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Abstract— In this paper, the optimal filtering problem for
linear systems with multiple state and observation delays is
treated using the optimal estimate of the state transition matrix.
As a result, the alternative optimal filter is derived in the form
similar to the traditional Kalman-Bucy one, i.e., consists of only
two equations, for the optimal estimate and the estimation error
variance. This presents a significant advantage in comparison to
the previously obtained optimal filter [1], which includes infinite
or variable number of covariance equations, unboundedly
growing as the filtering horizon tends to infinity. Performances
of the two optimal filters are compared in example; the obtained
results are discussed.

I. INTRODUCTION

The optimal filtering problem for linear system states and

observations without delays was solved in 1960s [2], and this

closed form solution is known as the Kalman-Bucy filter.

However, the related optimal filtering problem for linear

states with delay has not been solved in a closed form,

regarding as a closed form solution a closed system of a

finite number of ordinary differential equations for any finite

filtering horizon. The optimal filtering problem for time delay

systems itself did not receive so much attention as its control

counterpart, since most of the research was concentrated on

the filtering problems with observation delays (the papers

[3], [4], [5] could be mentioned to make a reference). A

few particular cases, the optimal filtering problems for linear

systems with state delay and/or multiple observation delays,

have recently been solved in [6], [7], [8], [9], [1]. A Kalman-

like estimator for linear systems with observation delay

has recently been designed in [10]. The optimal filter for

linear systems with multiple state and observation delays,

derived in [1], has solved the same filtering problem as

the present paper. However, that solution is not free of

computational disadvantages: it includes a variable number

of covariance equations, which unboundedly grows as the

filtering horizon tends to infinity, and the structure of the

covariance equations also varies with the number. There

also exists a considerable bibliography related to the robust

control and filtering problems for time-delay systems (such

as [11]–[22]). A number of papers, published in 1970s, were

dedicated to some particular optimal filtering problems for
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time-delay systems (see [23]). Comprehensive reviews of

theory and algorithms for time delay systems are given in

[24]–[30].

In this paper, the optimal filtering problem for linear

systems with multiple state and observation delays is treated

using the optimal estimate of the state transition matrix from

the current time moment to the delayed ones. In doing so, the

employed method closely resembles the well-known Smith

predictor approach [31] (see [32] for more research on this

resemblance). As a result, the optimal filter is derived in

the form similar to the traditional Kalman-Bucy one, i.e.,

consists of only two equations, for the optimal estimate

and the estimation error variance. This presents a significant

advantage in comparison to the previously obtained optimal

filter [1] consisting of the infinite number of covariance

equations in the general case of non-commensurable delays,

or a variable number of covariance equations, which un-

boundedly grows as the filtering horizon tends to infinity,

in some particular cases. It should be further emphasized

that, in contrast to the previously obtained results [6], [7],

[8], [9], [1], this paper designs the optimal mean-square

finite-dimensional filter for linear time-delay systems with

arbitrary, even non-commensurable delays, in both state and

observation equations.

Note that the approach based on the optimal estimation

of the state transition matrix would be applicable to any

system of state and observation equations with time delays,

where the the optimal estimate of the state transition matrix

is uncorrelated with the estimation error variance, including

certain classes of nonlinear systems. The obtained results

remain valid, if the time-delays in both state and obser-

vation equations are time-varying but non-random; neither

design method, nor optimal filtering equations themselves are

changed. However, if some system parameters are uncertain,

application of joint optimal state filtering and parameter

identification methods is needed.

Finally, performance of the designed alternative optimal

filter for linear systems with multiple state and observation

delays is compared in the illustrative example with the per-

formance of the optimal filter obtained in [1]. The simulation

results show an insignificant difference in values of the

obtained estimates for both filters at the final simulation time.

The paper is organized as follows. Sections 2 and 3 present

the filtering problem statement for a linear system with

multiple state and observation delays and its solution, respec-

tively. In Section 4, performance of the obtained alternative

optimal filter for linear systems with with multiple state

and observation delays is verified in the illustrative example
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against the optimal filter obtained in [1]. The simulation

results are discussed in Conclusion.

II. FILTERING PROBLEM FOR LINEAR SYSTEMS WITH

MULTIPLE STATE AND OBSERVATION DELAYS

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ 0,

and let (W1(t),Ft , t ≥ 0) and (W2(t),Ft , t ≥ 0) be independent

Wiener processes. The partially observed Ft -measurable ran-

dom process (x(t),y(t)) is described by a delay differential

equation for the system state

dx(t) = (
p

∑
i=0

ai(t)x(t −hi))dt +b(t)dW1(t), x(t0) = x0, (1)

with the initial condition x(s) = φ(s), s ∈ [t0 − h, t0], h =
max(h1, . . . ,hp), and a delay differential equation for the

observation process

dy(t) = (
q

∑
j=0

A j(t)x(t − τ j))dt +B(t)dW2(t), (2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the ob-

servation process, h0 = τ0 = 0, and φ(s) is a mean square

piecewise-continuous Gaussian stochastic process (see [33]

for definition) given in the interval [t0 −h, t0] such that φ(s),
W1(t), and W2(t) are independent. The system state x(t)
dynamics and the observations y(t) depend on the current

state x(t), as well as on a bunch of delayed states x(t −hi)
and x(t − τi), hi > 0, τi > 0, i = 1, . . . , p, j = 1, . . . ,q, which

actually make the system state space infinite-dimensional

(see, for example, [26]). The vector-valued function a0(s)
describes the effect of system inputs (controls and distur-

bances). It is assumed that at least one of the matrices

A j(t) is not zero matrix, and B(t)BT (t) is a positive definite

matrix. All coefficients in (1)–(2) are deterministic functions

of appropriate dimensions.

The estimation problem is to find the best estimate of the

system state x(t) based on the observation process Y (t) =
{y(s),0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[z(t) | FY
t ] means the

conditional expectation of a stochastic process z(t) = (x(t)−
x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra FY

t gener-

ated by the observation process Y (t) in the interval [t0, t]. As

known [33], this optimal estimate is given by the conditional

expectation

x̂(t) = m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t

generated by the observation process Y (t) in the interval

[t0, t]. The matrix functions

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ],

that is the estimation error variance, and

P(t, t − t1) = E[(x(t)−m(t))(x(t − t1)−m(t − t1))
T | FY

t ],

that is the covariance between the estimation error values at

different time moments, P(t, t) = P(t), are used to obtain a

system of filtering equations.

The proposed solution to this optimal filtering problem

is based on the formulas for the Ito differential of the

conditional expectation E(x(t) | FY
t ) and its variance P(t)

(cited after [33]) and given in the following section.

III. ALTERNATIVE OPTIMAL FILTER FOR LINEAR

SYSTEMS WITH MULTIPLE STATE AND OBSERVATION

DELAYS

The optimal filtering equations can be obtained using the

formula for the Ito differential of the conditional expectation

m(t) = E(x(t) | FY
t ) (see [33])

dm(t) = E(ϕ(x) | FY
t )dt +E(x[ϕ1 −E(ϕ1(x) | FY

t )]T | FY
t )×

(3)
(

B(t)BT (t)
)−1

(dy(t)−E(ϕ1(x) | FY
t )dt),

where ϕ(x) is the drift term in the state equation equal to

ϕ(x) = a0(t)+∑
p
i=0 ai(t)x(t −hi) and ϕ1(x) is the drift term

in the observation equation equal to ϕ1(x) = ∑
q
j=0 A j(t)x(t−

τ j). Note that the conditional expectation equality E(x(t−h) |
FY

t ) = E(x(t − h) | FY
t−h) = m(t − h) is valid for any h > 0,

since, in view of a positive delay shift h > 0, the treated

problem (1),(2) is a filtering problem, not a smoothing one,

and, therefore, the formula (3) yields the optimal estimate

m(s) for any time s, t0 < s ≤ t, if the observations (2) are

obtained until the current moment t (see [33], [8]). Upon

performing substitution of the expressions for ϕ and ϕ1

into (3) and taking into account the conditional expectation

equality, the estimate equation takes the form

dm(t) = (
p

∑
i=0

ai(t)m(t −hi))dt+

E(x(t)[
q

∑
j=0

A j(t)(x(t − τ j)−m(t − τ j))]
T | FY

t )×

(B(t)BT (t))−1(dy(t)− (
q

∑
j=0

A j(t)m(t − τ j)dt)) =

(
p

∑
i=0

ai(t)m(t −hi))dt+

(
q

∑
j=0

E([x(t)−m(t)][x(t − τ j)−m(t − τ j)]
T | FY

t )AT
j (t))×

(B(t)BT (t))−1(dy(t)− (
q

∑
j=0

A j(t)m(t − τ j)dt)) =

(
p

∑
i=0

ai(t)m(t −hi))dt+ (4)

(
q

∑
j=0

P(t, t − τ j)A
T
j (t))(B(t)BT (t))−1×

(dy(t)− (
q

∑
j=0

A j(t)m(t − τ j))dt),
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where P(t, t − τ j) = E[(x(t)−m(t))(x(t − τ j)−m(t − τ j))
T |

FY
t ].

To compose a system of the filtering equations, the equa-

tions for the conditional expectations E([x(t)−m(t)][(x(t −
hi) − m(t − hi))]

T | FY
t ), i = 0, . . . , p, and E([x(t) −

m(t)][(x(t − τ j)−m(t − τ j))]
T | FY

t ), j = 0, . . . ,q, should be

obtained. This can be done using the equation (1) for the

state x(t), the equation (4) for the estimate m(t), and the

formula for the Ito differential of a product of two processes

satisfying Ito differential equations (see [33]):

d(z1zT
2 ) = z1dzT

2 +(z2dzT
1 )T +(1/2)[y1νyT

2 + y2νyT
1 ]dt. (5)

Here, the stochastic process z1 satisfies the equation

dz1 = x1dt + y1dw1,

the stochastic process z2 satisfies the equation

dz2 = x2dt + y2dw2,

and ν is the covariance intensity matrix of the Wiener vector

[w1 w2]
T .

Let us obtain the formula for the Ito differential of the

general expression P(t, t − t1) = E([x(t)− m(t)][x(t − t1)−
m(t − t1)]

T | FY
t ), where t1 > 0 is an arbitrary delay, not

necessarily equal to τ . Upon representing P(t, t − t1) as

P(t, t − t1) = E([x(t)(x(t − t1))
T ] | FY

t )−m(t)m(t − t1), using

first x(t) as z1 and x(t − t1) as z2 and then m(t) as z1

and m(t − t1) as z2 in the formula (5), taking into account

independence of the Wiener processes W1 and W2 in the

equations (1) and (2), and finally subtracting the second

derived equation from the first one, the following formula

is obtained

dP(t, t − t1)/dt =
p

∑
i=0

ai(t)P(t −hi, t − t1)+ (6)

p

∑
i=0

P(t, t − t1 −hi)a
T
i (t − t1)+

(1/2)[b(t)bT (t − t1)+b(t − t1)b
T (t)]−

(1/2)[(
q

∑
j=0

P(t, t − τ j)A
T
j (t))(B(t)BT (t))−1×

B(t)BT (t − t1)(B(t − t1)B
T (t − t1))

−1×

(
q

∑
j=0

A j(t − t1)P
T (t − t1, t − t1 − τ j))−

(
p

∑
j=0

P(t − t1, t − t1 − τ j)A
T
j (t − t1))(B(t − t1)B

T (t − t1))
−1×

B(t − t1)B
T (t)(B(t)BT (t))−1(

q

∑
j=0

A j(t)P
T (t, t − τ j))].

Equating t1 = 0 in (6) yields the equation for the condi-

tional error variance P(t) = E[(x(t)−m(t))(x(t)−m(t))T |
FY

t ]

dP(t)/dt =
p

∑
i=0

ai(t)P(t −hi, t)+
p

∑
i=0

P(t, t −hi)a
T
i (t)+ (7)

b(t)bT (t)− [(
q

∑
j=0

P(t, t − τ j)A
T
j (t))×

(B(t)BT (t))−1(
q

∑
j=0

A j(t)P
T (t, t − τ j))].

Consider alternative representations for the terms P(t, t −
t1) = E((x(t)− m(t))(x(t − t1)− m(t − t1))

T | FY
t ), t1 = hi,

h = 1, . . . , p, and t1 = τ j, j = 1, . . . ,q, in the last equation.

Denote as x1(t) the solution of the equation ẋ1(t) = a0(t)+

∑
p
i=0 ai(t)x(t−hi) with the initial condition x1(t0) = x0. Then,

the solution x(t) of the equation (1) can be represented in

the form

x(t) = x1(t)+
∫ t

t0

b(s)dW1(s). (8)

Let us now introduce the matrix Φ(s, t), which would serve

as a nonlinear analog of the state transition matrix in the

inverse time. Indeed, define Φ(s, t) as a such matrix that the

equality Φ(s, t)x1(t) = x1(s), s ≤ t, holds for any t,s ≥ t0
and s ≤ t. Naturally, Φ(s, t) can be defined as the diagonal

matrix with elements equal to x1i
(s)/x1i

(t), where x1i
(t) are

components of the vector x1(t), if x1i
(t) 6= 0 almost surely.

The definition of Φ(s, t) for the case of x1i
(t) = 0 will be

separately considered below.

Hence, using the representation (8) and the notion of the

matrix Φ(s, t), the term P(t, t − t1) = E((x(t)−m(t))(x(t −
t1)−m(t − t1))

T | FY
t ) can be transformed as follows

E((x(t)−m(t))(x(t − t1)−m(t − t1))
T | FY

t ) =

E((x(t)−m(t))(x(t − t1))
T | FY

t ) =

E((x(t)−m(t))(x1(t − t1)+
∫ t−t1

t0

b(s)dW1(s))
T | FY

t ) =

E((x(t)−m(t))(x1(t − t1))
T | FY

t ) =

E((x(t)−m(t))(Φ(t − t1, t)x1(t))
T | FY

t ) =

E((x(t)−m(t))(x1(t))
T | FY

t )(Φ∗(t − t1, t))
T =

E((x(t)−m(t))(x1(t)+
∫ t−t1

t0

b(s)dW1(s))
T | FY

t )×

(Φ∗(t − t1, t))
T = E((x(t)−m(t))(x(t))T | FY

t )×

(Φ∗(t − t1, t))
T = P(t)(Φ∗(t − t1, t))

T . (9)

Here, P(t) = E((x(t)−m(t))(x(t)−m(t))T | FY
t ) is the con-

ditional error variance and Φ∗(t − t1, t) is the state transition

matrix in the inverse time for the process x∗1(t), that is the

solution of the equation ẋ∗1(t) = ∑
p
i=0 ai(t)x

∗
1(t−hi)) with the

initial condition x∗1(t0) = m0 = E(x(t0) | FY
t0

). Note that the

transition from the third to fourth line in (9) is valid in view

of independence of the conditional error variance P(t) from

both, x(t) and m(t), as it follows from the filtering equations

in [1]. This is the same situation that takes place in the

Kalman-Bucy filter [2].

Let us now define the matrix Φ(t − t1, t) in the case of

x1i
(t) = 0 almost surely for one of the components of x1(t).
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Then, the corresponding diagonal entry of Φii(t − t1, t) can

be set to 0 for any h > 0, because, for the component xi(t),

E(xi(t)(x j(t − t1)−m j(t − t1)) | FY
t ) =

E((x1i
(t)+(

∫ t

t0

b(s)dW1(s))i)×

(x j(t − t1)−m j(t − t1)) | FY
t ) =

E(x1i
(t)(x j(t − t1)−m j(t − t1)) | FY

t ) = 0,

almost surely for any j = 1, . . . ,m. Hence, the definition

Φii(s, t) = 0 for any s < t, if x1i
(t) = 0, leads to the same

result as in the equation (7) and can be employed. The

diagonal element Φ∗
ii(s, t) of the matrix Φ∗(s, t) is defined

accordingly and set to 0 for any s < t, if the corresponding

component of the process x∗1(t) is equal to zero at the moment

t, x∗1i
(t) = 0.

Thus, in view of the transformation (9), the equation (4)

for the optimal estimate takes the form

dm(t) = (
p

∑
i=0

ai(t)m(t −hi))dt+ (10)

(
q

∑
j=0

P(t)(Φ∗(t − τ j, t))
T AT

j (t))(B(t)BT (t))−1×

(dy(t)− (
q

∑
j=0

A j(t)m(t − τ j)dt),

with the initial condition m(t0) = E(x(t0) | FY
t0

).
To compose a system of the filtering equations, the equa-

tion (10) should be complemented with the equation for the

error variance P(t). In view of the transformation (9), the

equation (7) for the error variance takes the form

dP(t)/dt =
p

∑
i=0

ai(t)Φ
∗(t −hi, t)P(t)+ (11)

p

∑
i=0

P(t)(Φ∗(t −hi, t))
T aT

i (t)+

b(t)bT (t)− [(
q

∑
j=0

P(t)(Φ∗(t − τ j, t))
T AT

j (t))×

(B(t)BT (t))−1(
q

∑
j=0

A j(t)(Φ
∗(t − τ j, t))P(t))].

The equation (11) should be complemented with the initial

condition

P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)
T | FY

t0
].

By means of the preceding derivation, the following result

is proved.

Theorem 1. The optimal finite-dimensional filter for the

linear state with multiple delays (1) over the linear ob-

servations with multiple delays (2) is given by the equa-

tion (10) for the optimal estimate m(t) = E(x(t) | FY
t ) and

the equation (11) for the estimation error variance P(t) =
E[(x(t)−m(t))(x(t)−m(t))T | FY

t ].

In the next section, performance of the designed optimal

filter is verified against the optimal filter for linear systems

with multiple state and observation delays, that has recently

been obtained in [1] in the form of a set of equations for the

optimal state estimate and error covariances, whose number

is infinite in the general case of non-commensurable delays,

or grows as the current filtering horizon tends to infinity, in

some particular cases.

IV. EXAMPLE

This section presents an example of designing the alter-

native optimal filter for linear systems with multiple state

and observation delays and comparing it to the optimal filter

for linear multiple time-delay systems, that has recently been

obtained in [1].

Let the unobserved state x(t) with delay be given by

ẋ(t) = x(t −20), x(s) = φ(s), s ∈ [−20,0], (12)

where φ(s) = N(0,1) for s ≤ 0, and N(0,1) is a Gaussian

random variable with zero mean and unit variance. The

observation process is given by

y(t) = x(t)+ x(t −20)+ψ(t), (13)

where ψ(t) is a white Gaussian noise, which is the weak

mean square derivative of a standard Wiener process (see

[33]). The equations (12) and (13) present the conventional

form for the equations (1) and (2), which is actually used in

practice [34].

The filtering problem is to find the optimal estimate for the

linear state with delay (12), using the linear observations with

multiple delays (13) confused with independent and iden-

tically distributed disturbances modeled as white Gaussian

noises. The filtering horizon is set to T = 40.

The filtering equations (10),(11) take the following partic-

ular form for the system (12),(13)

ṁ(t) = m(t −20)+P(t)× (14)

(Φ∗(t −20, t)+1)[y(t)−m(t)−m(t −20)],

with the initial condition m(s) = E(φ(s)) = 0, s ∈ [−20,0),
and m(0) = E(φ(0) | y(0)) = m0, s = 0;

Ṗ(t) = 2P(t)(Φ∗(t−20, t))−P2(t)(Φ∗(t−20, t)+1)2, (15)

with the initial condition P(0) = E((x(0)−m(0))2 | y(0)) =
R0. The auxiliary variable Φ∗(t − 20, t) is equal to Φ∗(t −
20, t) = x∗(t − 20)/x∗(t), where x∗1(t) is the solution of the

equation

ẋ∗1(t) = x∗1(t −20),

with the initial condition x∗1(s) = E(φ(s)) = 0, s ∈ [−20,0),
and x∗1(0) = m0, s = 0.

The estimates obtained upon solving the equations

(14),(15) are compared to the estimates satisfying the optimal

filtering equations for linear systems with multiple state and

observation delays, that have recently been obtained in [1],
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which take the following particular form for the system

(12),(13)

ṁ1(t) = m1(t −20)+(P0,0 +P1,0)[y(t)−m1(t)−m1(t −20)],
(16)

with the initial condition m(s) = E(φ(s)) = 0, s∈ [−5,0) and

m(0) = E(φ(0) | y(0)) = m0, s = 0;

Ṗ0,0(t) = PT
1,0(t)+P1,0(t)− (P0,0(t)+P1,0)

2, (17)

Ṗ1,0(t) = P0,0(t −20)+P1,1(t)− (18)

(P0,0(t)+P1,0(t))(P0,0(t −20)+P1,0(t −20)),

with the initial condition P0,0(0) = E((x(s) − m1(s))
2 |

y(0)) = R0. The initial conditions for the covariances P1k(s),
k = 0,1, in the intervals s ∈ [20k,20(k +1)], are assigned as

P10(s) = R0/2 and P11(s) = 0.

Numerical simulation results are obtained solving the

systems of filtering equations (14)–(15) and (16)–(18). The

obtained values of the estimates m(t) and m1(t) satisfying

the equations (14) and (16), respectively, are compared to

the real values of the state variable x(t) in (12).

For each of the two filters (14)–(15) and (16)–(18) and the

reference system (19) involved in simulation, the following

initial values are assigned: x0 = 1, m0 = 10, R0 = 100.

Simulation results are obtained on the basis of a stochastic

run using realizations of the Gaussian disturbances ψ(t) in

(13) generated by the built-in MatLab white noise function.

The following graphs are obtained: graphs of the reference

state x(t) (12), and the estimate m(t), satisfying the equations

(14), and the estimation error x(t)−m(t) are shown in Fig.

1; graphs of the reference state x(t) (12), and the estimate

m1(t), satisfying the equations (16), and the estimation error

x(t)−m1(t) are shown in Fig. 2. The graphs are shown on

the simulation interval from t0 = 0 to T = 40.

Thus, it can be concluded that the obtained alternative

optimal filter (14)–(15) yields virtually indistinguishable

values of the estimate m(t) at the final simulation time

T = 40, in comparison to the optimal filter (16)–(18) obtained

in [1]. A larger divergence of values of the estimate (14),

observed near T = 20, appears due to MatLab discretization

scheme, which poorly handles the division by numbers close

to zero employed for calculating the matrix Φ(t − 20, t) in

(14). However, the significant advantage of the alternative

optimal filter is that it consists of the only two equations,

whose number and structure do not change as the filtering

horizon tends to infinity. In contrast, the optimal filter (16)–

(18), obtained in [1], would include an unboundedly growing

number of covariance equations, as tends time to infinity.

The conducted simulation provides only numerical com-

parison between two different forms of the optimal filter for

the system (12),(13), whereas the comparison of the optimal

filter to some approximate filters, such as extended Kalman

filters (EKF), and the corresponding graphic representation,

revealing a better performance of the optimal filter, can be

found in [1].

V. CONCLUSIONS

The simulation results show that the values of the estimate

calculated by using the obtained alternative optimal filter for

linear systems with multiple state and observation delays

are only insignificantly different from the estimate values

provided by the optimal filter previously obtained in [1].

Moreover, the estimates produced by both optimal filters

asymptotically converge to the real values of the system state

as time tends to infinity. The significant advantage of the

alternative filter is that it consists of only two equations, for

the optimal estimate and the estimation error variance, whose

number and structure do not change as the filtering horizon

tends to infinity. On the contrary, the previously obtained

optimal filter of [1] includes the infinite number of covari-

ance equations in the general case of non-commensurable

delays, or a variable number of covariance equations, which

unboundedly grows as the filtering horizon tends to infinity,

in some particular cases. Moreover, the structure of the

covariance equations in [1] also varies with the number. The

obtained alternative filter is free from those complications

and provides the equally good quality of the state estimation.
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Fig. 1. Graphs of the reference state variable (12) x(t) (solid line above),
alternative optimal state estimate (14) m(t) (dashed line above), estimation
error x(t)−m(t) (below) in the simulation interval [0,40].
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Fig. 2. Graphs of the reference state variable (12) x(t) (solid line above),
nominal optimal state estimate (16) m(t) (dashed line above), estimation
error x(t)−m(t) (below) in the simulation interval [0,40].
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