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Abstract— This paper studies the gain margins (GM) of mul-
tivariable model reference adaptive control (MRAC) systems:
the parameter range of a control gain matrix in a designed
MRAC system for maintaining the desired closed-loop signal
boundedness and asymptotic output tracking. Analytical GM
results are obtained for both continuous-time and discrete-
time direct MRAC schemes applied to multi-input multi-output
(MIMO) LTI systems. The GM problem is also studied for a
class of indirect multivariable MRAC systems.
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I. INTRODUCTION

The design of control systems for aircraft to make its
controlled outputs track desired trajectories despite of para-
metric, structural, or environmental uncertainties, is of both
theoretical and practical interests. Their ability to automat-
ically adjust a controller by adaptive laws to deal with
such uncertainties to achieve desired system performance
makes adaptive control schemes attractive for aircraft control
applications. Recently there has been considerably increased
effort in research on adaptive control for aircraft flight
systems in the presence of uncertainties and failures. As a
main approach of adaptive control, model reference adaptive
control (MRAC), in which a reference model is chosen to
generate the desired output trajectories, is capable of making
the outputs of the controlled system to track the outputs
of the reference model system in addition to closed-loop
stability [4], [10]. The study of multivariable MRAC systems
expands to some important new issues including adaptive
failure compensation and gain margin specification.

The gain margin (GM) concept, originally defined for
linear time-invariant (LTI) control systems to specify a
necessary and sufficient range of a control gain for stability
[5], is also important for MRAC, of major interest for aircraft
control applications. This paper derives the gain margins for
MRAC schemes applied to MIMO LTI systems based on
their stability properties [1], [3], [4], [6], [7], [10], as the
generalization of our recent work in [8] for SISO systems.
As pointed out in [8], for MRAC the gain margin also defines
a range for a control gain variation, but this range provides
only sufficient conditions ensuring stability (signal bound-
edness) and asymptotic output tracking under any initial
conditions. It is shown that continuous-time multivariable
direct MRAC systems have gain margin equal to infinity,
while discrete-time multivariable direct MRAC systems have
a finite gain margin. For indirect MRAC of MIMO systems,

the problem of nonsingular estimation of a general system
high frequency gain matrix using system input and output
measurements is still a problem to be solved. In this paper
we will consider a special case to demonstrate the typical
feature of gain margins for indirect MRAC.

The paper is organized as follows. The formulation of the
GM problem for multivariable MRAC systems is presented
in Section II. The results of GM analysis of direct multi-
variable MRAC systems are presented in Section III for the
continuous-time case, and in Section IV for the discrete-
time case, respectively. The gain margin of an indirect
multivariable MRAC system is studied in Section V.

II. PROBLEM STATEMENT

The gain margin (GM) problem of multivariable MRAC
systems is formulated in this section, followed by a summary
of the analytical GM results.

We consider the M -input M -output LTI plant in the
transfer matrix representation

y(t) = G(D)[u](t), (1)

where u(t), y(t) ∈ RM are the plant input and output,
G(D) = Z(D)P−1(D) is strictly proper and full rank,
and Z(D), P (D) ∈ RM×M are right coprime polynomial
matrices with P (D) being column proper. 1

The GM problem for an adaptive control system is for-
mulated as the problem of specifying the stability ranges of
the elements of a positive definite and diagonal matrix

K = diag{k1, k2, . . . , kM}, ki > 0, i = 1, 2, . . . ,M (2)

which is present in the forward loop between the controlled
plant G(D) and the adaptive controller (denoted as the blocks
C1(D) and C2(D)) that has been designed to be able to
ensure desired closed-loop system properties for K = IM ,
the M ×M identity matrix, as shown in Fig. 1.

The adaptive controller is designed such that for K =
IM all signals in the closed-loop system are bounded for
any bounded initial conditions, and asymptotic tracking is
achieved. That is, the plant output y(t) asymptotically tracks
a reference signal ym(t) ∈ RM generated from a reference
model system ym(t) = Wm(D)[r](t), where Wm(D) ∈
RM×M is a rational transfer matrix.

1The symbol D is used, in the continuous-time case, as the Laplace
transform variable or the time-differentiation operator: D[x](t) = ẋ(t),
t ∈ [0, +∞); or in the discrete-time case, as the z-transform variable or
the time-advance operator: D[x](t) = x(t + 1), t ∈ {0, 1, 2, 3, . . .}.
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Fig. 1. Adaptive control system with a gain matrix K.

TABLE I
GAIN MARGINS OF ADAPTIVE CONTROL SYSTEMS

Adaptive control scheme Gain margin

CT MIMO direct MRAC ki ∈ (0, +∞), i = 1, 2, . . . , M

CT SISO direct MRAC k ∈ (0, +∞)

DT MIMO direct MRAC ki ∈ (0, k0
i ] a, i = 1, 2, . . . , M

DT SISO direct MRAC k ∈
(

0,
k0

p

|kp|

]
, 0 < |kp| ≤ k0

p

MIMO indirect MRAC ki ∈ [ki0, +∞) b, i = 1, 2, . . . , M

SISO indirect MRAC k ∈
[

kp0
|kp| , +∞

)
, 0 < kp0 ≤ |kp|

a The stability ranges of the gains ki, i = 1, 2, . . . , M , have some
finite upper bounds which depend on the knowledge (used in
adaptive laws for control adaptation) of some upper bounds and
coupling terms of the plant high frequency gain matrix Kp.

b The stability ranges of the gains ki, i = 1, 2, . . . , M , have some
positive lower bounds which depend on the knowledge (used in
adaptive laws for plant identification) of some lower bounds of the
plant high frequency gain matrix Kp.

For K = diag{k1, k2, . . . , kM} 6= IM , we want to find the
ranges of ki such that under any initial conditions, the MRAC
scheme still ensures the closed-loop signal boundedness and
output tracking when K is in the range.

In this paper, the gain margins of different MRAC systems
with a constant K in (2) are studied, and the GM results
are summarized in Table I for continuous-time (CT) and
discrete-time (DT) MRAC systems, where the results for
MIMO direct cases are derived for the systems designed
based on the LDS decomposition of the plant high frequency
gain matrix Kp. The results for the single-input single-output
(SISO) cases with K = k are provided here for comparison,
where k0

p and kp0 are the upper and lower bounds of the
magnitude of the plant high frequency gain kp, respectively,
used in the design of the adaptive control schemes [8], [10].

III. GAIN MARGIN ANALYSIS OF CONTINUOUS-TIME
MIMO DIRECT MRAC SYSTEMS

For a continuous-time MIMO MRAC system, its gain
margin can be derived based on the adaptive control scheme
applied. We present the result for the MRAC design based
on the LDS decomposition of Kp.

A. LDS Decomposition of Kp

The high frequency gain matrix of the controlled plant
is defined as Kp = limD→∞ ξm(D)G(D), where ξm(D),
which is assumed to be known and has a stable inverse, is
the modified interactor matrix of G(D). In the MRAC design
based on decompositions of Kp, the reference model transfer
matrix Wm(D) is chosen to be Wm(D) = ξ−1

m (D).

We assume that Kp is finite and nonsingular, and all its
leading principle minors, denoted as ∆i, i = 1, 2, . . . ,M ,
are nonzero and their signs are known. Besides, in the
discrete-time design, we assume that some upper bounds d0

i

of |d∗i | = | ∆i

∆i−1
| with ∆0 = 1, such that 0 < |d∗i | ≤ d0

i , i =
1, 2, . . . , M , are known [10].

The nonunique LDS decomposition of Kp, Kp = LsDsS,
follows from its unique LDU decomposition Kp = LD∗U ,
where Ls = LDsU

−T D−1
s , S = UT D−1

s D∗U for some
M ×M unity lower triangular matrix L, unity upper trian-
gular matrix U , diagonal matrix

D∗ = diag{d∗1, . . . , d∗M} = diag
{

∆1, . . . ,
∆M

∆M−1

}
(3)

with ∆i 6= 0 being the leading principle minors of Kp, and

Ds = diag
{

sign[∆1]γ1, . . . , sign
[

∆M

∆M−1

]
γM

}
(4)

with γi > 0, i = 1, 2, . . . , M , which can be arbitrary.

B. Design Based on the LDS Decomposition of Kp

When the parameters of plant G(D) in (1) are known, the
model reference controller

u(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) + Θ∗20y(t) + Θ∗3r(t), (5)

with controller parameters computed from the plant-model
transfer matrix matching equation

Θ∗T1 A(D)P (D) +
(
Θ∗T2 A(D) + Λ(D)Θ∗20

)
Z(D)

= Λ(D) (P (D)−Θ∗3ξm(D)Z(D)) , (6)

achieves the control objective of signal boundedness and
asymptotic output tracking, where Θ∗1 = [Θ∗11, . . . , Θ

∗
1ν−1]

T ,
Θ∗2 = [Θ∗21, . . . , Θ

∗
2ν−1]

T with ν being the known observ-
ability index of G(D), Θ∗ij ,Θ

∗
20,Θ

∗
3 ∈ RM×M , i = 1, 2, j =

1, . . . , ν − 1, and ω1(t) = F (D)[u](t), ω2(t) = F (D)[y](t)
with F (D) = A(D)

Λ(D) , A(D) = [IM , DIM , . . . , Dν−2IM ]T

for a stable monic polynomial Λ(D) of degree ν − 1.
When the plant parameters are unknown, the model ref-

erence controller (5) cannot be implemented. Instead, the
adaptive version of (5) is used, that is, the model reference
adaptive controller

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t)
(7)

is applied, where Θi(t) are the time-varying estimates of
Θ∗i , i = 1, 2, 20, 3, and are updated from an adaptive law
developed based on the error model derived as follows.

Error model. With Θ∗3 = K−1
p and Kp = LsDsS, the

matching equation (6) leads to

DsS(u(t)−Θ∗T1 ω1(t)−Θ∗T2 ω2(t)−Θ∗20y(t)−Θ∗3r(t))
= L−1

s ξm(D)[y − ym](t). (8)

Letting Θ(t) = [ΘT
1 (t), ΘT

2 (t),Θ20(t), Θ3(t)]T be the
estimate of Θ∗ = [Θ∗T1 ,Θ∗T2 ,Θ∗20,Θ

∗
3]

T , and denoting
Θ̃(t) = Θ(t)−Θ∗, (7) and (8) yield

ξm(D)[y−ym](t)+Θ∗0ξm(D)[y−ym](t) = DsSΘ̃T (t)ω(t)
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where ω(t) = [ωT
1 (t), ωT

2 (t), y(t), r(t)]T and Θ∗0 = L−1
s −

IM has a special lower triangular form with zero diagonal
elements. We define the parameter vectors consisting of
the nonzero parameters in each row of Θ∗0 to be θ∗i =
[θ∗i1, . . . , θ

∗
ii−1]

T ∈ Ri−1 and let their estimates to be θi(t) =
[θi1(t), . . . , θii−1(t)]T ∈ Ri−1, i = 2, 3, . . . ,M . By defining
the estimation error to be

ε(t) = ē(t) + [0, θT
2 (t)η2(t), . . . , θT

M (t)ηM (t)]T + Ψ(t)ξ(t),

the following error model is obtained with D replaced by s:

ε(t) = [0, θ̃T
2 (t)η2(t), θ̃T

3 (t)η3(t), . . . , θ̃T
M (t)ηM (t)]T

+DsSΘ̃T (t)ζ(t) + Ψ̃(t)ξ(t), (9)

where θ̃i(t) = θi(t) − θ∗i , ηi(t) = [ē1(t), . . . , ēi−1(t)]T ∈
Ri−1, i = 2, 3, . . . , M , with the filtered tracking error ē(t) =
ξm(s)h(s)[y − ym](t) = [ē1(t), . . . , ēM (t)]T , h(s) = 1

f(s)

with f(s) being a chosen stable monic polynomial of the
same degree as the maximum degree of ξm(s), Ψ̃(t) =
Ψ(t)−Ψ∗ with Ψ(t) being the estimate of Ψ∗ = DsS, and
ξ(t) = ΘT (t)ζ(t)− h(s)[ΘT ω](t) with ζ(t) = h(s)[ω](t).

Adaptive law. Based on the error model (9), we choose
the following gradient adaptive laws:

θ̇i(t) = −Γθiεi(t)ηi(t)
m2(t)

, i = 2, 3, . . . ,M (10)

Θ̇T (t) = −Dsε(t)ζT (t)
m2(t)

(11)

Ψ̇(t) = −Γε(t)ξT (t)
m2(t)

(12)

where ε(t) = [ε1(t), ε2(t), . . . , εM (t)]T , Γ = ΓT > 0,
Γθi = ΓT

θi > 0, and m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t) +∑M
i=2 ηT

i (t)ηi(t).

For K = IM , the adaptive controller (7) with the adaptive
laws (10)–(12) ensures closed-loop signal boundedness and
asymptotic output tracking, limt→∞(y(t)−ym(t)) = 0 [10].

C. LDU Decomposition of KpK

In the presence of K 6= IM , the controlled plant is y(t) =
G(s)K[u](t), and its high frequency gain matrix is KpK.
The following lemma establishes the link between the LDU
decomposition of Kp and that of KpK, which is crucial for
the GM analysis of multivariable MRAC systems designed
based on the LDS decomposition of Kp.
Lemma 1. The gain matrix KpK ∈ RM×M , with K =
diag{k1, k2, . . . , kM} > 0, has a unique LDU decomposition

KpK = L̄D̄∗Ū , L̄ = L, D̄∗ = D∗K, Ū = K−1UK (13)

where L, D∗, and U are from the unique LDU decomposition
of the nonsingular matrix Kp with its leading principle
minors being all nonzero, that is, Kp = LD∗U .
Proof: Suppose the matrix Kp is represented as

Kp =




kp11 kp12 · · · kp1M

kp21 kp22 · · · kp2M

· · · · · · · · · · · ·
kpM1 kpM2 · · · kpMM


 , (14)

and its nonzero leading principle minors are ∆i, i =
1, 2, . . . , M . With a diagonal K > 0 as in (2), we have

KpK =




kp11k1 kp12k2 · · · kp1MkM

kp21k1 kp22k2 · · · kp2MkM

· · · · · · · · · · · ·
kpM1k1 kpM2k2 · · · kpMMkM


 , (15)

and its leading principle minors are

∆̄i = ∆i

i∏

j=1

kj , i = 1, 2, . . . ,M, (16)

from which and D∗ in (3), we can obtain

D̄∗ = diag
{

k1∆1, k2
∆2

∆1
, . . . , kM

∆M

∆M−1

}
= D∗K. (17)

With KpK = LD∗UK = L̄D∗KŪ , (17) implies L̄ = L
and Ū = K−1UK. This decomposition is unique from the
uniqueness of matrix LDU decomposition. ∇
D. Gain Margin Analysis

The desired closed-loop properties of signal bound-
edness and asymptotic output tracking hold for K =
diag{k1, k2, . . . , kM} 6= IM with ki > 0 being constant,
that is, we have the gain margin result:

Proposition 1. A continuous-time multivariable direct MRAC
system, designed based on the LDS decomposition of Kp,
has gain margins (0,+∞) for ki of the input control gain
variation matrix K = diag{k1, k2, . . . , kM}.
Proof: To prove that the closed-loop system with the adaptive
controller designed for K = IM retains the desired perfor-
mance for K 6= IM , we need to prove that the assumptions
under which the adaptive controller is designed for K = IM

are satisfied.
Since ki > 0, from (16), we have ∆̄i 6= 0, and sign[∆̄i] =

sign[∆i], that is, the presence of K does not violate the
assumptions of nonzero leading principle minors and the
knowledge of their signs of the high frequency gain matrix,
based on which the MRAC scheme is designed for K = IM .
To be precise, the design parameter Ds in (11) is not affected
by a gain matrix K 6= IM . Therefore, for ki ∈ (0, +∞), i =
1, . . . , M , the controller (7) with the adaptive laws (10)–(12)
still ensures the desired system performance, and the MRAC
system has gain margin (0, +∞). ∇

Remark 1: The conclusion in Proposition 1 reduces to the
SISO case [8] when M = 1, that is, continuous-time SISO
direct MRAC system has gain margin (0,+∞). ¤

IV. GAIN MARGIN ANALYSIS OF DISCRETE-TIME
MIMO DIRECT MRAC SYSTEMS

While discrete-time multivariable MRAC shares simi-
lar controller structure and matching conditions as the
continuous-time MRAC schemes, it has different stability
characterization, which leads to different signal filters and
adaptation gains, as well as stability and robust analysis.
Besides, there are extra assumptions on plant models. We
present the gain margin result for the MRAC design based
on the LDS decomposition of Kp.
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A. Design Based on the LDS Decomposition of Kp

As described in Section III-B, for K = IM , when the plant
parameters in P (z) and Z(z), the polynomial Λ(z), and the
modified interactor matrix ξm(z) are specified, the controller
(5) with the controller parameters Θ∗i , i = 1, 2, 20, 3 com-
puted from the matching equation (6) with D replaced by z,
is applied to the plant to achieve the control objective.

Without knowledge of the plant parameters, by following
a similar procedure of derivation as in Section III with the
only difference to be replacing s (or D) by z, we can obtain
the estimation error model (9), based on which we choose
the adaptive laws:

θi(t + 1)− θi(t) = −Γθiεi(t)ηi(t)
m2(t)

, i = 1, . . . , M (18)

ΘT (t + 1)−ΘT (t) = −Dsε(t)ζT (t)
m2(t)

(19)

Ψ(t + 1)−Ψ(t) = −Γε(t)ξT (t)
m2(t)

(20)

where 0 < Γθi = ΓT
θi < 2Ii−1, 0 < Γ = ΓT < 2IM , and

Ds = diag
{

sign[∆1]γ1, . . . , sign
[

∆M

∆M−1

]
γM

}
with γi >

0, as in (4), is chosen to satisfy

0 < DsU
T D−1

s D∗UDs < 2IM , (21)

that is, γi ∈ (0, γ0
i ) for some γ0

i > 0, i = 1, 2, . . . ,M .

For K = IM , the controller (7) with the adaptive
laws (18)–(20) ensures closed-loop signal boundedness and
asymptotic output tracking, limt→∞(y(t)−ym(t)) = 0 [10].

B. Gain Margin Analysis
In the presence of K 6= IM with ki > 0 being constant

and within some ranges, the same desired closed-loop system
performance also holds, that is, we have the GM result:

Proposition 2. A discrete-time multivariable direct MRAC
system, designed based on the LDS decomposition of Kp,
has gain margins

(
0, kGM

i

]
for ki of the input control gain

variation matrix K = diag{k1, k2, . . . , kM}, where KGM =
diag{kGM

1 , kGM
2 , . . . , kGM

M } satisfies

0 < DsK
GMUT(KGM )−1D−1

s D∗UKGMDs < 2IM (22)

for Ds chosen to meet the condition (21).

Proof: From Lemma 1, the presence of a gain matrix K 6=
IM leads to the new high frequency gain matrix KpK with
its LDU decomposition as KpK = L̄D̄∗Ū for D̄∗ = D∗K
from the LDU decomposition of Kp, Kp = LD∗U , that is,
the sign information of the leading principle minors of KpK
is the same as that of Kp so that the adaptive law with Ds

chosen for K = IM can still be used for K 6= IM .
However, to ensure the closed-loop signal boundedness

and asymptotic output tracking, the new condition for
K 6= IM , similar to (21) for K = IM , is 0 <
DsŪ

T D−1
s D̄∗ŪDs < 2IM , which needs to be satisfied for

the chosen Ds for (21). From Lemma 1, it is equivalent to

0 < DsKUT K−1D−1
s D∗UKDs < 2IM , (23)

from which it can be seen that for ki of K, there is an upper
bound kGM

i > 0, which depends on γj , kj , j = 1, 2, . . . , i−
1, d∗j , d0

j , j = 1, 2, . . . , i and the nonzero elements of U ,
with KGM = diag{kGM

1 , kGM
2 , . . . , kGM

M } satisfying (22)
such that the closed-loop performance is still achieved with
the control gain variation K 6= IM . That is, the gain margins
are

(
0, kGM

i

]
. ∇

Remark 2: The gain margin result in Proposition 2 re-
duces to the SISO case when M = 1, that is, a discrete-time
SISO direct MRAC system has gain margin

(
0,

k0
p

|kp|
]
, where

k0
p is the known upper bound of the magnitude of the plant

high frequency gain kp [8]. ¤
Remark 3: It is desirable to have an explicit expression for

the design parameters γi, i = 1, 2, . . . , M in (21), and KGM

in (22). The case for M = 1 is studied in [8]. For the general
case M > 1, an explicit solution becomes complicated and
may not exist because of the coupling of γi with each other
and the unknown form of U . The results for M = 2 is
provided here as a demonstration of the GM result presented
in Proposition 2.

Assume the nonzero off-diagonal element of the unity
upper triangular matrix U is a. For a = 0, the design
parameters γ1 and γ2 must be chosen to satisfy

0 < γ1 <
2
d0
1

, 0 < γ2 <
2
d0
2

. (24)

For a 6= 0, the same range for γ1 in (24) holds, and

0 < γ2 <
α(γ1)d0

2 +
√

α(γ1)β(γ1)
4a2d0

1

, (25)

where d0
1 and d0

2, assumed to be known, are the upper bounds
of |d∗1| and |d∗2|, and α(γ1) = γ1(d0

1γ1 − 2), β(γ1) =
α(γ1)(d0

2)
2 − 16a2d0

1.
The gain margin results for a = 0 are:

0 < k1 ≤ d0
1

|d∗1|
, 0 < k2 ≤ d0

2

|d∗2|
. (26)

For a 6= 0, the same range for k1 in (26) holds, and

0 < k2 ≤ d0
1

|d∗1|
ᾱ(k1γ1)|d∗2|+

√
ᾱ(k1γ1)β̄(k1γ1)

α(γ1)d0
2 +

√
α(γ1)β(γ1)

(27)

where ᾱ(k1γ1) = k1γ1(|d∗1|k1γ1 − 2), and β̄(k1γ1) =
ᾱ(k1γ1)|d∗2|2 − 16a2|d∗1|. 2 ¤

Remark 4: When Kp is lower triangular, from its LDU
decomposition, Kp = LD∗U , we have U = IM , and
(21) is equivalent to 0 < D∗Ds < 2IM , that is, 0 <
diag {|d∗1|γ1, |d∗2|γ2, . . . , |d∗M |γM} < 2IM . It is satisfied if

diag {γ1, γ2, . . . , γM} < diag
{

2
d0
1

,
2
d0
2

, . . . ,
2

d0
M

}
. (28)

For the case when K 6= IM , the inequality in (23) yields
0 < diag {|d∗1|k1γ1, |d∗2|k2γ2, . . . , |d∗M |kMγM} < 2IM ,

2The results in (24)–(27) can be verified by converting the matrix
inequalities in (21) and (23) into scalar inequalities and solving them.
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which, from (28), is satisfied if

0 < diag {k1, k2, . . . , kM} ≤ diag
{

d0
1

|d∗1|
,

d0
2

|d∗2|
, . . . ,

d0
M

|d∗M |
}

.

Therefore, we have the gain margin result

ki ∈
(

0,
d0

i

|d∗i |
]

, i = 1, 2, . . . , M, (29)

where d0
i , assumed to be known, is the upper bound of |d∗i |

such that 0 < |d∗i | ≤ d0
i . ¤

Remark 5: For a direct discrete-time MRAC system, the
gain margin is (0, k0

i ], where k0
i can be made large by

reducing the adaptation gain. This can been seen from (4)
and (23). As D∗ and U are constant matrices, we can only
increase k0 by reducing the design parameters γi > 0, which
reduces the adaptation speed for the controller parameters
Θ(t) in (19). Therefore, the gain margin can be enlarged by
assuming larger d0

i , i = 1, 2, . . . , M in the system design
process, while at the same time maintaining the inequality
in (23). This is more clear in (28) and (29) for U = IM . ¤

V. GAIN MARGINS OF INIDRECT MRAC SYSTEMS

Indirect multivariable MRAC schemes are of interest be-
cause there are less parameters to be estimated than those
of direct MRAC. Moreover, the plant parameters carry more
physical meanings than controller parameters, and it is more
natural and practical to expect a priori knowledge about plant
parameters than that of controller parameters, which further
reduces computational burden. In this section, we present
the design of continuous-time and discrete-time multivariable
indirect MRAC schemes followed by the GM analysis in a
unified framework.

A. Elliott and Wolovich’s Algorithm

In [2], Elliott and Wolovich used the left coprime poly-
nomial matrix decomposition of the plant transfer matrix
in developing indirect adaptive control strategies, since this
representation of the multivariable plant can be estimated by
input and output data. That is, let G(D) = P−1

l (D)Zl(D),
where Zl(D) and Pl(D) are left coprime with Pl(D) being
row reduced.

Assume the observability indices of G(D), denoted as νi,
i = 1, 2, . . . , M , are known, and let ν = max1≤i≤M νi,
which is the observability index of G(D). Without loss
of generality, assume the row degrees of PT

l (D) are
∂ci(PT

l (D)) = νi, and the matrix Pν ∈ RM×M , contain-
ing the coefficients of the Dνi term in each column of
Pl(D), is unity lower triangular. By filtering the input-output
equation of the plant model, a parametrization linear in the
unknown plant parameters contained in Zl(D) and Pl(D)
can be obtained, based on which standard adaptive estimation
techniques can be used for estimation of the plant parameters.

The transfer matrix Wm(D) of the reference model is
chosen to be Wm(D) = ξ−1

m (D), and the controller structure

is in the form of (5) with the parameters obtained from the
plant-model matching equation:

IM −Θ∗T1 F (D)− (Θ∗T2 F (D) + Θ∗20)Ĝ(D)
= Θ∗3ξm(D)Ĝ(D), (30)

where Ĝ(D) = P̂−1
l (D)Ẑl(D) with P̂l(D) and Ẑl(D) being

the estimates of Pl(D) and Zl(D), and F (D) is defined as
in Section III-B.

To solve the plant-model matching equation (30) online,
we need to assume that Ĝ(D) at each time instant t has
the same interactor matrix ξm(D), and the corresponding
estimated high frequency gain matrix K̂p is nonsingular.
To ensure this, we can use parameter projection techniques
in the adaptive estimation of Pl(D) and Zl(D). However,
since it is a row by row estimation, the parameter projection
ensuring nonsingular K̂p is still a problem to be solved. Thus
here we consider a special case, which is a direct expansion
from the SISO indirect MRAC algorithms [8], [10].

B. Design for a Special Class of Systems
We make the assumptions that the degrees of the poly-

nomial matrices Pl(D) and Zl(D) are ν and m, ν > m,
which are known. Moreover, we assume the highest order
coefficient matrix of Pl(D) is the identity matrix IM , and
that of Zl(D) is diagonal and nonsingular, that is, the plant
to be controlled has the following representation:

(IMDν + Pν−1D
ν−1 + · · ·+ P0)[y](t)

= (ZmDm + Zm−1D
m−1 + · · ·+ Z0)[u](t) (31)

where Pi, Zj ∈ RM×M , i = 0, 1, . . . , ν − 1, j =
0, 1, . . . , m− 1 are constant coefficient matrices with Zm =
diag{zm1, . . . , zmM} for some zmi 6= 0, i = 1, 2, . . . ,M .
Therefore, the plant transfer matrix G(D) has an interactor
matrix ξm(D) = d(D)IM with d(D) being a monic stable
polynomial of degree n∗ = ν − m, and the plant high
frequency gain matrix is Kp = Zm for K = IM .

Plant model parametrization. To obtain a parametriza-
tion of the plant model (31), we filter both sides with 1

Λe(D)

for a chosen monic stable polynomial Λe(D) of degree ν,
after ignoring exponentially decaying terms, we can obtain

ȳ(t) , Dν

Λe(D)
[y](t)

= Z0
1

Λe(D)
[u](t) + · · ·+ Zm

Dm

Λe(D)
[u](t)

−P0
1

Λe(D)
[y](t)− · · · − Pν−1

Dν−1

Λe(D)
[y](t)

= [θ∗T1 ζ1(t), . . . , θ∗TM ζM (t)]T , (32)

where θ∗i , ζi(t) ∈ RM(ν+m)+1, i = 1, 2, . . . , M with

θ∗i = [Zr
0i, . . . , Z

r
m−1i, zmi,−P r

0i, . . . ,−P r
ν−1i]

T

ζi(t) =
[

1
Λe(D)

[u]T (t), . . . ,
Dm−1

Λe(D)
[u]T (t),

Dm

Λe(D)
[ui](t),

1
Λe(D)

[y]T (t), . . . ,
Dν−1

Λe(D)
[y]T (t)

]T

, (33)
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and the superscript r denotes the ith row of the corresponding
coefficient matrix, and ui(t) is the ith input to the plant.

To ensure a nonsingular estimation of Zm, we need to
make this assumption: the sign of zmi, sign[zmi], is known,
and so is the lower bound zmi0 of |zmi| such that 0 < zmi0 ≤
|zmi|, i = 1, 2, . . . , M .

Error model and adaptive law. Based on the error
equations εi(t) = θ̃T

i (t)ζi(t) with θ̃i(t) = θi(t) − θ∗i , we
choose the gradient adaptive laws with parameter projection
for θi(t):

θ̇i(t)
θi(t + 1)− θi(t)

}
= −Γiζi(t)εi(t)

m2(t)
+ fi(t), (34)

i = 1, 2, . . . , M , where m2(t) = 1 +
∑M

i=1 ζT
i (t)ζi(t),

and the adaptive gain matrix Γi = diag{Γi1, γi, Γi2} with
Γi1 ∈ Rm×m, γi ∈ R, Γi2 ∈ Rν×ν , and for continuous-
time case, Γi1 = ΓT

i1 > 0, Γi2 = ΓT
i2 > 0, γi > 0, while

for discrete-time case, 0 < Γi1 = ΓT
i1 < 2Im, 0 < Γi2 =

ΓT
i2 < 2Iν , and 0 < γi < 2. The parameter projection term

fi(t) has the form fi(t) = [01×m, fim+1(t), 01×ν ]T with
fim+1(t) designed to ensure the estimate of the (m + 1)th
component of θi(t), ẑmi, to be away from zero, that is,
|θim+1(t)| = |ẑmi| ∈ [zmi0,+∞) (using the knowledge of
zmi0 ≤ |zmi|, i = 1, 2, . . . , M ).

With the adaptive laws (34), the design equation (30), the
control (5) applied to the plant (31) can achieve closed-loop
signal boundedness and asymptotic output tracking.

C. Gain Margin Analysis
The same desired closed-loop performance holds for the

case when a positive definite gain matrix K > 0 as in (2)
is present at the control input, as long as the gains ki are
within some ranges, that is, we have the GM result:

Proposition 3. The closed-loop system, consisting of the
plant (31) and the controller (5), with the adaptive laws (34)
and design equation (30), has gain margins

[
zmi0
|zmi| ,+∞

)
for

ki of K = diag{k1, k2, . . . , kM}, where zmi0, used in the
adaptive law (34), are the known lower bounds of |zmi| such
that 0 < zmi0 ≤ |zmi|, i = 1, 2, . . . ,M .

Proof: In the presence of K, the controlled plant is y(t) =
G(D)K[u](t), and its high frequency gain matrix is

KpK = ZMK = diag{zm1k1, zm2k2, . . . , zmMkM}, (35)

which needs to satisfy the assumptions under which the
adaptive laws (34) are designed for K = IM , in order for
closed-loop stability and asymptotic tracking to be achieved.
That is, for K 6= IM , the entries of (35) must be greater than
the assumed lower bounds zmi0, i.e., |zmiki| ≥ zmi0, from
which we can obtain ki ∈

[
zmi0
|zmi| ,+∞

)
, i = 1, 2, . . . ,M .

Therefore, we have the stated gain margin result. ∇
Remark 6: When M = 1, the MIMO plant (31) reduces

to the SISO plant P (D)[y](t) = kpZ(D)[u](t). The GM
result in Proposition 3 is a direct extension from the SISO
result presented in [8]. ¤

Remark 7: For both continuous-time and discrete-time
indirect MRAC designs, the gain margin is [ki0,∞), where
ki0 > 0 can be made small by reducing the parameter lower
bound used in parameter projection of the adaptive laws (for
plant identification) for avoiding control singularity. ¤

VI. CONCLUSIONS

In this paper, the gain margin problem has been studied
for several multivariable model reference adaptive control
(MRAC) systems: those with direct or indirect, continuous-
time or discrete-time designs. For a direct continuous-time
MRAC design, the gain margin is (0, +∞), while for a direct
discrete-time design, the gain margin is finite with an upper
bound that can be made large by reducing the adaptation
gain. For indirect MRAC designs, in either continuous time
or discrete time, the gain margin is infinity with a lower
bound that can be made small by reducing the parameter
lower bound used in parameter projection of the adaptive
laws (for plant identification) for avoiding control singularity.
In other words, the gain margins of MRAC systems can
be enlarged by choosing proper design parameters, while
ensuring both signal boundedness and asymptotic tracking.
This indicates that the use of an MRAC scheme has a unique
and significant advantage over a non-adaptive control scheme
whose gain margin for signal boundedness is fixed (and is
1 for asymptotic tracking, that is, K 6= IM would lead
to a non-zero tracking error). This advantage is important
for aircraft flight control applications for which asymptotic
tracking is a critical performance measure.

ACKNOWLEDGMENTS

This research was supported in part by NASA Langley
Research Center under grant NNX08AB99A and by NSF
under grant ECS0601475. The authors would like to thank
Dr. Suresh M. Joshi for his helpful motivation, comments
and suggestions on this work.

REFERENCES
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