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Abstract— Limits on the storage space or the computation
time restrict the applicability of model predictive controllers
(MPC) in many real problems. Currently available methods
either compute the optimal controller online or derive an
explicit control law. In this paper we introduce a new approach
combining the two paradigms of explicit and online MPC to
overcome their individual limitations. The algorithm computes
a piecewise affine approximation of the optimal solution that is
used to warm-start an active set linear programming procedure.
A preprocessing method is introduced that provides hard real-
time, stability and performance guarantees for the proposed
controller. By choosing a combination of the quality of the
approximation and the number of online active set iterations the
presented procedure offers a tradeoff between the warm-start
and online computational effort. We show how the problem of
identifying the optimal tradeoff for a given set of requirements
on online computation time, storage and performance can be
solved. Finally, we demonstrate the potential of the proposed
warm-start procedure on a numerical example.

I. INTRODUCTION

It is well-known that computation of a model predictive

controller (MPC), under certain assumptions on the problem

structure, amounts to the solution of a linear or a quadratic

program at each sampling instant. Whereas classically, these

optimization problems are solved online, it has been shown

in recent years that the optimal solution to this type of

problem is a piecewise affine function (PWA) defined over

a polyhedral partition of the feasible states. This so-called

explicit solution can then be used as a control look-up table

online, enabling MPC to be used for fast sampled systems.

However, both the offline and online method have

limitations. The main disadvantage of the online method

is that it is in general only applicable for controlling slow

processes. In the case of the explicit solution, the number

of state-space regions over which the control law is defined,

the so-called complexity of the partition, grows in the worst

case exponentially due to the combinatorial nature of the

problem. This has given rise to an increasing interest in

the development of new methods to either improve online

optimization or to approximate explicit solutions (e.g.

[3], [5], [9], [16]). Depending on the particular problem

properties and implementation restrictions, the user then has

to decide for one of the two approaches.

This work aims at enlarging the possibilities to tradeoff

solution properties through the combination of these

two methods. Specifically, ideas from approximation are

combined with warm-start techniques. In this paper we

use a PWA approximation of the optimal control law,

which has been computed offline, to warm-start the online

optimization. The optimization executes a finite number of

active set iterations before returning a feasible, suboptimal

control action, which is then applied to the system. The idea

is to choose a good tradeoff between the complexity of the

PWA approximation and the number of active set iterations

required in order to satisfy system constraints in terms of

online computation, storage and performance. Conditions

are derived which guarantee that the suboptimal solution

is closed-loop stabilizing, feasible and has a bounded

performance deterioration.

We also raise the question of an optimal tradeoff, meaning

that the best combination of warm-start and online computa-

tional effort is chosen, with respect to certain requirements on

the solution. Considering computation time and performance

as two exemplifying requirements, this can be informally

stated in the form of the following optimization problems:

1. Minimize online computation time while respecting a

bound on the performance deterioration

2. Maximize the performance within available computa-

tion time

The outline of the paper is as follows: In Section IV we

introduce the main idea of using an offline approximation

to warm-start an active set linear programming procedure.

An explicit representation of the proposed control law is

derived in Section V. In Section VI a preprocessing method

is introduced that allows the analysis of the properties of the

control input that will be applied online. The question of an

optimal tradeoff between warm-start and online computation

is discussed in Section VII. Finally, a numerical example

illustrating the proposed method is given in Section VIII.

II. NOTATION

If A ∈ R
m×n and I ⊆ {1, . . . , m}, then AI ∈ R

|I|×n is

the matrix formed by the rows of A indexed by I . If c ∈ R
m

is a vector then cI is the vector formed by the elements of

c indexed by I .

A polyhedron is the intersection of a finite number of

halfspaces P = {x|Ax ≤ b} and a polytope is a bounded

polyhedron. PN := {Pj}
N
j=1 with N ∈ N is called a

polyhedral partition of X ⊆ R
d if all Pj are full-dimensional
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polyhedra, ∪N
j=1Pj = X and intPi ∩ intPj = ∅, ∀i 6= j

and i, j ∈ {1, . . . , N}. A PWA function f(x) defined over

the polyhedral partition PN is denoted as f(x) = {Cjx +
Dj |x ∈ Pj , Pj ∈ PN} .

III. PRELIMINARIES

A. Model Predictive Control

In this paper, we consider the following formulation of the

MPC problem:

J∗(x) = min
{u0,...,uN−1}

VN (xN ) +

N−1∑

i=0

l(xi, ui) (1)

subject to xi+1 = Adxi + Bdui ,
(xi, ui) ∈ X × U ,
xN ∈ XF ,
x0 = x ,

where X, U and XF are polytopic constraints on the states

and inputs, the stage cost is defined as l(xi, ui) := ‖Qxi‖p+
‖Rui‖p with p ∈ {1,∞}, VN is the terminal penalty function

and XF ⊆ X is a compact terminal target set, with properties

as defined in Assumption III.2. The MPC problem implicitly

defines the set of feasible initial states X .

Definition III.1 (Feasibility). A control law u(x) is called

feasible for x if (x, u(x)) ∈ X × U.

Assumption III.2 (Stability). In the following it is assumed

that the parameters N, Q, R, VN , and XF are chosen in such

a way that problem (1) generates a feasible and stabilizing

control law for all x ∈ X when applied in a receding horizon

fashion and J∗(x) is a polyhedral PWA Lyapunov function.

If the norm p is taken to be the 1− or the ∞−norm, we can

write (1) as a parametric Linear Program (pLP) of the form:

u∗(x) = arg min
u

cT u (2)

subject to
AIu ≤ bI ,
AEu = BEx ,

where u ∈ R
n is a vector containing the sequence of control

inputs {u0, . . . , uN−1} and appropriate slack variables, the

current state x ∈ R
d is the parameter, A ∈ R

m×n, E ⊂
{1, . . . , m} and I = {1, . . . , m} \E (see e.g. [2] for details

on the conversion). (Note that for simplicity we use the same

indexing for b and B as for A although we distinguish the

vector b from the matrix B in order to account for the

different dimension). By solving the pLP (1) the optimal

control input u∗(x) can be computed for each feasible value

of the state.

Theorem III.3 (Solution to the MPC problem, [2]). The

MPC control law is a PWA function of the state x defined

over a polyhedral partition of the feasible set X .

B. Approximation of the MPC problem

We first define an approximation of the MPC problem (1)

and some useful properties that will be used in Section VI

in order to give guarantees on the control law proposed in

this paper. Let u∗(x) be the optimizer of the optimal control

problem (1) and J∗(x) = cT u∗(x) be the corresponding

optimal cost and a Lyapunov function.

The approximation error is defined by

Definition III.4 (Approximation error). A function ũ(x)
is called an approximate control law for (1) if ũ(x) is

feasible for all x ∈ X . The approximate control law ũ(x)
is an ǫ -approximation if for all x ∈ X the condition

J̃(x) − J∗(x) ≤ ǫ is satisfied, where J̃(x) := cT ũ(x) .

A standard condition to test if an approximate solution is

stabilizing is given by the following theorem:

Theorem III.5 (Stability, [8], [13]). If ũ(x) is an approxi-

mate control law of (1), then J̃(x) is a Lyapunov function

for the system xi+1 = Adxi +Bdũ(xi) if the approximation

error ǫ is less than l(x, ũ(x)) for all x ∈ X , where l :
R

d × R
m → R is the stage cost (1).

IV. PROPOSED CONTROL LAW

In order to overcome the limitations of the offline and

online methods mentioned in the introduction, several

authors recently proposed new approaches to speed up

online optimization or to reduce the complexity of explicit

solutions by means of approximation. The authors in [11]

for example utilize new developments in interior-point

methods and show how these can be applied to efficiently

solve the optimal control problem. Another paradigm

that is frequently applied to improve online optimization

is warm-starting (see e.g. [5], [16]). In explicit MPC,

approximation methods have been proposed that either

modify the original MPC problem (1), retrieve a suboptimal

solution or postprocess the computed optimal solution, with

the goal of reducing the complexity of the explicit controller,

cf. e.g. [3], [8]. Most proposals concerning online as well

as offline approaches however lack the possibility of giving

guarantees on the suboptimal solution, e.g. closed-loop

stability.

The strategy proposed in this paper combines the idea

of offline approximation with warm-start techniques from

online optimization with the goal of providing hard real-time,

stability and performance guarantees. Warm-start techniques

aim at identifying advanced starting points for the optimiza-

tion in order to reduce the number of iterations required

to reach the optimum. They often try to make use of the

information gained during the solution of one problem to

solve the next one in a sequence of closely related problems.

When solving MPC problems in a receding horizon fashion

an LP is computed for every measured state. However, the

optimal control input from a previous measurement might

be an infeasible solution to (1) at the current instance. We

therefore propose a warm-start strategy that utilizes a PWA

approximate control law of (1) to provide a good and feasible

starting point. The pre-knowledge of the initial solution for

all feasible values of x allows us to analyze the solution

obtained by the online optimization. The following two

parameters are used to classify the warm-start solution: the
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complexity NP (number of regions) and its approximation

error ǫ, given by Definition III.4.

Definition IV.1 (Warm-start Solution). A function

ν(x, NP ) is called a warm-start solution of (1) if it is a

feasible, PWA approximate control law of (1) defined over

NP polytopic regions.

Lemma IV.2 (Convergence of ν(·, ·)). There exists a

function ν(x, NPopt
) of finite complexity NPopt

∈ N, such

that u∗(x) = ν(x, NPopt
) for all x ∈ X , where u∗(x) is the

optimal solution to (2).

Proof. Result follows directly from the fact that the approx-

imation is PWA and Theorem III.3. �

By means of the parameter NP requirements can be set on

the complexity of the warm-start solution ν(·, NP ) that is

computed and stored in an offline preprocessing step.

Remark IV.3. For available approximation methods there

exists a relation between the approximation error ǫ and the

complexity NP of an approximation. Requirements on the

approximation error can therefore also be imposed using the

parameter NP ( [3], [8], [9], [14]).

In the online control procedure, the warm-start solution is

evaluated for the measured state and used to initialize the

online optimization. A standard active set method (ASM)

is applied to compute the control action since it allows

us to take advantage of a feasible starting point. Active

set methods generate a sequence of feasible iterates that

converge to the optimal solution. At each iterate u, the active

set is given by IA = E ∪ {i ∈ I|Aiu = bi}. In an active set

iteration, a subset of the active set is chosen as the working

set W using standard heuristics. From the current iterate u,

the maximal step in the steepest descent direction is then

computed, which is the direction that minimizes the objective

in (2) while keeping the constraints in W active, defining

the next iterate. See e.g. [10] for more details on active set

methods. Whereas in standard active set methods iterations

are performed until the optimality conditions are met, the

online optimization procedure is stopped early after exactly

K active set iterations and the current suboptimal control

input is applied to the system.

Definition IV.4 (Warm-start optimization). Let u be a

feasible solution of (2) for the parameter x. We define

κ(u, K) to be the decision variable of (2) after K iterations

of the linear programming active set method.

Definition IV.5 (Proposed control law). Let ν(·, NP ) be

an approximate PWA solution to (2) and κ(·, K) be as

defined in IV.4. The proposed control law is

uon(x) = κ(ν(x, NP ), K), for x ∈ X . (3)

Lemma IV.6 (Properties of κ(·, ·)). The proposed control

law (3) is feasible for all x ∈ X , and for each NP there exists

a finite Kopt ∈ N, such that u∗(x) = κ(ν(x, NP ), Kopt) .

Proof. Feasibility is ensured by the procedure of the ASM

and the fact that ν(x, NP ) is feasible for all x ∈ X . The

existence of a finite Kopt is guaranteed by the convergence

of the ASM in finite time [10]. �

The warm-start linear programming procedure for a fixed

complexity NP and number of iterations K is summarized

in Algorithm 1.

Algorithm 1 Warm-start linear programming procedure

Input: warm-start solution ν(·, NP ) and current measured

state xmeas

Output: approximate control input uon = u

1: run point location algorithm: u = ν(xmeas, NP ) [4]

2: for k = 1, . . . , K do

3: perform an active set iteration; update iterate u [10]

4: end for

In Section VI an offline analysis is introduced providing

guarantees for the proposed control law uon(x) in (3) to

be closed-loop stabilizing, feasible and to have a bounded

performance deterioration compared to the optimal solution.

The above described procedure of using an approximation

to warm-start an online optimization offers the possibility

to decide on the complexity and approximation error of the

warm-start solution ν(·, ·). A tradeoff can be made between

the degree of approximation realized by the warm-start and

the effort expended in online optimization. The goal is to

identify a good if not optimal tradeoff that achieves the best

properties of the online control input applied to the system

for given requirements on the approximation error and/or

limitations on the online computation time or storage.

V. PARAMETRIC CALCULATION OF THE ONLINE

CONTROL LAW

Our goal is to give guarantees on the proposed suboptimal

control law (3). Apart from feasibility, which is guaranteed

by Lemma IV.6, we want to ensure stability and a certain

bound on the approximation error. In order to analyze the

solution properties, we need an explicit representation of the

approximate control input κ(·, ·) for the entire feasible set

X . We will show that starting from the warm-start solution,

the iterative path taken by the active set method is a function

of x, defined over a polyhedral subdivision of X .

Remark V.1 (Offline Complexity). Note that the complex-

ity of this subdivision does not affect the actual optimization

carried out online, since the parametric solution is only used

for offline analysis.

The operations performed during an active set iteration can

be formulated as functions of the parameter x. Let uk(x)
be the iterate and W the working set at the k-th iteration

step. Applying the KKT conditions we get that △u is the

steepest descent direction from uk(x) if and only if there

exists a vector △λ such that (△u,△λ) satisfies the following
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system: [
I AT

W

AW 0

] [
△u
△λ

]
=

[
−c
0

]
(4)

The line search determining the step length to the best

feasible point along △u is given by

τ(x) = min
i∈I\IW

{
bi − Aiu

k(x)

Ai△u
|Ai△u > 0} . (5)

The new active constraint is Aeu
k(x) = be, where e is the

optimizer of (5). The next iterate is determined by

uk+1(x) = uk(x) + τ(x)△u . (6)

Theorem V.2. At every iteration k ∈ {1, . . . , K}, the step

length τ(x) in (5) and the current iterate uk(x) are PWA

functions of x defined over a polyhedral partition GNk of

the feasible set X .

Proof. Assume that the statement is true for k and that

uk(x) := {Cjx + Dj |x ∈ Gj , Gj ∈ GNk}. For one

region Gj ∈ GNk the line search (5) determining the next

constraint to become active is given by the pLP τ(x) =

mini{αi(x)}, with αi(x) = −AiC
j

Ai△u
x + bi−AiD

j

Ai△u
, i ∈ Icand

and Icand = {i ∈ I\IA|Ai△u > 0}. This shows that τ(x)
is a PWA function of x, since the optimal cost of a pLP is

PWA [2], [7]. With τ(x) and uk(x) being PWA, the k+1-th

iterate (6) is as well a PWA function of x. Since the initial

solution is u0(x) = ν(x, NP ), the statement is true for k = 1
and hence for all k ∈ {1, . . . , K} . �

With uk(x) being a PWA function, equation (5) results in

a parametric LP. The approximate control law at iteration

K is obtained by solving (4) and (5) iteratively for all k ∈
{1, . . . , K}. With each iteration, the parametric solution of

(5) causes a further refinement of the polyhedral partition

GNk .

Corollary V.3. The proposed control law uon(x) is a PWA

function of x defined over a polyhedral partition GNK of the

feasible set X .

Theorem V.2 enables us to compute an explicit PWA rep-

resentation of the approximate control law κ(ν(x, NP ), K)
for a fixed complexity NP and number of iterations K using

Algorithm 2.

VI. ANALYSIS

We introduce a preprocessing analysis that investigates

the following properties of the approximate control law

κ(ν(x, NP ), K): stability, approximation error, storage space

and online computation time.

Lemma VI.1 (Approximation error of uon(x)). If

uon(x) := {Cjx + Dj |x ∈ Pj , Pj ∈ PNK} is the proposed

control law in (3), then the approximation error defined in

Definition III.4 is given by

ǫK = max
j

{dj} , with (7)

dj = max
u,x

{cT (Cjx + Dj) − cT u |u ∈ U, x ∈ Pj} , (8)

Algorithm 2 Offline Analysis

Input: warm-start solution

ν(x, NP ) = {νj(x) |x ∈ Pj , Pj ∈ PNP }
Output: Explicit representation of the proposed control law

uon(x) = uK(x)

1: initialize stack S = ∅
2: for all Pj ∈ PNP do push (νj(x), Pj) onto S
3: end for

4: for all k ∈ {1, . . . , K} do [K active set iterations]

5: initialize stack Ŝ = ∅
6: while S 6= ∅ do [subdivide each region]

7: pop (uP (x), P ) from S
8: compute △u and τ(x) for uP (x) (4),(5)

9: let τ(x) = {fj(x) |x ∈ Rj , Rj ∈ R}
10: for all Rj ∈ R do

11: push (uP (x) + fj(x)△u, Rj) onto Ŝ
12: end for

13: end while

14: uk(x) := {uj(x) |x ∈ Pj , (uj(x), Pj) ∈ Ŝ}

15: S = Ŝ
16: end for

for all j ∈ {1, . . . , NK}.

Proof. The biggest error over all x ∈ X and hence over all

the regions in PNK is the smallest ǫ that fulfills the condition

in Definition III.4 for all x ∈ X . �

Stability can be easily tested using the conditions of

Theorem III.5.

Remark VI.2. Using Lemma VI.1 to compute the approxi-

mation error, stability of the proposed control law (3) can

be tested without the need to compute the optimal and

potentially complex parametric solution to problem (1).

Storage space is determined by the complexity (number

of regions) NP of the warm-start solution since only the

warm-start has to be stored.

Online computation time will be estimated in terms of

floating point operations (flops) for the calculations that have

to performed online. First the region of the current state is

identified using the point location algorithm in [4], then the

corresponding affine control law is evaluated and finally K
online iterations are executed.

Remark VI.3 (Sparsity of the MPC problem). In the

case of the MPC problem (1), the matrices A and B in

(2) have a special structure, resulting from the particular

problem setup. The matrices are extremely sparse and

by reordering can be shown to be in fact block diagonal

or banded. We can exploit the banded structure of the

matrices to solve equations (4) and (5), achieving significant

computational savings [15].

Theorem VI.4 (Flop count). If the input and state dimen-

sions are m and d respectively, the number of constraints on

each state-input pair is mc and the number of slack variables
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introduced for each state-input pair to write (1) as pLP (2)

is np then the number of flops to calculate the control action

uon(xmeas) for a measured state xmeas can be bounded by:

fon = NP fws + KfASM , (9)

where fws = 2d ,
fASM = N(d(82d + 26mc + 68np + 11)

+ m(40m + 116d + 56np + 20mc + 9)
+ np(12mc + 3) − 3mc)

fws denotes the flop number for point location per region,

fASM the flops per active set iteration and N the horizon in

(1).

Proof. The number of flops for point location is given in [4].

The flop counts for active set iterations use the fact that the

matrices in (2) have banded structure. An LU factorization

and LU updates as described in [15] and [6] is considered,

where L and U have half-bandwidth 5d + 4m + mc − 1.

The worst case is taken in form of the maximal number

of active constraints. The flop counts for calculation of the

steepest descent direction, step length and the next iterate

follow directly from the equations (4), (5) and (6). �

The worst-case estimates for the properties of the proposed

control law κ(·, K) in terms of stability, approximation error,

storage space and online computation time can be calculated.

For fixed parameters NP and K this allows us to give

guarantees on the properties of the control law that is applied

to the system.

VII. OPTIMIZATION OVER THE PARAMETERS

In this section we will now try to optimize over the

parameters that determine the applied control input: the

complexity NP of the warm-start solution and the number

of iterations K . The choice of the warm-start solution

ν(·, NP ) determines the computational effort for point

location fws in (9) on the one hand and the quality of the

warm-start on the other and therefore the number of active

set iterations. This offers the possibility to trade off the

amount of online computation time spent on the warm-start

with that spent on online optimization. The challenge is to

identify an optimal tradeoff that achieves the best properties

of the applied control input.

We consider the problem of optimizing the online time

to compute a control law that guarantees stability, a certain

performance bound ǫmax and a limit on the storage space

NP,max. Computation time is again measured in the form of

flops (9), resulting in the following optimization problem

Fmin = min
NP ,K

NP fws + KfASM (10)

subject to ǫK ≤ ǫmax ,
NP ≤ NP,max .

In order to solve this optimization problem, a method to

generate an approximation of (1) with complexity NP needs

to be defined. There are several approximation methods to

create a PWA warm-start solution (e.g. [3], [9], [14]).

In this work the method introduced in [8] was chosen,

which is based on the beneath/beyond (B/B) algorithm,

a common approach for convex hull calculation [1]. An

approximation J̃(x) of J∗(x) in (2) is constructed by com-

puting the convex hull of a subset of vertices of the epigraph

of J∗(x). The approximation can be iteratively improved by

adding one vertex at a time and updating the convex hull.

When all vertices of the polytope are included, the optimal

solution of (2) is reached. The approximate control law is

obtained by interpolating between the optimal control inputs

at the vertices. The main advantage of the beneath/beyond

method is that it is an incremental approach, allowing one to

set requirements on either the complexity or the error of the

approximation J̃(x). In addition, it is based on an implicit

rather than on an explicit representation of the optimal

solution and is hence not dependent on the computability

of the optimal parametric solution to pLP (2).

Theorem VII.1 (B/B warm-start solution [8]). Given a

parameter NP ∈ N the B/B method returns a feasible PWA

approximation ν(·, NP ) of (2).

Remark VII.2. In this paper, the B/B algorithm was initial-

ized such that it provides a feasible control law for all x ∈ X .

However, it is possible to extend the method so that one can

reduce the complexity of the approximation by considering

only a subset of X .

The error of a B/B approximation is related to its complexity

by the following Lemma VII.3.

Lemma VII.3 (Complexity/Error, [12]). Let ν(·, NP ) be

an approximation to (2) generated by the B/B method, ǫBB

its approximation error and NP its complexity. For every ǫBB

there exists an NBB ∈ N such that the approximation error

of ν(·, NBB) is less than ǫBB.

Remark VII.4. Note that whereas the approximation error

of a B/B approximation is monotonically decreasing with

every B/B improvement, the complexity might not be mono-

tonic (see [8]).

Using a B/B approach, problem (10) is a function of only

the complexity NP of the warm-start solution. This follows

from the fact that for each complexity NP of the B/B warm-

start there exists exactly one number of iterations K to

achieve a certain approximation error ǫmax. The optimal

tradeoff problem (10) can therefore be solved using the

B/B approach. Since the calculation of B/B approximations

can be computationally expensive, we propose to solve a

subproblem instead. We use a selection of values for NP

and solve the restricted minimization problem (10) for each

of them. The best tradeoff is represented by the solution with

the minimum cost value. The samples can then be iteratively

refined to improve the obtained result.

Remark VII.5. The problem of identifying the optimal

tradeoff to minimize the approximation error subject to

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB09.2

4722



constraints on the online computation time and the storage

space can be solved following the same procedure described

for problem (10).

VIII. NUMERICAL EXAMPLE

In this section we will demonstrate the advantages of

the proposed warm-start linear programming procedure. We

exemplify the main procedure of solving the optimal tradeoff

problem for the randomly generated system:

xi+1 =

[
−0.251 0.114 0.123 −0.433

0.319 −0.658 0.905 0.118

0.459 −0.484 −0.175 −0.709

0.016 0.116 −0.002 −0.505

]
xi +

[
−0.873 0.879

0.669 0.936
−0.353 0.777

0.268 −0.336

]
ui ,

with a prediction horizon N = 5 and the constraints

‖u‖∞ ≤ 5, ‖x‖∞ ≤ 5 on the input and state respectively.

The norm p for the stage cost is taken as the ∞-norm

and the weight matrices Q and R are taken as the identity

matrix and two times the identity matrix.

The restricted optimal tradeoff problem (10)

was solved for a set of warm-start solutions with

NP ∈ {7003, 10001, 12009, 15001} and a maximum

approximation error ǫmax = 2 that corresponds to a

performance deterioration of about 0.1%, taken over a large

number of sample points. The performance deterioration

is measured as the relative difference between the cost of

the closed loop trajectory using the optimal control input

and the one using the suboptimal control input, given by

[
∑∞

i=0
(l(xi, uon(xi)) − l(xi, u

∗(xi)))] /
∑∞

i=0
l(xi, u

∗(xi)).

The results are shown in Figure 1. The proposed control

laws at an approximation error of ǫ ≤ 2 are additionally

guaranteed to be stabilizing using Theorem III.5.

The best tradeoff between approximation and online it-

erations is given by the lower envelope of the curves, as

it represents the best online computation time for a certain

approximation error (or the other way round). For an ap-

proximation error up to 3.4, a pure approximation by the

B/B method results in the fastest computation times. For any

error below 3.4 a combination of a warm-start solution of

complexity NP = 15001 with active set iterations represents

the best tradeoff. Note that a further improvement of the

warm-start solution does not improve the results. In the

case of additional storage limitations, one can also choose

a warm-start solution of lower complexity resulting in only

slightly higher computation times. The optimal strategy is

therefore often not to achieve the best warm-start solution,

but a particular combination of warm-start and online op-

timization. In comparison with a pure online solution, the

warm-start procedure is always superior. The solution to the

optimal tradeoff problem does however highly depend on

the particular problem structure. For certain problems the

best solution procedure will be a particular combination of

the two methods whereas for others it will as well be a pure

offline or online approximation, e.g. in the case of extremely

small or large problems.
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Fig. 1. Warm-start procedure starting from four different PWA B/B
approximations with NP ∈ {7003, 10001, 12009, 15001}. The solid
line represents the offline B/B approximations. The flop number for zero
approximation error was interpolated, since the optimal solution could not
be computed. The four dashed lines show the improvement by the active
set method warm-started from each of the four approximations. The dash-
dotted line is a sampled worst-case estimate of a pure online solution using
the Simplex method, shown after the first feasible solution is found.
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