′

. The configuration space of the ith subsystem,

shown in Fig.2, has the structure of a manifold Q, and we

assign the local coordinates q = (x, y, θ, xi, yi, θi). On the

manifold Q, ∂q = { ∂
∂x

, ∂
∂y

, ∂
∂θ

, ∂
∂xi

, ∂
∂yi

, ∂
∂θi

} is the coordi-

nate basis for TqQ and dq = {dx, dy, dθ, dxi, dyi, dθi, dφ}

T
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Fig. 2. Configuration of the ith subsystem.

is its dual basis for T ∗
q Q. We refer the reader to [11], [12]

for details of the differential geometric ideas and notation

used in this paper. The Riemannian metric corresponding to

the kinetic energy of the system is G = m(dx ⊗ dx + dy ⊗
dy)+Jdθ⊗ θ +mi(dxi ⊗dxi +dyi ⊗dyi)+Jidθi ⊗ θi. For

computational convenience, and without loss of generality,

we assume unit mass and inertia for both UAVs of A. The

inertia matrix associated with the Riemannian metric G is

then the identity [I]6×6. Let us next proceed to derive the

constrained dynamics of the ith subsystem A.

Nonholonomic constraints on A are;

ẋ sin θ − ẏ cos θ = 0

ẋi sin θi − ẏi cos θi = 0
(3)

The annihilating codistribution associated with the above

nonholonomic constraints of A is given by;

Λ :
α1 = sin θdx − cos θdy

α2 = sin θidxi − cos θidyi

The distribution ∆ associated with the annihilating codis-

tribution Λ is spanned by ∆ = {ev, ew, evi
, ewi

} where

ev = cos θ ∂
∂x

+ sin θ ∂
∂y

, ew = ∂
∂θ

, evi
= cos θi

∂
∂xi

+

sin θ ∂
∂yi

, ewi
= ∂

∂θi
and ∆⊥, the compliment of ∆, is

spanned by ∆⊥ = {ez, ezi
} where ez = G

♯(α1) =
sin θ ∂

∂x
− cos θ ∂

∂x
, ezi

= G
♯(α2) = sin θi

∂
∂xi

− cos θi
∂

∂yi
.

Here G
♯ : T ∗Q → TQ is the isomorphism associated with

the metric G mapping covector fields to vector fields. For

a covector α = αjdqj , and basis ∂q = { ∂
∂qj }; G

♯(α) =

G
ijαj

∂
∂qi where G

ij
Gjk = δi

k.

The frame of vector fields (ev, ew, evi
, ewi

, ez, ezi
) span

TqQ on the manifold Q and hence is another basis for TqQ.

Associated with the frame e = {ev, ew, evi
, ewi

, ez, ezi
} is

its dual frame σ = {σv, σw, σvi , σwi , σz, σzi}. The tangent

vector γ′ on Q associated with a trajectory curve γ can be

given in either of the frames ∂q or e. Note that the functions

v, w, vi, wi of γ
′

= vev + wew + vievi
+ wiewi

+ zez +
ziezi

are the same speed and steer controls corresponding
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to the dynamic models of the ith and the phantom UAV.

The actuator and operating constraints acting on A, given in

Eq.(2), can be written concisely as follows

(µi, µ̇i) ∈ Πi (4)

where µi = (v, w, vi, wi) and Πi is a compact set which

does not have to have zero in its inclusion.

The requirement that the UAV has to be in-line with

its corresponding radar and the phantom gives rise to a

configuration constraint. The map C : Q �→ 0 ∈ Rm

capturing this configuration constraint on A is

(x − x̄i)(yi − ȳi) − (y − ȳi)(xi − x̄i) = 0 (5)

and the differential of this map, dC, is given by the 1-form

β1 = (yi − ȳi)dx− (xi − x̄i)dy− (y− ȳi)dxi + (x− x̄i)dyi

The intersection of the annihilating codistributions Λ and

dC gives the unique annihilating codistribution Ω : Λ ⊕ dC.

The distribution D associated with the annihilating codistri-

bution Ω is spanned by the vector fields; x1 = hi cos θ ∂
∂x

+
hi sin θ ∂

∂y
+ h cos θi

∂
∂xi

+ h sin θi
∂

∂yi
, x2 = ∂

∂θ
, x3 = ∂

∂θi

where h = (xi − x̄i) sin θ − (yi − ȳi) cos θ and hi =
(x− x̄i) sin θi−(y− ȳi) cos θi. Vector fields x4 = G

♯(α1) =
sin θ ∂

∂x
−cos θ ∂

∂y
, x5 = G

♯(α2) = sin θi
∂

∂xi
−cos θi

∂
∂yi

and

x6 = G
♯(β1) = (yi − ȳi)

∂
∂x

− (xi − x̄i)
∂
∂y

− (y − ȳi)
∂

∂xi
+

(x − x̄i)
∂

∂yi
span D⊥.

A curve γ : [a, b] �→ Q is a solution of the constrained

system A iff γ′(t0) ∈ D and γ satisfies;

A

∇γ′(t) γ′(t) = P
(

Y (γ(t))
)

where Y = G
♯(F ) with the 1-form F representing the force

and P : TQ �→ TQ is the G orthogonal projection map onto

D. The constrained connection
A

∇γ′(t) γ′(t) is given by [13];

A

∇γ′(t) γ′(t) = ∇γ′(t)γ
′(t) + A−1

((

∇γ′(t)AP ′
) (

γ′(t)
))

where A can be any invertible matrix. A property of
A

∇ is

that it restricts to D meaning that
A

∇X1
X2 ∈ D for every

X2 ∈ D. Hence a solution γ of the constrained system

A satisfies all holonomic and nonholonomic constraints

captured through the distribution D. Expression of
A

∇γ
′ γ

′

in the two frames e, ∂q is as follows;

A

∇γ
′ γ

′

= ek(v̇k + vj
A

ωk
j (γ

′

)) = ∂qk(q̈k + q̇j
A

Γk
j (γ

′

))

where the connection coefficients and the connection 1-forms

of
A

∇ are defined by
A

∇ei
ej := ek

A

ωk
ij ,

A

ωk
j :=

A

ωk
rj σr and

A

∇∂
qi

∂qj := ∂qk

A

Γk
ij ,

A

Γk
j :=

A

Γk
rj ∂qr . The connection coefficients

A

Γk
ij are given by

A

Γi
jk =

G

Γi
jk +(A−1)i

r

∂(AP
′

)r
j

∂qk
+ (A−1)i

r

G

Γr
km (AP

′

)m
j

− (A−1)i
r

G

Γm
kj (AP

′

)r
m

We next compute P
′

to compute these connection coeffi-

cients
A

Γk
ij . In the basis x = {x1, . . . ,x6}, P

′

has the matrix

representation
[

P
′
]

x

=

[

[0]3×3 [0]3×3

[0]3×3 [I]3×3

]

. Let x = ∂qR be

the change of basis where xi = ∂
∂qj R

j
i and R is the non-

singular matrix whose (i, j)th element is Ri
j .

Matrix representation of P
′

in ∂q is given by [P
′

]∂q
=

R[P
′

]xR
−1. The projection map P , the G-orthogonal pro-

jection onto D, in the basis ∂q is simply [P ]∂q
= I− [P

′

]∂q

where I is the identity.

We choose A = (h2+h2
i )I to eliminate denominator terms

of P
′

. Since the Riemannian metric G is constant,
G

Γi
jk= 0

for ∀ i, j, k and we have

A

Γi
jk= (A−1)i

r

∂(AP
′

)r
j

∂qk
=

1

(h2 + h2
i )

∂(AP
′

)i
j

∂qk
(6)

Since operating and actuator constraints of the UAVs are

captured through the constraints (µi, µ̇i) ∈ Π where µi =
(v, w, vi, wi) with γ′ = vev + wew + vievi

+ wiewi
+

zez + ziezi
being in the frame e, we proceed to derive the

constrained dynamics of A in this e frame.

Connection coefficients
A

ωk
ij are computed through the

following transformation rule for the matrix of connection

1-forms;

A
ω= S−1

A

Γ S + S−1dS (7)

where S is the change of basis given by e = ∂qS and
A
ω:=

(

A

ωk
j

)

,
A

Γ:=

(

A

Γk
j

)

are n × n matrices of connection 1-

forms.

The force F along γ is given by the covector F = fσv +
τσw+fiσ

vi +τiσ
wi in the frame σ and its associated tangent

vector field is Y = G
♯(F ) = fev + τew +fievi

+ τiewi
. Let

x = eZ be the change of basis where Z = S−1R with x =
∂qR and e = ∂qS. Matrix representation of the projection

map P in the e basis is given by [P ]e = Z[P ]xZ
−1. The

projection of Y onto the distribution D is then given by

P (Y (γ)) = hi(hif+hfi)
(h2+h2

i
)

ev + τew + h(hif+hfi)
(h2+h2

i
)

evi
+ τiewi

.

The choice of the frame e is such that ez, ezi
∈ D⊥. For

γ′(0) ∈ D, we have z(0) = zi(0) = 0 and since
A

∇ restricts

γ′ to D, the functions z(t), zi(t) will remain identically zero.

Let us define ηi �
hi(hif+hfi)

(h2+h2

i
)

. The constrained dynamics

of A in the frame e then reduce to

v̇ + vviω
v
viv

+ wvωv
vw + wviω

v
viw

+ vivωv
vvi

. . .

. . . + viviω
v
vivi

+ wiviω
v
viwi

= ηi

ẇ = τ

v̇i + vvωvi
vv + vviω

vi
viv

+ wvωvi
vw + vivωvi

vvi
. . .

. . . + wivωvi
vwi

+ wiviω
vi
viwi

=
h

hi

ηi

ẇi = τi

Notice that the constrained dynamics of the ith subsys-

tem A in the e frame appear explicitly in the functions
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µi, µ̇i, qi, τ, τi, ηi where µi = (v, w, vi, wi) and qi is the

configuration. The functions v, w, τ are the only common

functions to appear in each of the N such subsystems.

For consensus, we require these functions v, w, τ to have

the same value at any given time in each of the N such

subsystems. To ensure we have the same values for w, τ in

each of the N subsystems simply means to have the same

intrinsic(independent of the local coordinates qi) control

law for τ in each of them along with compatible initial

conditions.

To ensure v has the same value in each of the N subsys-

tems, consider the following control law for τi;

τi = Kw(wd
i − wi) + ẇd

i (8)

where wd
i =

−vviω
v
viv−wvωv

vw−wviω
v
viw−vivωv

vvi
−viviω

v
vivi

viωv
viwi

.

The above control law that exponentially stabilizes wi to wd
i

along with the initial condition wi(0) = wd
i (0), reduces the

first equation of constrained dynamics to v̇ = ηi. An intrinsic

control law for f where ηi = f,∀i along with the above

control law for τi ensures v has the same value in each of

the subsystems. We develop two sets of intrinsic controllers

for the functions τ and f ; one to ensure feasibility and the

other to achieve the team goal.

Controls for feasibility: Previous results of this same

problem in [7] suggest that when w = 0, actuator and

operating constraints are satisfied, thus ensuring feasibility.

We use this observation without analysis or proof here

and simply verify it in simulations. Consider the following

controllers for the functions τ and f ;

τ =

{

−Kww if |Kww| ≤ τmax

−sgn(w)τmax else

f = 0

(9)

where the control law for τ asymptotically stabilizes w to

zero, ensuring feasibility in the steady state. Future work

will look at developing a control law that will result in

feasibility in the transient states and hence guarantee true

dynamic feasibility.

Controls for team goal: The team goal is to generate a

phantom trajectory moving towards the desired waypoint.

We translate this goal to the requirement of orienting the

phantom UAV towards the desired waypoint and propose the

following controllers to achieve this goal.

τ =

{

Kw(wd − w) + ẇd if |Kw(wd − w) + ẇd| ≤ τmax

sgn(Kw(wd − w) + ẇd)τmax else

f =

{

Kv(vd − v) + v̇d if |Kv(vd − v) + v̇d| ≤ fmax

sgn(Kv(vd − v) + v̇d)fmax else

where, vd =

{

vmin if (β − θ) is large

vmax else
and ωd =

Kβ−θ(β − θ) + β̇, asymptotically stabilizing (β − θ) and

(v − vd) to zero. Here β = tan−1
(

yf−y

xf−x

)

with (xf , yf )

being the desired waypoint of the Phantom. Physically,

(β − θ) is the angle between the desired waypoint of the

phantom and its current heading. In the control law for f ,

vd is vmin when the angle (β−θ) is above a threshold value

(i.e. when the phantom is not sufficiently oriented towards

its final waypoint), and is vmax otherwise. The objective is

to speed up the phantom UAV when oriented towards its

desired waypoint and to slow down when not.

The distributed control architecture to generate reference

trajectories implemented in a receding horizon approach is

shown in the form of a flow-chart in Fig.(3). Each of the

],[for goal teamachieving

controller with )(Solve

tttt

YP
A

G

JJ

� 

 c' c

yfeasibilitfor 

controllerVote

goal teamachieving

controllerVote

agentsallamong          

for votedcontrollereCommunicat

ii ��),(i.e.

satisfiedsconstraint

peratingActuator/o

i PP �

Ni ,,1

subsystemsallfor  

��� 
)(i

)(iii

Yes

No

)(ii

Yes

No

goal teamachieving

controllerChoose

yfeasibilitfor 

controllerChoose

goal teamachievingcontroller

 votedagentsAll

],[for controllerchosen 

 with the)(Solve

tttt

YP
A

G

JJ

� 

 c' c

Ni ,,1

subsystemsallfor  

��� 

Ni ,,1

subsystemsallfor  

��� 

Fig. 3. Distributed control architecture.

N UAVs solves its corresponding constrained dynamics for

the time interval t = [t, t + δt] with controls to achieve

the team goal first. Next they verify if all actuator/operating

constraints (µi, µ̇i) ∈ Πi were satisfied for their correspond-

ing subsystems during this time interval. Since constrained

dynamics are solved in the functions µi, this step is straight

forward. If all the actuator/operating constraints were sat-

isfied in a particular subsystem, the corresponding UAV

votes for the controls achieving the team goal. If any of the

actuator/operating constraints were violated within [t, t+δt],
the UAV votes for the controls for feasibility. Recall that each

of the subsystems need to implement identical control actions

for τ, f for consensus. Hence each of the N UAVs com-

municates the type of controller it voted for and the entire

team of UAVs picks a common controller type to implement

for the horizon interval [t, t + δt]. If all the N UAVs had
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voted for the controller achieving the team goal, then each

of the N UAVs, and hence the entire team of UAVs, chooses

and implements controls for the team goal to compute its

trajectory. Else, all of the N UAVs chooses controls for

feasibility to solve the constrained dynamics for [t, t + δt].
The algorithm then incrementally steps forward in δt time

steps, until the phantom track reaches its desired waypoint.

A necessary redundancy in the proposed distributed control

architecture is that each of the N UAVs designs the phantom

trajectory in addition to its own trajectory. This algorithm

is scalable since the computations shown in the blocks (i),

(ii) and (iii) of the flow-chart of Fig.3 are performed by

each of the N UAVs in parallel and as such increasing

the number of agents in the system has minimal effect on

the overall computation time. Communication amongst the

agents need not be continuous and has to occur only once in

each iteration. A severe drawback of this strategy however

is that it requires synchronized control and communication

among all its agents.

III. SIMULATION RESULTS

Simulation results of this algorithm for the case of 4-

UAVs engaging 4-radars are shown in Fig.4. Actuator and

operating constraints on the phantom and the individual

UAVs were assumed as follows. Phantom speed of 400 ±
40m/s, UAV speeds of 100 ± 15m/s and minimum turn

radii of 5000m and 1500m for the phantom and the UAVs,

respectively. Force and toque bounds of [−0.7N, 0.7N ] and

[−0.04Nm, 0.04Nm] respectively for the phantom as well

as the UAVs. The force and torque are normalized quantities

with the unit mass, unit inertia assumption. The time history
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Fig. 4. Four UAVs deceiving a radar network of four radars through the
generation of a phantom track.

of the functions v, w, vi, wi corresponding to “speed” and

“steer” of the UAVs and the phantom are shown in Fig.5, for

the trajectory results of Fig.4. The lower and upper bounds of

v, w, vi, wi are also shown. The normalized torque and force

corresponding to each of the four UAVs and the phantom

UAV are illustrated in Fig.6 and here it is seen that the forces
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of the four UAVs and the UAV representing the phantom.

fi and f are identically the same. This is since the control
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Fig. 6. Torque and force control functions, for each of the four UAVs and
the UAV representing the phantom.

law for τi, given by Eq.(8), apparently forces vi

v
to remain the

same constant value. This is verified in Fig.7 which plots the

ratios vi

v
and ri

Ri
against time for each of the UAVs, where

ri is the distance from the ith UAV to its corresponding

radar and Ri is the distance from the phantom to the same

radar. As can be seen in Fig.7, the ratio vi

v
remains constant

against time while the ratios of ri

Ri
all converge to it. This is

a phenomena which was explained in the kinematic analysis

of the radar deception problem presented in [7]. There it

was shown that the convergence of ri

Ri
→ vi

v
reduces the

dynamics of the multi-agent system to the dynamics of a

single UAV, controllable on its configuration submanifold.

In other words, all the four UAVs converge to a seemingly

stable rigid formation maintaining parallel motion. The rigid
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for the four UAV-radar pairs.

formation it converges to is a contracted geometric copy

(contracted by a factor of
(

1 − vi

v

)

) of the geometric

formation of the ground radar network. If all four UAVs

were to start out with initial conditions such that ri

Ri
= vi

v
,

then the phantom UAV is controllable with all the UAVs in

parallel motion, maintaining a rigid formation. This case is

illustrated in Fig.8.
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Fig. 8. Parallel motion of four UAVs maintaining a stable rigid formation,
for initial conditions satisfying

ri
Ri

=

vi
v

.

The real-time corresponding to the trajectories shown in

Fig.4 with δt = 1 sec was 89 sec while the CPU time

(computation time) of each of the UAVs in the distributed

control architecture was 7.5 sec.

IV. CONCLUSION

This paper presents a motion planning algorithm pro-

ducing dynamically feasible reference trajectories in real-

time for the radar deception problem. Trajectory tracking

controllers available in the literature are then to be used by

each UAV to track these reference trajectories. Robustness

to model uncertainty and external disturbances will come

through these tracking control laws which will be based

on feedback control. A notable weakness in this algorithm

however is in the synchronized communication; unrealistic

due to inevitable time-delays. Asynchronous communication,

robustness in the communication topology, time-delays and

other important issues will need to be addressed before this

algorithm can be implemented on an actual multi-agent test

bed. However it is emphasized here that this algorithm is

meant more to convince the need for a paradigm change in

formation control that respects realistic dynamic constraints

than for operational significance.

Some of the key attributes of the motion planning algo-

rithm verified through simulations for the radar deception

problem are: (i) designs dynamically feasible reference tra-

jectories (ii) scalable (iii) suited for real time computation

(iv) communication (time and data) between agents is small

(v) implementable as an autonomous team of agents (vi) the

receding horizon approach has a feedback structure providing

inherent robustness in the design of reference trajectories.
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