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Abstract— Living cells are characterized by small populations
of key molecular components that have large stochastic noise
associated with them. Various gene network motifs exist within
cells that help reduce these stochastic fluctuations. A common
such motif is an auto-regulatory gene network where the protein
expressed from the gene inhibits its own transcription. Here the
transcription rate of the gene is given as some function of the
number of protein molecules present in the cell. We refer to this
function as the transcriptional response of the gene network.

We develop analytical formulas that relate the stochastic
fluctuations in protein numbers with the functional form of the
transcriptional response. This is done by first approximating
the transcriptional response by a polynomial and then using
recently developed moment closure techniques to solve for
the statistical moments of the protein population. We show
that the protein noise level in these auto-regulatory gene
networks is related to the stability of the network and increasing
(decreasing) stability leads to attenuation (magnification) of
protein noise. Using the above formulas we also investigate the
transcriptional response of a specific gene network in lambda
phage and show that this network is especially effective at
reducing stochastic fluctuations in protein levels.

I. INTRODUCTION
Gene expression and regulation is inherently a noisy

process. The origins of this stochasticity lie in the proba-
bilistic nature of transcription and translation and low copy
numbers of RNAs and proteins within cells, which can lead
to large statistical fluctuations in molecule numbers. Recent
work [1], [2], [3] has provided considerable experimental
evidence for these stochastic fluctuations and may explain
for the large amounts of cell to cell variation observed in
genetically identical cells exposed to the same environmental
conditions [4], [5]. Various gene network motifs within cells
decrease/increase these stochastic fluctuations. A common
such motif is an auto-regulatory gene network where the
protein expressed from the gene inhibits/activates its own
transcription [6]. Both theoretical and experimental studies
have shown that negative feedback in these auto-regulatory
gene networks reduces stochastic fluctuations in the protein
population [7], [8], [9], [10], [11], [12] whereas positive
feedback has the opposite effect [13], [14].

We consider a simple gene expression model for a protein
X with molecular count x(t) at time t. The protein is
transcribed at a rate g(x) and we call the function g the
transcriptional response of the network. Each transcription
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event leads to the formation of N protein molecules where
N is a random variable with mean N and variance V 2. We
assume that the protein is degraded at a constant rate d. In the
stochastic formulation of this gene expression model, tran-
scription and degradation are treated as probabilistic events
and x(t) is a stochastic process. Details on the stochastic
formulation are provided in Section II. We quantify the noise
in x(t) by its coefficient of variation defined by

CV 2
X :=

E∗[x2]−E∗[x]2

E∗[x]2
(1)

where E∗[xk] denotes the steady-state value of the moment
E[xk], k ∈ {1,2}. We show in Section II that when there is
no auto-regulation, i.e., the transcriptional response g(x) is
independent of x and equal to a constant K, the noise in the
protein numbers is given by

CV 2
X =

d(N2 +V 2 +N)
2KN2 . (2)

In Section III we consider what happens to the noise in
the protein when the transcriptional response is dependent
on x. We first use a linear approximation for g(x) given by

g(x)≈ g(x∗)+g′(x∗)(x−x∗) (3)

where x∗ is the steady-state protein count from the deter-
ministic chemical rate equations. As we will see later, this is
a valid approximation as long as the stochastic fluctuations
in the protein numbers are sufficiently small. We quantify
the stability of the equilibrium x∗ by the response time
of the gene network Tr, a quantity defined in terms of
the deterministic chemical rate equations. In particular, the
response time of the gene network is the time taken for any
initial perturbation about x∗ to decay by 50% of its initial
value. We show in Section III-C that when the transcriptional
response is given by (3), the stochastic noise in the protein
is

CV 2
Xlinear =

Tr

Tp

N2 +V 2 +N
2x∗N

(4)

where Tp is the protein half-life. Hence for a fixed x∗,
decreasing (increasing) the response time Tr of the gene
network attenuates (magnifies) stochastic noise in the protein.
We also investigate the effects of nonlinearities in the tran-
scriptional response on the protein noise level in Section III-
D. In particular, we consider transcriptional responses given
by

g(x)≈ g(x∗)+g′(x∗)(x−x∗)+
1
2

g′′(x∗)(x−x∗)2. (5)
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We show that a transcriptional response that is convex
(concave) at x∗ causes the noise in the protein to be larger
(smaller) then what would be predicted by equation (4) which
assumed a linear g(x) as in (3).

Finally in Section IV, we investigate the transcriptional
response for a specific gene network: the lambda repressor
gene network. The transcriptional response g(x) of this
network is an increasing function when x is small (i.e.,
protein activates itself when its numbers are small) and a
decreasing function when x is large (i.e., protein inhibits
itself when its numbers are large). Using the above developed
formulas we show that this particular transcriptional response
is especially effective at reducing noise levels in the lambda
repressor protein.

II. INTRINSIC NOISE IN UNREGULATED GENE
EXPRESSION

We start by considering a simple model of gene expression
where a gene expresses a protein X at a constant rate K. Each
expression event leads to the formation of N molecules of
the protein X . Recent work suggests that the burst of proteins
from each mRNA transcript follows a geometric distribution
[15]. Thus instead of assuming N to be a constant we assume
it to be a random variable with mean N and variance V 2.
We also assume that the protein decays at a constant rate
d. Our model omits the mRNA dynamics. This is a valid
approximation as long as the protein’s life time is much
longer than the mRNA’s life time, which is generally the case
in gene-protein networks [16]. Ignoring the mRNA dynamics
leads to relatively simple expressions for the protein noise
level, which help develop a qualitative understanding of how
noise level changes in response to alterations of the gene
network parameters

In the stochastic formulation, gene expression and protein
degradation are treated as probabilistic events where the
probabilities of them happening in the infinitesimal time
interval (t, t +dt] are given by

Pr{x(t +dt) = x+N | x(t) = x}= Kdt (6a)
Pr{x(t +dt) = x−1 | x(t) = x}= dxdt, (6b)

respectively, where x(t) denotes the number of molecules
of protein X at time t. A convenient way to model the
time evolution of the number of molecules x is through
a Stochastic Hybrid System (SHS) characterized by trivial
continuous dynamics

ẋ = 0, (7)

two reset maps

x 7→ φ1(x) = x+N, x 7→ φ2(x) = x−1 (8)

with corresponding transition intensities given by

λ1(x) = K, λ2(x) = dx (9)

[19]. In order to gauge the noise level in the protein popula-
tion, we determine the time evolution of the first and second
order moments of x, i.e., the expected values E[x] and E[x2].

The moment dynamics can be obtained using the Dynkin’s
formula for the above SHS, according to which, for every
differentiable function ψ(x) we have that

dE[ψ(x)]
dt

= E

[
2

∑
i=1

(ψ(φi(x))−ψ(x))λi(x)

]
(10)

[17], [18]. Taking ψ(x) = x and ψ(x) = x2 in (10) we obtain
the following moment dynamics

dE[x]
dt

= NK−dE[x], (11a)

dE[x2]
dt

= K(N2 +V 2)+dE[x]+2KNE[x]−2dE[x2]. (11b)

The corresponding steady-state moments are given by

E∗[x] =
NK
d

(12a)

E∗[x2] =
KdN +2K2N2 +Kd(N2 +V 2)

2d2 . (12b)

where E∗ denotes the steady-state value of the respective
moment. Replacing the above steady-states in (1) we obtain

CV 2
X =

d(N2 +V 2 +N)
2KN2 =

(N2 +V 2 +N)
2E∗[x]N

, (13)

which quantifies the noise in the protein X due to random
gene expression and protein degradation, and is referred to
as the intrinsic noise in the protein. Note that the noise in
the protein increases as the variance V 2 in the number of
protein molecules produced per mRNA transcript increases.
A special case of (13) is obtained for N = 1 and V = 0, for
which x(t) has a Poisson distribution and CV 2

X = 1/E∗[x]. In
the next section we examine what happens to this intrinsic
noise when the gene expression rate is not a constant but a
function of the number of molecules of the protein.

III. INTRINSIC NOISE IN AUTO-REGULATORY GENE
NETWORKS

Often the expressed protein binds to the promoter region
of its own gene. In doing so it either recruits RNAP to the
promoter (which leads to an increase in gene expression)
or blocks RNAP from binding to the promoter (which
causes a decrease in gene expression). Such gene expression
with negative/positive feedbacks is referred to as an auto-
regulatory gene network. We model this network by assum-
ing that the rate of gene expression is a function g(x) of the
number of molecules x of the protein X . We refer to this
function g(x) as the transcriptional response of the network
and is typically determined empirically from experiments.
Monotonic decreasing and increasing functions g(x) denote
negative and positive feedback, respectively. However, as we
will see later, it is also possible for the function g(x) to be
decreasing for some values of x and increasing for other
values.
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A. Deterministic model

We first construct a deterministic model of the auto-
regulatory gene network. This is done by writing the chem-
ical rate equations which provide a deterministic and con-
tinuous approximation xD to the number of molecules of
the protein X . According to mass-action kinetics, xD evolves
according to the differential equation

dxD

dt
= Ng(xD)−dxD (14)

and the equilibrium x∗ of the above system satisfies the
equation

Ng(x∗) = dx∗. (15)

We assume that this equilibrium is stable with a negative
eigenvalue

λ = Ng′(x∗)−d < 0 (16)

corresponding to the linearization of (14) about x∗. In the
sequel we use λ as a measure of the stability of the equi-
librium, with more negative values of λ [which correspond
to more negative values of g′(x∗)] enhancing the stability of
the equilibrium. The eigenvalue λ can also be related to the
response time of the gene network Tr, a quantity that can be
measured experimentally: Given a linearized system

δ̇x = λδx, λ < 0, δx(0) = δ0 ∈ R (17)

its response time Tr is defined as the time taken for δx(t)
to decay by 50% of the initial condition, i.e., δx(Tr) = δ0/2
and is given by

Tr =− ln(2)
λ

> 0, λ = Ng′(x∗)−d < 0. (18)

B. Stochastic model

We now consider a stochastic model where the proba-
bilities of a gene expression and protein degradation event
happening in the infinitesimal time interval (t, t + dt] are
given by

Pr{x(t +dt) = x+N | x(t) = x}= g(x)dt (19a)
Pr{x(t +dt) = x−1 | x(t) = x}= dxdt. (19b)

To write the moment dynamics of x we first approximate
g(x) as a polynomial in x, which is done by expanding g(x)
as a Taylor series expansion about x∗:

g(x) = g(x∗)+g′(x∗)(x−x∗)+
1
2

g′′(x∗)(x−x∗)2 + . . . .

C. Linear transcriptional response

We begin by ignoring quadratic and higher order terms in
x−x∗ which results in a transcriptional response

g(x)≈ g(x∗)+g′(x∗)(x−x∗) (20)

linear in x. This approximation is valid as long as the
stochastic fluctuations in the protein are sufficiently small
around x∗. As in Section II, we model the time evolution of

x through a Stochastic Hybrid System (SHS) but now the
transition intensities are given by

λ1(x) = g(x∗)+g′(x∗)(x−x∗), λ2(x) = dx. (21)

Again using the Dynkin’s formula for the SHS given by (7),
(8) and (21) the time evolution of E[x] and E[x2] are given
by the following differential equations

dE[x]
dt

= N[g(x∗)−x∗g′(x∗)]−dE[x]+g′(x∗)NE[x], (22a)

dE[x2]
dt

= [g(x∗)−x∗g′(x∗)](N2 +V 2)+dE[x]

+2[g(x∗)−x∗g′(x∗)]NE[x]−2dE[x2]

+g′(x∗)(N2 +V 2)E[x]+2g′(x∗)NE[x2]. (22b)

Performing a steady-state analysis of the above equations
and using (15) we obtain the following steady-state mean
and coefficient of variation

E∗[x] = x∗, CV 2
Xlinear =

d(N2 +V 2 +N)
2IN2 , (23)

where I = g(x∗)−x∗g′(x∗) is the y-intercept of the tangent
to the transcriptional response g(x) at the point (x∗,g(x∗))
(see Figure 1). As we have assumed that the transcriptional
response is linear we obtained a steady-state stochastic mean
equal to the equilibrium x∗ of the deterministic chemical rate
equations. This will not be true in later sections where g(x) is
nonlinear. From (15) and (16) we see that I can be expressed

Fig. 1. A graphical interpretation of I = g(x∗)−x∗g′(x∗) for any arbitrary
transcriptional response g(x). I is the y-intercept of the tangent to the
transcriptional response g(x) at (x∗,g(x∗))

as

I = g(x∗)−x∗g′(x∗) = x∗[d/N−g′(x∗)] =−λx∗

N
> 0 (24)

which, using (18), allows us to re-write (23) as

CV 2
Xlinear =−d(N2 +V 2 +N)

2x∗λN
=

Tr

Tp

N2 +V 2 +N
2x∗N

(25)

where Tr and Tp = ln(2)/d denote the protein’s response
time and half-life, respectively. Note that Tp will be the
response time when there is no feedback in gene expression
(i.e., g′(x∗) = 0 and the transcription rate is a constant as in
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Section II). From (18) and (25) one can see that for a fixed
x∗, making the slope g′(x∗) more negative (positive) causes
a decrease (increase) in the response time, which attenuates
(magnifies) stochastic noise in the protein population.

The above formulas allow one to compare intrinsic noise
in protein counts for two different transcriptional responses
g1(x) and g2(x). When the two different transcriptional re-
sponses result in different stochastic means then one can see
from the middle expression in (25) that stochastic noise will
be lower for the transcriptional response that has the higher
value of −x∗λ , a quantitiy determined by how large and how
stable is the equilibrium population x∗. Figure 2 plots two
transcriptional response which lead to different stochastic
means but the same intercept I =−λx∗/N, and hence from
(23), have the same intrinsic noise in the protein. Note
that in this case although g1(x) gives a larger equilibrium
x∗1, this equilibrium is less stable than that of g2(x) as
g′2(x

∗
2) < g′(x∗1) = 0.

Fig. 2. Two different transcriptional responses g1(x) and g2(x) that lead to
the same intrinsic noise in the protein. x∗1 and x∗2 represents the steady-state
average number of protein molecules when the transcriptional response is
given by g1(x) and g2(x), respectively.

An important feature of equation (25) is that it relates the
noise in the protein to parameters that can be experimentally
determined. In particular, N = L/dr where L is the translation
rate of the mRNA and dr is the mRNA degradation rate.
As the number of proteins produced per mRNA generally
follows a geometric distribution [15], the variance V 2 is
equal to N2−N. Finally, the response times can be measured
by tracking the time evolution of the number of molecules
within the cell. For example, in [20] an auto-regulatory
gene network was designed where the protein TetR represses
its own transcription. The protein was fluorescently tagged
which allowed one to compute the time evolution of the av-
erage number of protein molecules in the cell. Figure 3 plots
this time evolution with and without the negative feedback in
the gene. The promoter strength was appropriately adjusted
such that the steady-state population of the protein was the
same in both cases. Figure 3 shows that in the case of the
negative feedback it takes about Tr = .21 time units for the
TetR protein count to reach half of its steady-state protein
count x∗. The response time when there is no feedback is
Tp = 1 time units, which is about five times larger than Tr.

This implies from (25) that for this network, the presence
of negative feedback reduces stochastic fluctuations in the
protein levels by a factor of

√
5≈ 2.24.

Fig. 3. Time evolution of the average number of TetR protein molecules.
1) represents the situation when these is negative feedback (i.e., protein
TetR repressed its own transcription) and 2) represents the situation when
these is there is simple gene expression with no negative feedback. Solid and
dashed lines represent experimentally measured and fitted approximations to
the time evolution of the average number of protein molecules, respectively.
This figure was taken from [6].

D. Effect of nonlinearities

In this section we examine the effects of quadratic terms
in g(x). Towards that end we now approximate g(x) as

g(x)≈ g(x∗)+g′(x∗)(x−x∗)+
1
2

g′′(x∗)(x−x∗)2 (26)

and ignore cubic and higher order terms in x− x∗. As
before, we can write the moment dynamics of E[x], E[x2]
corresponding to the transcriptional response given by (26).
However, because of the presence of quadratic terms in g(x)
the time derivative of E[x] and E[x2] now depend on E[x],
E[x2] and E[x3]. More specifically, their time evolution can
be written more compactly as[

dE[x]
dt

dE[x2]
dt

]
= a+A

[
E[x]
E[x2]

]
+B E[x3]. (27)

for an appropriately defined vector a and matrices A, B. One
can see that the above moment equations are not closed in
the sense that the time evolution of the lower order moments
depends on higher order moments. For analysis purposes,
we close the above system by approximating the third order
moment E[x3] as a nonlinear function of E[x] and E[x2]. This
procedure is commonly referred to as moment closure. We
use the recently developed moment closure method in [21]
to approximate the higher order moment E[x3] as

E[x3]≈
(

E[x2]
E[x]

)3

(28)

which gives us the closed moment dynamics[
dE[x]

dt
dE[x2]

dt

]
≈ a+A

[
E[x]
E[x2]

]
+B

(
E[x2]
E[x]

)3

. (29)
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Our goal now is to compute the steady-state of the above
closed system of differential equations. Analytically solving
for these steady-state moments from (29) is not an easy task
so we use perturbation methods to compute approximate
steady-states. This done by writing E[x] as a perturbation
about x∗ and E[x2] as a perturbation about E[x]2, as follows

E[x] := x∗(1+ ε1), E[x2] := E[x]2(1+ ε2). (30)

Assuming that |ε1|<< 1 and |ε2|<< 1 we have

E[x2]≈ x∗2(1+2ε1 + ε2) (31a)(
E[x2]
E[x]

)3

≈ x∗3(1+3ε1 +3ε2). (31b)

Substituting (31) in (29) we obtain a linear system[ dε1
dt

dε2
dt

]
= â+ Â

[
ε1
ε2

]
(32)

for appropriately defined vector â and matrix Â. From (30)
and (32) the steady-state mean and coefficient of variation
are given by

E∗[x] = x∗(1+ ε
∗
1 ), CV 2

Xquad = ε
∗
2 , (33a)

ε
∗
1 =

1

1+ Nx∗g′′(x∗)CV 2
Xlinear

2λ

−1, (33b)

ε
∗
2 =

CV 2
Xlinear

1+ Nx∗g′′(x∗)CV 2
Xlinear

2λ

, (33c)

where ε∗1 and ε∗2 are the steady-state solutions of (32) and
CV 2

Xlinear is the noise in the protein when g(x) is linear (as
in Section III-C) and given by (25).

The above result shows three important points: Firstly,
in this case E∗[x] 6= x∗ and a convex (concave) g(x) which
corresponds to g′′(x∗) > 0 (g′′(x∗) < 0) makes the stochastic
mean larger (smaller) than the equilibrium x∗ from the
deterministic model. Secondly, a transcriptional response
which is convex (concave) at x∗ results in larger (smaller)
noise in the protein then as predicted by equation (25).
Finally, as long as CV 2

Xlinear is small enough such that∣∣∣∣Nx∗g′′(x∗)CV 2
Xlinear

2λ

∣∣∣∣� 1 (34)

linearzing the transcriptional response to obtain the stochastic
noise in the protein will yield a good approximation for the
actual noise in the protein.

IV. LAMBDA REPRESSOR GENE NETWORK

We now use the results of the previous sections to investi-
gate a well-known gene motif that arises in a gene associated
with lambda phage, a virus that infects bacteria. The lambda
phage has a gene which encodes for a protein called the
lambda repressor that activates its own transcription. Large
levels of this protein causes the virus to lysogenize (i.e.,
integrate its own chromosome into the bacteria DNA). For

an auto-regulatory gene network with such positive feedback
the transcriptional response is typically given by

g1(x) = g0 +
αxM

1+βxM (35)

where g0, α , β are positive constants and M ≥ 1 repre-
sents the Hill coefficient [22]. This function is generally
sigmoidally shaped and monotonically increasing (see tran-
scriptional response g1(x) in Figure 4). However, for the
lambda repressor gene, the transcriptional response has been
modified and the protein activates the gene only when the
number of protein molecules is small. At larger protein
populations the protein inhibits its own transcription [23]. As
a consequence, the transcriptional response of this particular
gene network is an increasing function when x is small and
a decreasing function when x becomes large (see modified
transcriptional response g2(x) in Figure 4).

As can be seen in Figure 4, this modified transcriptional re-
sponse g2(x) has a larger intercept I2 when compared to that
of the original transcriptional response g1(x). Consequently,
in view of (23) the modified transcriptional response leads to
smaller levels of intrinsic noise in the protein compared to the
original transcriptional response. Low stochastic fluctuations
in the lambda repressor population ensure that its number
do not become small just by random chance, which will
cause the virus to come out of lysogeny and lyse the cell. In
summary, the transcriptional response g2(x) allows the virus
to have a more robust lysogeny.

Fig. 4. g1(x) is the standard transcriptional response of a gene network
with positive feedback while g2(x) is the observed transcriptional response
in case of the gene in lambda phage encoding the protein lambda repressor.
I1 and I2 is the y-intercept of the tangent to the corresponding transcriptional
response g(x) at (x∗,g(x∗)).

V. CONCLUSION AND FUTURE WORK

Auto-regulatory gene networks where the protein in-
hibits/activates its own transcription are common motifs oc-
curring within living cell. These networks are characterized
by a transcriptional response that provides information on
how the transcription rate of the gene varies as a function of
the number of protein molecules present in the cell. We pre-
sented results relating the amount of stochastic fluctuations in
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protein numbers to the functional form of the transcriptional
response. Using a linear approximation for g(x), we showed
that the noise levels are determined by I = g(x∗)−x∗g′(x∗)
which is the y-intercept of the tangent to the transcriptional
response at x = x∗ (as shown in Figure 1), with larger
values of I leading to smaller levels of intrinsic noise.
We also considered deviations from a linear transcriptional
response and showed that concave responses have better
noise suppression properties compared to convex responses.

Formulas relating the noise in the protein population to
the protein’s response time show that one mechanism to
achieve low noise in the protein is by having a very small
response time. This corresponds to a transcriptional response
with g′(x∗) � 0 and represents a strong negative feedback
in the auto-regulatory gene network. However, this strategy
of reducing noise by decreasing the response time will only
work if the steady-state average number of protein molecules
x∗ is kept moderately large. This is because lowering x∗
will increase the noise in the protein. As a result the basal
transcription rate (the transcription rate at x = 0) given by

g(x∗)−g′(x∗)x∗ (36)

will have to be large and corresponds to more energy
expenditure by the cell.

In this paper we assumed that the transcription rate is
given by g(x) and is only a function of the number of
protein molecules. As various enzymes/signaling molecules
are involved in the process of transcription, a more general
form for the transcription rate would be g(x,z) where z
represents a noisy exogenous signal. Fluctuations in z are
often referred to as the extrinsic noise entering the gene
network. We are currently investigating the effects of this
extrinsic noise on the protein noise level and under what
conditions the auto-regulatory gene network can attenuate or
amplify this extrinsic noise.
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