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Abstract— This paper studies the passivity properties of
three recently reported repetitive schemes [1], [2]. They are
referred as negative feedback, positive feedback and 6� ± 1
repetitive compensators. The first two controllers are composed
of a feedback array of a single delay line, while the third
controller comprises the feedback array of two delay lines.
As most repetitive schemes, these three schemes are intended
for the compensation or tracking of period signals, which are
composed of harmonic components of a fundamental frequency.
In particular, the negative feedback scheme is aimed for
the compensation of odd-harmonic components, the positive
feedback scheme for the compensation of all harmonics, and the
6�±1 scheme for the compensation of 6�±1 (� = 0, 1, 2, ...,∞)
harmonics. It is shown here that all three schemes have also
equivalent expressions in terms of hyperbolic functions. The
main contribution of the present work is to show that these
three schemes are discrete-time positive real and thus passive.
Moreover, it is shown that, after a a modification, motivated
by practical issues, these schemes become strictly passive.

I. INTRODUCTION

Recently, two novel repetitive schemes have been proposed
in [1] aimed to compensate for selected harmonics of peri-
odic disturbances. These schemes, in contrast to conventional
repetitive schemes [3]-[7], include a feedforward path aimed
to enhance their selectivity. Moreover, it was also introduced
a negative feedback scheme, which differs from the usual
positive feedback used in conventional schemes. A similar
scheme using negative feedback can also be found in [8].
An interesting observation in the present work is that these
schemes, owning such a particular structure, have equivalent
representations in terms of hyperbolic functions. In particu-
lar, the negative feedback plus the feedforward scheme can
be expressed as a hyperbolic tangent function, while the
positive feedback scheme can be expressed as a hyperbolic
cotangent function.

In [2] a new scheme aimed for the compensation of the
6� ± 1 (� = 0, 1, 2, ...,∞) harmonics has been proposed.
This scheme is composed of a feedback array of two delay
lines plus a feedforward path. As in the previous cases, this
scheme has also an equivalent representation in terms of
hyperbolic functions.

As most repetitive schemes, the three schemes studied
here, are intended for the tracking or rejection of periodic sig-
nals, that is, for the compensation of harmonic components of
the fundamental frequency, which is referred along the paper
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as ω0. It has been shown in [1] that, based on the fact that
the negative feedback (hyperbolic tangent) scheme creates
imaginary poles at odd multiples of the fundamental, then it
is able to compensate odd harmonics only (see also [8]). It
is shown also that the positive feedback scheme (hyperbolic
cotangent) creates poles at every single multiple of the
fundamental frequency, therefore, it is able to compensate
every (even and odd) harmonics. On the other hand, it is
shown in [2] that the third repetitive scheme, creates poles
at every 6� ± 1 (� = 0, 1, 2, ...,∞) multiples of ω0, and
thus, it is able to compensate the 6� ± 1 (� = 0, 1, 2, ...∞)
harmonics only. This scheme is of particular interest in
industrial applications where many processes involve the use
of six pulse converters producing harmonics at multiples
6� ± 1 (� = 0, 1, 2, ...∞) of the fundamental line frequency
[13]. It has been shown also that the introduction of the
feedforward path in the above schemes creates an infinite set
of zeros which are located between every two consecutive
poles. The last has the advantage of enhancing the controller
selectivity, a characteristic very well appreciated in harmonic
distortion compensation.

This paper studies the passivity properties of these three
schemes, each scheme is studied in a separate section. It
is shown that all of three scheme are discrete-time positive
real (PR) and thus passive. Moreover, it is shown that all
these scheme become strictly passive after a modification
that allows, in principle, a more practical implementation.

II. PASSIVITY PROPERTIES OF THE NEGATIVE FEEDBACK

(HYPERBOLIC TANGENT) COMPENSATOR

Before proceeding with the study of the passivity prop-
erties of this scheme, it is important to remark that we are
faced with infinite-dimensional delay-differential equations
to which the standard tools cannot be applied directly. In
[9] the authors show that, several reported statements of
positive-real (PR) discrete-time transfer functions are not
completely correct, and then presented a lemma that gave the
correct conditions for a system to be discrete-time passive,
or equivalently discrete-time PR. This lemma is recalled here
below for completeness, as well as a lemma taken from [10]
which are the basis for our stability study.

Lemma II.1 (Discrete-time PR) Consider an LTI discrete-
time system

y(kτd) +
nD∑
i=1

Diy(kτd − iτd) =
nN∑
�=0

N�u(kτd − �τd)
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with τd ∈ R+, k ∈ Z+, D�, N� ∈ R, nN ≤nD. Assume the
associated discrete-time transfer function

H(eτds) =
∑nN

�=0 N�e
−�τds

1 +
∑nD

i=1 Die−iτds
(1)

is discrete-time PR, that is, it satisfies
(i) H(eτds) is analytic in |eτds|>1.
(ii) All poles of H(eτds) on |eτds| = 1 are simple.
(iii) Re{H(ejθ)} ≥ 0 for all θ ∈ R at which H(ejθ) exists.
(iv) If ejθ0 , θ0 ∈ R is a pole of H(eτds), and if r0 is the
residue of H(eτds) at eτds = ejθ0 , then e−jθ0r0 ≥ 0.

Then the system is discrete-time passive, that is, there
exists β0 ∈ R such that

N∑
k=0

y(kτd)u(kτd) ≥ β0

for all input sequences u(kτd) ∈ L2 and all N ∈ Z+

�

Lemma II.2 (Passivity of continuous-time delayed syst.)
Consider an LTI continuous-time system described by the
delay equation

y(t) +
nD∑
i=1

Diy(t − iτd) =
nN∑
�=0

N�u(t − �τd)

with τd, t ∈ R+, D�, N� ∈ R, nN ≤ nD. Assume the
discrete-time transfer function (1) is discrete-time PR. Then,
the system is passive, that is, there exists β1 ∈ IR such that∫ t

0

y(τ)u(τ)dτ ≥ β1

for all input functions u(t) ∈ L2 and all t ∈ R+.
�

The following expressions for the negative feedback (hy-
perbolic tangent) compensator have been taken from [1]

tanh

(
sπ

2ω0

)
=

cosh( sπ
2ω0

)
sinh( sπ

2ω0
)

=
e

sπ
2ω0 + e

− sπ
2ω0

e
sπ
2ω0 − e−

sπ
2ω0

=
1 − e

− sπ
ω0

1 + e−
sπ
ω0

(2)
The block diagram of the previous expression involving

a single delay line is presented in Fig. 1. This scheme is
referred as the negative feedback plus feedforward repetitive
compensator.

This repetitive scheme has the following equivalent ex-
pression that exhibits its infinite dimensionality.

tanh

(
sπ

2ω0

)
=

sπ
2ω0

∏∞
k=1

(
s2

(2k)2ω2
0

+ 1
)

∏∞
k=1

(
s2

(2k−1)2ω2
0

+ 1
) (3)

Notice that, the poles are located at odd multiples of ω0,
while the zeros are located at the even multiples. Therefore,
this scheme is also referred as the odd harmonics compen-
sator. The frequency response is composed of resonant peaks
of infinite magnitude located at the odd multiples of ω0 due
to the poles, and notches at even multiples due to the zeros.

Moreover, this scheme has also the following expression
in the form of an infinite bank of harmonic oscillators tuned
at odd harmonics of ω0

tanh

(
sπ

2ω0

)
=

ω0

π

∞∑
�=1

4s

s2 + (2� − 1)2ω2
0

(4)

The delay time required for the implementation of this
scheme is given by τd = π

ω0
, which will be used on the rest

of this section to reduce the notation.

Proposition II.3 The hyperbolic tangent scheme given by
(2) is discrete-time PR and thus passive. �

Proof: Rewriting (2) in terms of the delay time τd yields

H(eτds) = tanh
(τds

2

)
=

1 − e−τds

1 + e−τds
=

eτds − 1
eτds + 1

The partial fraction expansion of this expression gives

H(eτds) = 1 − 2
eτds + 1

hence the transfer function satisfies conditions (i) and (ii)
of Lemma II.1. The residue associated with the fixed pole
at e−jθ0 = −1 is r0 = −2, and thus condition (iv)
is satisfied. Finally, some simple computations prove that,
Re{H(ejθ)} = Re{ j sin(θ)

1+cos(θ)} = 0, thus fulfilling condition
(iii). This proves that the hyperbolic tangent scheme is
discrete-time PR and, according to Lemma II.2, it is passive.

�
In [1] a gain K is included as follows.

1 − Ke−τds

1 + Ke−τds
(5)

The aim of this practical modification is to prevent high gains
in the resonance peaks and to enhance the robustness with
respect to frequency variations. In fact, the peaks, originally
of infinite magnitude, reach a maximum magnitude of 1+K

1−K

while the notches reach a minimum magnitude of 1−K
1+K .

This modification can also be seen as a frequency shifting
process H̃(s) = H(s+a). Direct application of this shifting
process to the exponential term results in e−τd(s+a) =
e−τdae−τds. In other words, by proposing a gain factor
K = e−τda we obtain

1 − Ke−τds

1 + Ke−τds
=

1 − e−τd(s+a)

1 + e−τd(s+a)
=

e−
τd(s+a)

2 − e−
τd(s+a)

2

e−
τd(s+a)

2 + e−
τd(s+a)

2

=
sinh

(
τd(s+a)

2

)
cosh

(
τd(s+a)

2

) = tanh

(
τd(s + a)

2

)

Therefore, if a gain K >1 is proposed, the poles and zeros
move to the right, while if 0<K <1 is proposed then they
move to the left.

The following definition has been extracted from [11] and
is used here to prove that the modified proposed scheme is
strictly positive real (SPR).
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Definition II.4 A transfer function G(s) is SPR if and only
if there exists some ε>0 such that G(s − ε) is PR.

Proposition II.5 The modified scheme (5) with 0 < K < 1
is SPR and thus strictly passive. �

Proof: According to Definition II.4, it should be proved
that, there exists an ε>0 such that

1 − Ke−τd(s−ε)

1 + Ke−τd(s−ε)
(6)

is positive real (∈ {PR}).
First, let us select ε = a where a = −τd ln(K). Notice

that, a>0 as far as 0<K <1. Second, consider K = e−τda,
as defined above, which, after direct substitution, reduces
expression (6) to tanh

(
τds
2

)
. The proof is completed by

recalling that, tanh
(

τds
2

)
is PR according to Proposition II.3.

�
Figure 2 shows that, the Nyquist plot of scheme (5)

is a circle with radius 2K
1−K2 and center 1+K2

1−K2 , which is
strictly contained in the right hand side of the complex plane
(Re{s}>0). The last can be easily seen from the rectangular
representation of tanh( jωτd

2 ) given by

tanh

(
jωτd

2

)
=

1 − Ke−jωτd

1 + Ke−jωτd
=

1 − K2

1 + K2 + 2K cos(ωτd)
+ j

2K sin(ωτd)
1 + K2 + 2K cos(ωτd)

U(s) Y(s)

feedback feedforward
3jω0

2jω0

jω0

-jω0

-2jω0

-3jω0

negative
feedback

sπ
ω0

-e

Fig. 1. Continuous-time model and poles/zeros location of the negative
feedback (odd harmonics) repetitive compensator with feedforward.

Notice that, the maximum 1+K
1−K and minimum 1−K

1+K mag-
nitudes occur whenever the imaginary part is zero, and sub-
sequently, with zero phase shift, that is, at ωτd = (2�− 1)π
and ωτd = 2�π (� = 1, 2, 3, ...,∞), respectively, which
correspond to ω = (2�−1)ω0 (odd multiples) and ω = 2�ω0

(even multiples). Figure 3 shows the frequency response of
this modified scheme for different values of K . Notice that,
the introduction of gain K does not cause a shifting of the
resonance peaks nor of the notches.

 Im

Re

1+K

1+K 1−K

1−K

1+K2

1−K2

Fig. 2. Nyquist plot of the negative feedback (odd harmon-
ics) compensator including a modification with a gain K , i.e.,`
1 − Ke−τds

´
/

`
1 + Ke−τds

´
.
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Fig. 3. Bode plot of the negative feedback (odd harmonics) modified
compensator, i.e.,

`
1 − Ke−τds

´
/

`
1 + Ke−τds

´
for different values of

gain K: 0.5, 0.75 and 0.95.

III. PASSIVITY PROPERTIES OF THE POSITIVE FEEDBACK

(HYPERBOLIC COTANGENT) REPETITIVE COMPENSATOR

In what follows we consider the positive feedback (hyper-
bolic cotangent) repetitive scheme, which is described by the
following expressions taken from [1]

cotanh

(
sπ

ω0

)
=

cosh( sπ
ω0

)
sinh( sπ

ω0
)

=
e

sπ
ω0 + e−

sπ
ω0

e
sπ
ω0 − e

− sπ
ω0

=
1 + e−

2sπ
ω0

1 − e
− 2sπ

ω0

(7)
Its block diagram is presented in Fig. 4. This scheme is

referred as the positive feedback plus feedforward repetitive
compensator. This scheme has the following equivalent
expression involving an infinite number of poles and zeros.

cotanh

(
sπ

ω0

)
=

∏∞
�=1

(
s2

( 2�−1
2 )2

ω2
0

+ 1
)

sπ
ω0

∏∞
�=1

(
s2

�2ω2
0

+ 1
) (8)

Notice that, the poles located at every single multiple of
ω0, while the zeros are located exactly in the middle point
between every two consecutive poles as shown in Fig. 4.
Therefore, this scheme is also referred as all harmonics
repetitive compensator.

Similar to the odd harmonics compensator, damping can
be added in the form of gain 0<K <1 to limit the resonance
peak gains. The Bode plot for different values of K is shown
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in Fig. 5. The Nyquist plot for the positive compensator is the
same as for the negative feedback compensator. See figure
6.

U(s) Y(s)

jω0

-jω0

2jω0

-2jω0

1.5j ω0

0.5j ω0

-0.5j ω0

-1.5j ω0

feedback feedforward

positive
feedback

2sπ
ω0

-e

Fig. 4. Continuos-time model and poles/zeros location of the positive
feedback (all harmonics) compensator with feedforward.
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Fig. 5. Bode plot of the positive feedback (all harmonics) modified
compensator, i.e.,

`
1 + Ke−τds

´
/

`
1 − Ke−τds

´
for different values of

gain K: 0.5, 0.75 and 0.95..

In [12] it is shown that, Z(s) is PR if and only if 1/Z(s) is
PR. And also that, Z(s) is SPR iff 1/Z(s) is SPR. According
to this statements and based on the fact that cotanh(·) =
1/ tanh(·), it is straightforward to establish the validity of
the following corollaries. The time delay required for the
implementation of this scheme is given by τd = 2π

ω0
, which

will be used on the rest of this section to reduce the notation.

Corollary III.1 The hyperbolic cotangent scheme given by
(7) is PR and thus passive.

�

Corollary III.2 The modified scheme

1 + Ke−τds

1 − Ke−τds
(9)

with 0<K <1 is SPR and thus strictly passive.
�

In fact the modified scheme can also be written as
cotanh

(
τd(s+a)

2

)
with a = − 2

τd
ln(K), and taking 0<K <

1 the poles and zeros are shifted to the left of the imaginary
axis in the complex plane (Re{s}<0).

 Im

Re

1+K

1+K 1−K

1−K

1+K2

1−K2

Fig. 6. Nyquist plot of the positive feedback (all harmon-
ics) compensator including a modification with a gain K , i.e.,`
1 + Ke−τds

´
/

`
1 − Ke−τds

´
.

U(s) Y(s)

sπ
3ω 0

-e

sπ
3ω0

-e

3jω0

5jω0

jω0

-jω0

-3jω0

-5jω0

7jω0
6jω0

-6jω0
-7jω0

feedback feedforward

Fig. 7. Continuous-time model and poles/zeros location of the 6�±1(� =
0, 1, 2, 3, ...) repetitive compensator with feedforward.

IV. PASSIVITY PROPERTIES OF THE 6�± 1 COMPENSATOR

Finally, the 6� ± 1 (� = 0, 1, 2, 3, ...,∞) scheme is
studied. This last compensator is described by the following
expression

H(s) =
1 − e−

2sπ
3ω0

1 + e−
2sπ
3ω0 − e−

sπ
3ω0

(10)

Its block diagram is presented in Fig. 7. This scheme is
referred as the 6� ± 1 repetitive compensator. The scheme
has the following equivalent expression which involves an
infinite number of poles and zeros.

H(s) =
e

sπ
3ω0 − e−

sπ
3ω0

e
sπ
3ω0 + e

− sπ
3ω0 − 1

=
2 sinh( sπ

3ω0
)

2 cosh( sπ
3ω0

) − 1
=

=
sπ
3ω0

∏∞
�=1(

s2

(3l)2ω2
0

+ 1)∏∞
�=−∞( s2

(6l+1)2ω2
0

+ 1)

where it is easy to see that the transfer function comprises an
infinite number of poles located at ±j(6�+1)ω0 and ±j(6�−
1)ω0 (� = 0, 1, 2, 3, ...,∞). Moreover, it also contains an
infinite number of zeros located at ±j3�ω0.

Proposition IV.1 The 6�±1 repetitive scheme given by (10)
is discrete-time PR and thus passive. �

Proof: Rewriting (10) in terms of the time delay τd = π
3ω0

(used along this section to simplify the notation) yields
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H(eτds) =
1 − e−2τds

1 + e−2τds − e−τds
=

e2τds − 1
e2τds − eτds + 1

(11)

The partial fraction expansion of this expression gives

H(eτds) = 1 +
eτds − 2

e2τds + 1 − eτds

= 1 +
1
2

(
1 +

√
3i

eτds − e
iπ
3

+
1 −√

3i

eτds − e
−iπ
3

)
(12)

Hence, the transfer function satisfies conditions (i) and
(ii) of Lemma II.1. For (iii) it is found that Re{H(ejθ)} =
Re{ j2 sin(θ)

−1+2 cos(θ)} = 0. For the last condition, the two residues

are given by r1 = 1
2 +

√
3

2 i and r2 = 1
2 −

√
3

2 i, and the poles
corresponding to each residue are θ1 = π

3 and θ2 = −π
3 ,

respectively. Then e−jθ1r1 = 1 and e−jθ2r2 = 1 and the
condition is fulfilled. This proves that, the 6�± 1 scheme is
discrete-time PR and, according to Lemma II.2, it is passive.

�
Similar to previous cases, with the aim to prevent high

gains in the resonance peaks and to enhance the robustness
with respect to frequency variations, a gain K is included
multiplying each delay line. This yields the following mod-
ified expression

H(eτds) =
1 − K2e−2τds

1 + K2e−2τds − Ke−τds
(13)

In fact, the peaks, originally of infinite magnitude, reach
a maximum magnitude of

M1 = M2 =

√
6K2 + 2

√
3
√

1 + K4 + K8

3(−1 + K2)2
(14)

and the notches reach either of the following two minimum
magnitudes

m1 =
1 − K2

1 + K + K2
(15)

m2 =
1 − K2

1 − K + K2
(16)

This modification can also be seen as a frequency shifting
process of the form H̃(s) = H(s + a). Direct application
of this shifting process to the exponential term results in
e−τd(s+a) = e−τdae−τds. In other words, by proposing a
gain factor K = e−τda we obtain

1 − K2e−2τds

1 + K2e−2τds − Ke−τds
=

1 − e−2τd(s+a)

1 + e−2τd(s+a) − e−τd(s+a)
=

eτd(s+a) − e−τd(s+a)

eτd(s+a) + e−τd(s+a) − 1
=

2 sinh (τd(s + a))
2 cosh (τd(s + a)) − 1

Therefore, if a gain K >1 is proposed, the poles and zeros
move to the right, while if 0<K <1 is proposed then they
move to the left.

Proposition IV.2 The modified scheme (13) with 0<K <1
is SPR and thus strictly passive. �

Proof: According to Definition II.4, it should be proved
that, there exists an ε>0 such that

1 − K2e−2τd(s−ε)

1 + K2e−2τd(s−ε) − Ke−τd(s−ε)
(17)

is positive real (∈ {PR}).
First, let us select ε = a where a = −τd ln(K).

Notice that, ε = a > 0 as far as 0 < K < 1. Second,
consider K = e−τda as defined above, which, after direct
substitution, reduces expression (17) to 2 sinh(τds)

2 cosh(τds)−1
. The

proof is completed by recalling that, 2 sinh(τds)

2 cosh(τds)−1
is PR

according to Proposition IV.1.
�
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Fig. 8. Nyquist plot of the 6�±1(� = 0, 1, 2, ..), harmonics compensator.

Figure 8 shows that the Nyquist plot of scheme (13) goes
from a flattened circle for 0 < K <

√
2

10 to a cardioid for√
2

10 < K < 2 − √
3. Then, for 2 − √

3 < K < 1 the Nyquist
plot becomes a limaon that approaches a circle of arbitrarily
large radium as K gets closer to 1. It is clear that the range
of interest lies in values of K slightly smaller than 1, i.e.,
when the Nyquist plot corresponds to a limaon. Notice that,
the Nyquist plot is strictly contained in the right hand side
of the complex plane (Re{s} > 0), as established by (15),
that is, m1 > 0 and m2 > 0 as far as 0<K <1.

It is important to remark that, the maximum magnitudes
(in the resonance peaks) does not occur exactly when the
imaginary part equals zero, as a consequence, a small phase
shift appears as it can be observed in Fig. 9. Another effect of
the introduction of gain K is that the resonance peak occurs
at ω = (6n±1)ω0±

[√
3

π
(K−1)2

2

]
ω0. which has been slightly

shifted with respect to ω = (6n±1)ω0. However, it should be
noticed that this difference between the expected frequency,
and the one obtained after introduction of gain K , tends to
zero as K gets closer to one.
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Fig. 9. Bode plot of the modified 6� ± 1 compensator, i.e.,`
1 − K2e−2τds

´
/

`
1 + K2e−2τds − Ke−τds

´
for different values of

gain K: 0.5, 0.75 and 0.95.

In the case of the zeros, all minimum magnitudes occur
when the imaginary part is zero, and subsequently, with zero
phase shift. Moreover, the minimums occur exactly at ωτd =
�π, which corresponds to ω = 3�ω0 (� = 0, 1, 2, ...,∞).

V. CONCLUDING REMARKS

This paper presented a study of the passivity properties
of three repetitive schemes recently reported in literature.
These schemes were referred as negative feedback (odd
harmonics) compensator, positive feedback (all harmonics)
compensator, and 6� ± 1 harmonics compensator. It was
shown that all of them are discrete time positive real, and
thus passive. Moreover, it was shown that introducing a
suitable damping, which turned out to be equivalent to a
pole/zero shifting, all these schemes become strictly passive.
Frequency responses are presented that showed the harmonic
compensation capabilities of these schemes.
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