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Abstract— A variety of plants with high parametric uncer-
tainties are usually controlled with signals that may assume
only a finite number of values, both to simplify actuator’s
construction and minimize the operation cost. The design of
multi-valued control laws which provide a control signal that
is discontinuous in time and quantized in magnitude is then
of particular interest in many practical applications.

This paper presents a new technique for robust control
design in order to force a SISO linear plant, subject to
disturbances and parametric uncertainties, to track a given
sufficiently regular reference trajectory. The proposed ap-
proach is based on Lyapunov method and allows designing a
control law which guarantees to follow the reference trajectory
with prefixed values of the tracking error and of its derivatives
up to the n−1-th, where n is the order of the plant. Moreover,
the control law is quite robust and guarantees the convergence
of the error in a prefixed time.

The technique is applied to design controllers characterized
by control signals that may assume only a finite number
of values. In this case, the control law can be seen as a
generalization of the traditional relay control laws and of the
sliding mode ones, with a relatively low switching frequency.
Finally, a simple example shows the advantages of the control
law obtained with the proposed design methodology with
respect to the classical approaches.

I. INTRODUCTION

In many practical applications plants are controlled with
signals that may assume only a finite number of values,
the main reason being the choice of utilizing simple and
reliable actuators with a relatively low cost and highly
performing operation modes. This aspect originates the
demand for developing new techniques in order to analyze,
design and implement multi-valued controllers, i.e. systems
which provide a control signal that is discontinuous in time
and quantized in magnitude.

This paper presents a new method for controller synthe-
sis, characterized by the request for a control signal that may
assume only a finite number of values. The method allows
designing a controller which is able to force a SISO linear
plant, belonging to a class of sufficiently general plants
and subject to disturbances and parametric uncertainties, to
follow a given sufficiently regular reference trajectory.

In [16] and [17] controllers with control signals without
amplitude constraints, but constant in assigned time inter-
vals, are presented. In [14], [20], [21] and [22] sliding mode
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control laws with two or an infinite number of levels and
with an infinite switching frequency are proposed. Various
authors have studied problems concerning quantized control
(see, for example, [7], [2], [8] [18], [1], [10], [11]). In [2] the
authors deal with feedback stabilization problems for LTI
control systems with saturating quantized measurements.
The use of logarithmic quantizers in order to stabilize a
discrete system is described in [8]. On the other hand, a
uniformly quantized control set is used in [18]. Problems
related to the structure of the reachable set for systems
whose input sets are quantized are addressed in [1]. In
[10] the authors propose some stabilization methods for
scalar linear systems by means of static quantized feedback
controls, depending on the amount of information flow
in the feedback loop. In [11] the authors analyze the
stabilization problem for discrete time linear systems with
multidimensional state and one-dimensional input using
quantized feedbacks with a memory structure.

The control law proposed in this paper solves a general
tracking problem, defined in terms of practical tracking, for
stable and unstable plants, imposing constraints only on
the minimum and maximum values of the control signal,
which depend both from the plant and from the amplitude
and variability of the reference trajectory. In [6] a similar
problem is treated but the method proposed in the work is
not very robust and does not allow satisfying specifications
about the error derivatives because of a severe limitation in
the Lyapunov function used in the control law design.

The proposed control law allows using intermediate lev-
els, which consent reducing the amplitude of the control
signal and the average switching frequency. The theory
of the practical stability is used to design the controller,
with reference not only to the output error but also to its
derivatives; this approach often allows satisfying process’s
vital specifications; in thermal processes, for example, small
but fast temperature variations with respect to the reference
can generate defects in the manufactured objects (see [19],
[15] and [9]).

The paper is organized as follows. Section II introduces
the control problem. Section III presents preliminary lem-
mas, which are used to derive the main result of the
paper, presented in Section IV. A discussion regarding
the characteristics of the proposed control law is provided
in Section V. The multi-valued controller is proposed in
Section VI, and some examples show the advantages of the
proposed control law. Section VII draws final conclusions.
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II. PROBLEM STATEMENT

Consider the continuous-time SISO linear plant

y(n) =
n∑
i=1

ai(p(t), t)y(n−1) + b(p(t), t)u+ d(p(t), t) (1)

where: t ∈ ℘t ⊆ R is the time; u ∈ ℘u ⊂ R is the control
input; y ∈ R is the output to be controlled; d ∈ ℘d ⊂ R is
the effect of disturbances acting on the plant; p(t) ∈ ℘p ⊂
Rγ , t ∈ ℘t is a vector of uncertain parameters;

a1(p, t) a2(p, t) . . . an(p, t) ∈ ℘a ⊂ Rn, (2a)
b(p, t) · sgn(b(p, t)) ∈ ℘p ⊂ R+, (2b)
d(p, t) ∈ ℘d,∀t ∈ ℘t, ∀p ∈ ℘p, (2c)

℘a, ℘b, ℘d compact sets. (2d)

Let ŷ(t) be the trajectory that the plant (1) must track,
with bounded n-th derivative. The equation of the tracking
error vector

ε =
(
ε1 ε2 . . . εn

)T
,

ε1 = ŷ − y, εi = ε
(i−1)
1 , i = 2, . . . , n,

can be rewritten as

ε̇ = Eε−Bw (3)

where:

E =

à
0 1 0 . . . 0
0 0 1 . . . 0
· · · . . . ·
0 0 0 . . . 1
−k1 −k2 −k3 . . . −kn

í
,

B =

à
0
0
·
0
1

í
,

ki ∈ R, i = 1, . . . , n,

w = b(p, t)u−
n∑
i=1

(ai(p, t) + ki)εi + d(p, t)+

+

[
n∑
i=1

ai(p, t)ŷ(i−1) − ŷ(n)

]
. (4)

In order to define the control problem, we first introduce
the following definition.

Definition 1 (Practical stabilization): Given a reference
trajectory ŷ(·), a region T0 (containing the origin of Rn), a
region Tρ ⊂ T0, t0 ∈ ℘t and tc > 0, we say that system (3)-
(4) is practical stabilizable with respect to (t0, tc, T0, Tρ)
if and only if, for all functions p : ℘t → ℘p and ∀ε0 ∈
T0, there exists a control law u(t, ε) : ℘t × T0 → ℘u
such that the solution of the system (3)-(4), denoted by
ε
(
t, t0, ε0, u[t0,t], p

)
, is bounded and ∀t > t0 + tc satisfies

the condition ε
(
t, t0, ε0, u[t0,t], p

)
∈ Tρ.

The general tracking problem is stated as follows.
Problem 1 (Practical tracking problem): Given the

plant (1), a reference trajectory ŷ, a region T0 (containing
the origin of Rn) of admissible initial errors ε0 at time
t0 and a region Tρ ⊂ T0 of tolerable errors after the time
tc, design a control law with values in ℘u that practical
stabilizes the associate error system (3)-(4) with respect to
(t0, tc, T0, Tρ).

Imposing the practical stabilization of the error system
implies that we aim at bound both the tracking error ŷ− y
and its derivatives up to the order of the plant minus one.
This constraint is often required in practical applications
where not only the error needs to be bounded, but also a
slow variation of the state trajectory around the reference
trajectory is necessary (see, for instance, the problem of
ceramic kiln control in [4]).

III. PRELIMINARY RESULTS

For the solution of Problem 1 we introduce the following
lemmas.

Lemma 1: Let Sρ = {ε ∈ Rn : ‖ε‖P ≤ ρ, ρ > 0} -
where ‖ε‖P =

√
εTPε and P ∈ Rn×n is a symmetric

and positive definite (p.d.) matrix - be an hyper-ellipsoid
of Rn and Tρ be the smallest hyper-rectangle including Sρ
and with it faces orthogonal to the coordinated axis.Then
the semi-length of the edges of Tρ parallel to the i-th axes
is

ε̄i = ρ
»
pinvii , i = 1, . . . , n, (5)

where pinvii denotes the (i, i)-element of the matrix P−1.
Proof: The proof can be found in [3].

Lemma 2: Let E ∈ Rn×n be a matrix with v distinct
real eigenvalues λi, i = 1, . . . , n, and 2l = n − v distinct
complex conjugate eigenvalues λi± = αi±jωi, i = 1, . . . , l.
Moreover, let ui, i = 1, . . . , n and ui± = uai ± jubi, i =
1, . . . , l be the corresponding eigenvectors. Then, denoting
with Z∗ the complex conjugate transposed matrix of Z ∈
Cn×n, the matrices:

P = (ZZ∗)−1 = (6)

=

[
v∑
i=1

uiu
T
i + 2

l∑
i=1

(uaiuTai + ubiu
T
bi)

]−1

Q = −(Z∗)−1(Λ + Λ∗)Z−1 = (7)

= −

[
1
2

v∑
i=1

1
λi
uiu

T
i +

l∑
i=1

1
αi

(uaiuTai + ubiu
T
bi)

]−1

with

Z =
(
u1 . . . uv ua1 + jub1 ua1 − jub1 . . .

. . . ual + jubl ual − jubl
)

Λ = diag
(
λ1 . . . λv λ1+ λ1− . . . λl+ λl−

)
satisfy the Lyapunov equation

ETP + PE = −Q. (8)
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Moreover, if the eigenvalues of E have negative real part,
then the matrices P and Q are both p.d. and

λmax(Q−1P ) = − 1
2 maxi=1,...,n<(λi)

=
1
2
τmax(E),

(9)

where λmax(Q−1P ) denotes the maximum eigenvalue of
the matrix Q−1P and τmax(E) denotes the maximum time
constant of the modes of the system ε̇ = Eε.

Proof: The proof can be found in [3].

Lemma 3: Consider the system (3) with ε0 ∈ T0, where
all the eigenvalues of E ∈ Rn×n are distinct and with
negative real part, B ∈ Rn×1 and P is given by (6). Let
us define the linear function of the tracking error and of its
derivatives v = BTPε and two subsets Sσ and Sρ of Rn
such that

Sσ = {ε ∈ Rn : ‖ε‖P ≤ σ, σ > 0} ⊇ T0,

Sρ = {ε ∈ Rn : ‖ε‖P ≤ ρ, 0 < ρ < σ} ⊆ Tρ.

If

v · w ≥ 0 ∀ε /∈ S̊ρ, (10)

where S̊ρ denotes the interior of Sρ, then the system (3) is
finite-time practically stable with respect to (t0, tc, T0, Tρ)
for every t ∈ ℘t and

tc ≥ τmax(E) ln
σ

ρ
. (11)

Proof: The Lyapunov function V (ε) = εTPε for the
system (3) is chosen. Taking into account (8), it results
−V̇ (ε) = εTQε+ 2vw. Using (10) it follows that

V̇ (ε)
V (ε)

≤ − inf
ε

εTQε

εTPε
∀ε /∈ S̊ρ.

Since

εTQε

εTPε
≥ 1
λmax(Q−1P )

∀ε 6= 0,

for any symmetric and p.d. matrices P and Q (see, for
example [13]), and by Lemma 2 it results

V̇ (ε)
V (ε)

≤ − 1
τmax(E)

∀ε /∈ S̊ρ,

and then

‖ε(t)‖P ≤ ‖ε(t0)‖P exp (−(t− t0)/τmax(E)). (12)

From last inequality it follows that ε converges into the
hyper-ellipsoid Sρ in a time not greater than

tc0 = τmax(E) ln
‖ε(t0)‖P

ρ
.

Since ε0 ∈ Sσ , the proof easily follows.
Remark 1: It is important to note that the matrix P given

by (6) is optimal with respect to the estimation of the
convergence velocity, according to the Lyapunov approach,

of the system ε̇ = Eε. This is due to the fact that the
time constant of ‖ε(t)‖P coincides with the maximum time
constant of E (see (12)).

Remark 2: The Lemma 3 can be extended to the case
where sliding mode occurs on the surface v = 0 for
ε /∈ S̊ρ. In this case, the time derivative of the Lyapunov
function is to be computed along the sliding surface gov-
erned by the differential equation ε̇ = Eε − Bweq , where
weq = (pnn)−1BTPEε, derived according to the equivalent
control method [20]. The proof follows considering that on
that surface the derivative of the Lyapunov function results
V̇ (ε) = −εTQε.

IV. CONTROL LAW SYNTHESIS

It is now possible to state the following main result.
Theorem 1: Given the plant (1), a reference trajectory ŷ

with bounded n-th derivative, a region T0 (containing the
origin of Rn) of admissible initial errors ε0 at time t0 and
a region Tρ ⊂ T0 of tolerable errors after a prefixed time
tc.

Then it is possible to solve the practical tracking problem
with respect to (t0, tc, T0, Tρ) choosing:
• σ, ρ and the values ki, i = 1, . . . , n such that:

– the eigenvalues of E are distinct and with negative
real part and such that tc in (11) is less or equal
to the prefixed one;

– the region Sσ contains T0;
– the region Sρ is contained in Tρ;

• the control law (see Fig. 1) u(t, ε) : ℘t × T0 → ℘u:
– if ε /∈ S̊ρ, equals to:

u =
ß
dUe, if v · b(p, t) ≥ 0
bUc, if v · b(p, t) < 0 (13)

where:

v = BTPε, P is defined in (6)

U =

[
ŷ(n) −

∑n
i=1 ai(p, t)ŷ

(i−1)
]
− d(p, t)

b(p, t)
+

+
∑n
i=1 (ai(p, t) + ki)εi

b(p, t)
bUc = max{u ∈ ℘u : u < U ∀p ∈ ℘p}
dUe = min{u ∈ ℘u : u ≥ U ∀p ∈ ℘p}

– if ε ∈ S̊ρ, equals to the last value assumed on the
Sρ boundary.

(14)
Proof: Consider the differential equation (3) which

describes the closed loop system composed by the linear
plant and the controller. By applying the Theorems 2, 4
and 5 in [12], it is possible to verify that the solution to (3)
exists everywhere in Rn, and for every initial condition.

For the hypothesis (2) the control u computed with (13)
provides a signal w, given by (4), which satisfies condition
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Fig. 1. Control Algorithm (CA).

(10). Then the proof of the theorem easily follows from
Lemma 3.

As regards the tracking error, we state and prove the
following theorem.

Theorem 2: If the values ki, i = 1, . . . , n in the control
law of Theorem 1 are chosen such that the eigenvalues
λi, i = 1, . . . , n of E are distinct, with negative real part
and satisfy

n∑
j=1

λi−1
j λ̄i−1

j ≤
Å
ε̄i
ρ

ã2

ε̄i ∈ R ∀i = 1, . . . , n,

then the tracking error ε converges into the region

Tρ =
{
ε ∈ Rn : |εi| ≤ ε̄i ∈ R+ ∀i = 1, . . . , n

}
.

Proof: Since the matrix E is in reachability canonical
form, the matrix of its eigenvectors is

Z =

Ü
1 1 . . . 1
λ1 λ2 . . . λn
· · . . . ·

λn−1
1 λn−1

2 . . . λn−1
n

ê
From (5) and (6) it follows that the semi-length ε̄i of the
edges of the hyper-rectangle Tρ, for Lemma 1, are

ρ

Ã
n∑
j=1

λi−1
j λ̄i−1

j ∀i = 1, . . . , n,

and then the proof.
Corollary 1: If the eigenvalues of E are distinct, with

negative real part and with magnitude ‖λi‖ = M,∀i =
1, . . . , n, and it is desired to assign ε̄1 and ε̄2, a non-
conservative choice of ρ and M is

ρ =
ε̄1√
n

M =
ε̄2
ε̄1
.

Furthermore, if the eigenvalues of E have magnitude M
and relative phase shift of π/n (Butterworth eigenvalues)
then ε converges into Tρ in a time not greater than

tc = ln
σ

ρ

Å
M cos

π(n− 1)
2n

ã−1

(15)

V. DISCUSSION

The control algorithm provides the following character-
istics
• It guarantees the plant’s output to practically track

a given sufficiently regular reference trajectory with
prefixed maximum values of the tracking error and its
derivatives up to the order of the plant minus one.

• It is robust with respect to disturbances and uncertain
parameters, and then the knowledge of the plant and
of the disturbance does not need to be accurate.

This is obtained choosing a control signal depending on
three quantities (see Fig. 1):

1) the value V of a suitable Lyapunov function, in order
to decide the switching time;

2) the value v of a linear function of the tracking error
and of its derivatives, in order to decide if the level
must be the nearest admissible level to the nominal
control for excess or defect;

3) the value w of deviation from the ideal error model,
in order to decide the level of the control signal.

Remark 3: If the coefficients ai(p, t), b(p, t) and the
disturbance d(p, t) dependence on the parameter p is multi-
linear and ℘p is an hyper-rectangle, then bUc and dUe in
(13) will be always in correspondence of vertices of ℘p (see
[5]).

Remark 4: It should be noted that there can be sliding
motion over S = {ε ∈ Rn : v = 0}, but it will stop as soon
as ε touches Sρ. This event will happen in a finite time
since the derivative of the Lyapunov function V is negative
along S (see Remark 2).

Remark 5: In the hypothesis of possible sliding on S , if
the initial part of the reference trajectory is chosen such that
ε(0) ∈ Sρ then the evolution of ε will be always contained
in Sρ and therefore the control signal will never chatter. If,
for example, the plant has the following initial conditions

y(0) = y0, y
(i)(0) = 0 ∀i = 1, . . . , n− 1,

it is possible to avoid the chattering by choosing the initial
part of the reference signal such that

|ŷ(0)− y0| <
ρ
√
p11

, ŷ(i)(0) = 0 ∀i = 1, . . . , n− 1,

where p11 is the (1, 1)-element of P .

VI. MULTI-VALUED CONTROL

The Theorem 1 is valid even if the control signal may
assume only a finite number l of levels

u− = u1 < u2 < · · · < ul = u+

and, in particular, also only two levels (the classical levels
of the relay controller). As regards the steady-state tracking
error and the convergence velocity, it is possible to use
levels ”greater” than the ones provided by (13), e.g. only the
extreme levels. The intermediate levels are useful to reduce
the amplitude of the control signal (and often the power
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peaks) and the average switching frequency. This is due to
the fact that using the levels provided by (13), the escape
velocity from Sρ diminishes.

Moreover, note that the control signal’s amplitude and
switching frequency increase as the parameters uncertainties
increase (see (13)). Such inconvenient can be reduced
identifying the plant parameters.

Remark 6: It is easy to prove that, if the plant has order
one and ℘u = {U−, U+}, the controller of Theorem 1
becomes a classical relay control with hysteresis ρ.

A. Numerical examples

Consider the nominal linear plant

ÿ + ẏ + y = u

with a control input that may assume only values in

℘u =
{
−1.2 −0.6 0.0 +0.6 +1.2

}
.

We want to impose a steady-state tracking error

|ε1| ≤ ε̄1 = 0.05, |ε2| ≤ ε̄2 = 0.05.

Following the Theorem 1, we designed a controller by
selecting Butterworth eigenvalues for E, with M = 1 and
ρ = 0.05/

√
2. With this controller we consider two cases

illustrating the theory.
1) Reference signal ŷ(t) = 1 and initial conditions

y(0) = 0.5, ẏ(0) = 0: In Figs. 2 and 3 the output y,
the control u and the error ε are shown. It can be noted that
there is an infinitely fast switching of the control signal in
the transient because ε slides on v(ε) = 0. However, when
ε enters Sρ the control signal switches only whenever ε
reaches a boundary point.

Consequently, the proposed control law performs better
than the classical sliding mode control, since the phe-
nomenon of chattering is disallowed after the convergence
time tc is reached; such time can be imposed in advance by
using the (15). Observe, moreover, that the tc value given
by (15) results 3.75s and it results a good estimation of the
real value 3.44s.

2) Reference signal ŷ(t) = cos(0.5t) and initial condi-
tions y(0) = 0.97, ẏ(0) = 0: Figs. 4 and 5 show that there
is not infinitely fast switching of the control signal because
ε is always contained in Sρ. This is in accordance with
Remark 5.

Moreover, it is interesting to note that, considering only
the extreme values of the control

℘u = { −1.2 +1.2 },

the output remains practically identical to the one shown in
Fig. 4, while there is a consistent increase in the average
switching frequency of the control signal (see Fig. 6). This
last experiment shows how using intermediate values of the
control signal allows reducing the switching frequency and
the power peaks.
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Fig. 2. Output and control signals. Case A.
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Fig. 3. Tracking error. Case A.
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Fig. 4. Output and control signals. Case C.
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Fig. 5. Tracking error. Case C.
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Fig. 6. Control signal if there are available only the extreme values. Case
C.

VII. CONCLUSION

In this paper a new methodology for the design of control
laws with multi valued control signals has been presented.
This methodology allows designing controllers which guar-
antee the practical tracking of sufficiently regular reference
trajectories for SISO linear plants subject to disturbances
and parametric uncertainties.

The formulated theorems allow imposing prescribed max-
imum limits at the convergence time, the tracking error and
its derivatives, limiting or deleting the sliding mode.

A simple example has been presented to put on evi-
dence the advantages obtained using the proposed method,
compared to either sliding mode and classical relay control
approaches. Microcontroller implementations of the control
law have been developed and applied in different practical
applications, such as the ceramic kiln control described in
[4].
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