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Abstract— A sliding-mode based observer is suggested in
order to achieve global, finite-time reconstruction of the state
vector for a class of linear systems with unknown inputs. In the
paper we show that, by using a recently proposed global second-
order sliding mode differentiation algorithm, the necessary
and sufficient structural conditions for the observer design
are preserved, with respect to previous works; meanwhile, the
class of allowed unknown inputs is generalized significantly. A
numerical example illustrates the effectiveness of the suggested
technique.

I. INTRODUCTION

A. Antecedents and motivations

The problem of state observation for systems with unknown

inputs was widely addressed in the control literature during

the last two decades. The specific features of the majority of

the existing approaches are:

1. The number of unknown inputs must be less than

the number of outputs, and, moreover, additional structural

requirements on the system to be observed are met (see, e.g.,

[1] and [2]). Those conditions turn out to be rather restrictive.

For instance they cannot cover the simplest class of mechan-

ical systems with unknown inputs wherein only the position

is measurable. In [3] it was suggested a more complicated

adaptive observer ensuring an exponential convergence of the

estimation error to a small neighborhood of zero.

2. Only asymptotic convergence to zero of the observation

and error is guaranteed ([4]) in the smooth observation

scheme. However, for instance, for hybrid systems the finite

time exact observation is quite important since it is necessary

to ensure that the time of observation convergence is less than

the dwell time; for example, in the case of walking robots

([5], [6]).

The problem of observation has been actively developed

within Variable Structure Systems Theory using the Sliding-

Mode Control approach. Sliding mode observers (see, e.g.,

the corresponding chapters in the textbooks [7], [8], and the

recent tutorials [9], [10] and [11]) are widely used due to

their attractive features, namely: a) insensitivity (which is
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stronger than mere robustness) with respect to some classes

of unknown inputs; b) possibility to use the equivalent output

injection concept for the unknown inputs identification.

In [12], [13], [14] and [15] a step-by-step sliding mode

observers design was proposed. Such an approach is based

on the possibility to transform the actual system into a block-

observable form and after which the sequential estimation

of each transformed state is made by means of the concept

of equivalent output injection. Unfortunately, the realization

of such observation schemes demands obligatory filtration,

which causes an intrinsic error in the observed states that can-

not be eliminated. Furthermore, the system structure must be

such that the transformation to the triangular form can be per-

formed. A new generation of observers based on higher-order

sliding-mode differentiators ([16],,[17]) has been recently

studied in the literature [18], [19], [20], [21], [22], [23], [24],

[25], and [26]. This sort of observers preserve the advantages

of the first order sliding mode observers, but avoid the

filtration process, allowing the finite-time convergence to

zero for the estimation error. Generally in those papers the

unknown inputs were supposed uniformly bounded ([27] and

[28]), which allows to stabilize the observation error with

some linear observer to a neighborhood of the zero point and,

after that, to use a robust exact differentiator that ensures the

finite time exact reconstruction of the original state.

B. Main contribution

By using the recently developed global exact differentiator

[29], in this paper we propose a scheme for designing a

robust observer providing a finite-time exact observation

for the class of strongly observable linear systems with

unknown inputs and/or nonlinear uncertainties bounded by

known functions that could be non-uniformly bounded. Thus,

it is achieved a global exact finite time convergence in the

presence of possible unbounded unknown inputs

II. PLANT MODEL AND STANDING ASSUMPTIONS

Consider the following linear system with unknown inputs

ẋ (t) = Ax (t) + Bu (t) + Dw (t) , x(0) = x0

y (t) = Cx (t) , t ≥ 0
(1)

where x (t) ∈ R
n, u (t) ∈ R

m, and y (t) ∈ R
p (1 ≤ p < n)

are the state vector, the control, and the output of the system,

respectively. A, B, C, and D are known matrices of suitable

dimension with rank(C) = p, and rank(D) = q.

The following definition can be found in several works,

see, e.g., [30], [1], [31], and [32].

Definition 1: For u ≡ 0, the triple (A, D, C),is called

strongly observable if, for any initial condition x0, the
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condition y (t) = 0 for all t ≥ 0 implies that x (t) = 0 for

all t ≥ 0 irrespectively of the actual unknown input w (t).
It is worth to note if the system is not strongly observable,

then there exists an initial condition x0 = ξ and an unknown

input w (t) such that y (t) = 0 for all t ≥ 0 and x (t)
being not equal to zero for all t ≥ 0. Therefore, in such a

case it would be clearly impossible to reconstruct the system

state x (t) from the output measurement. It means that strong

observability property is a necessary structural condition for

the reconstruction of the state vector.

Hence, throughout the paper we shall make the assumptions:

A1. For u ≡ 0, the triple (A, D, C) is strongly observable

(SO)

A2. There exist a known constant k and a known class-K∞

function F : [0,∞) → [0,∞) such that

‖w (t)‖ ≤ k + F (‖y‖) (2)

In the next Section we present a fundamental result, based

on the condition A1, that the system state can be expressed as

a function (simple linear combination) of the system outputs

and a certain number of their derivatives.

III. PRELIMINARIES

A. Auxiliary system

Implement the following linear observer

˙̃x(t) = Ax̃(t) + Bu + L (y (t) − ỹ (t)) (3)

ỹ (t) = Cx̃ (t) (4)

with L chosen so that Ã = (A − LC) is Hurwitz. Notice

that A1 guarantees that the pair (A, C) is observable. Let us

define e (t) := x (t)− x̃ (t). Clearly the estimation error will

not vanish. Indeed the error dynamics is

ė (t) = Ãe (t) + Dw (t) (5)

Knowing e and x̃ it is immediate to recover the original

system state by x = x̃ + e. Below we apply a procedure to

reconstruct e (t). Unlike the original system (1), the error

system (5) has always a stable eigenvalues. This makes

possible to compute an explicit upperbound for the norm

of the error vector e. It is the subject of the Lemma 2.

Lemma 2 Consider system (5) having an Hurwitz char-

acteristic matrix Ã and with the unknown input w satisfying

(2). Let P = PT > 0 be the symmetric positive definite

(SPD) solution of the Lyapunov equation ÃT P +PÃ = −Q

for an arbitrary SPD matrix Q.

Define

Γ (‖y‖ , t) := b + µ





t
∫

0

exp−δ(t−τ) F 2(‖y‖)dτ





1/2

(6)

where

b > 0, µ =

(

‖P‖ ‖D‖

ǫλmin (P )

)1/2

, δ =
(λmin (Q) − ǫ ‖P‖ ‖D‖)

λmax (P )
(7)

and ǫ is small enough so that δ > 0. Then, there is a time

T1 > 0 such that the following conditions hold for all t ≥ T1

‖e (t)‖ ≤ Γ (‖y‖ , t) , ‖ė (t)‖ ≤ ϕ(t) (8)

where ϕ(t) :=
(

‖Ã‖Γ (‖y‖ , t) + ‖D‖F (‖y‖)
)

with F defined by (2).

Proof of Lemma 2 See the Appendix.

B. Reconstruction of the state error e (t)

For a matrix Y ∈ R
r×q having rankY = h, we select

Y ⊥ ∈ R
r−h×r as one of the matrices so that Y ⊥Y = 0 and

rankY ⊥ = r − h. Note that Y ⊥ always exists and that it is

not unique for a given matrix1 Y .

The sequence of transformations we are going to introduce

is aimed at expressing the error e as an algebraic function

of the outputs and a finite number of their derivatives.

Consider the following algorithm:

Step 1

Define M1 = C. Thus, ye := y − ỹ = M1e. Write

down the derivative of y, ẏe = M1ė = M1e + M1Dw.

We want to find a transformed output whose first derivative

in not affected by w. Consider the transformed output y1 =
(M1D)

⊥
ye (t) and its time derivative

ẏ
1

= (M1D)
⊥

ẏe (t) = (M1D)
⊥

M1Ãe (9)

Now construct the extended vector

ξ1 :=

[

ẏ
1

ye

]

=

[

(M1D)
⊥

M1Ã

M1

]

e ≡ M2e (10)

with implicitly defined matrix M2. Note that, from (10) and

(9), the vector ξ1 can be expressed as function of the output

vector and its first derivative.

Step 2

Consider the transformed output y2 = (M2D)⊥ ξ1 and its

time derivative

ẏ
2

= (M2D)
⊥

ξ̇
1

= (M2D)
⊥

M2Ãe (11)

Now construct the extended vector

ξ2 :=

[

ẏ
2

ye

]

=

[

(M2D)
⊥

M2Ã

M1

]

e ≡ M3e (12)

with implicitly defined matrix M3.

Note that, from (12), (11), (10) and (9), the vector ξ2 can

be expressed as function of the output vector and its first and

second derivative.

Step k. k = 3, 4, . . . , n − 1
Consider the transformed output y(k) = (MkD)

⊥
ξ(k−1)

and its time derivative

ẏ
(k)

= (MkD)
⊥

ξ̇
(k−1)

= (MkD)
⊥

MkÃe (13)

Now construct the extended vector

ξ(k) =

[

ẏ
(k)

ye

]

=

[

(MkD)
⊥

MkÃ

M1

]

e ≡ Mk+1e (14)

1A Matlab code for computing B = F⊥ is >> B = (null((F )′))′;
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with implicitly defined matrix Mk+1. It is easy to see that

the vector ξ(k) can be expressed as function of the output

vector and its derivatives up to the (k-1)-th order.

At the end of the k-th step, the matrix Mk+1 and the term

ξ(k) are available such that

ξ(k) = Mk+1e(t) (15)

Suppose that for some l there is a matrix Ml such that

rankMl = n. Then the algebraic equation (15) would have

a unique solution

e (t) = M+
l ξ(l−1) (16)

where M+
l =

(

MT
l Ml

)−1
MT

l . It means that for rankMl =
n, the state e (t) could be estimated using a linear combi-

nation of the output and its derivatives up to the (l − 1)-th

order. Since (A, D, C) is SO if and only
(

Ã, D, C
)

is SO,

it holds that strong observability property is a necessary and

sufficient condition to have rankMn = n. Indeed (see e.g.,

[30], [31], [32])

The triple
(

Ã, D, C
)

is SO iff rankMn = n. (17)

Thus, from A1 and (17), we conclude that for the con-

sidered class of systems we have that rankMn = n. This

means that the number of iterations of the above procedure

will be at most n − 1.

Now let us extract from the above algorithm the equations

for computing the sequence of the matrices M1, M2, ..., Mn.

M1 = C, Mk+1 =

[

(MkD)
⊥

MkÃ

C

]

, k = 1, . . . , n − 1

(18)

IV. HIERARCHICAL SECOND ORDER SLIDING

OBSERVATION CONCEPT

To obtain the required output derivatives we will use the

Global Sub-optimal Differentiator presented in [29] (see the

Appendix A). The design of the Global Sub-optimal Differ-

entiator requires the explicit knowledge of an instantaneous

upperbound to the second derivative of the signal to derive.

A. State observation by means of a global differentiator

The algorithm outlined in III-B is now developed. The

recovery of M2e (t) will be based on the design of a sliding

surface s(1) and its corresponding output injection v(1) using

the “global sub-optimal” algorithm (see [29]) described in

the Appendix A.

Let us define a sliding vector variable s(1) as follows:

s(1) (t) = π(1)(t) −

∫ t

0

v(1) (τ ) dτ (19)

π(1)(t) =

[

(M1D)⊥ye(t)
∫ t

0
ye(t)dτ

]

(20)

taking the time derivative of s(1), and noting that
d
dt π(1)(t) = M2e, we get the following expression for the

time derivative of s(1):

ṡ(1) = M2e − v(1) (21)

In order to steer to zero vector s(1) and its unmeasurable

derivative ṡ(1), the components of vector v(1) can be defined

as follows according to the compact notation introduced in

the Appendix A:

v̇(1) = GSO

(

s(1), ‖M2‖ϕ(t)
)

(22)

where the scalar function ϕ is an instantaneous upper-bound

to ‖ė(t)‖, given in (8). GSO denotes the Global Sub-Optimal

Algorithm. As shown in the appendix (see also [29]), when

the algorithm is applied by using the sliding quantity s(1)

constructed as above it implements a real time differentiator,

in the sense that v(1) converges in finite time to the derivative

of π(1). As shown in [29], there is a reaching time t1 such

that s(1) (t) = ṡ(1) (t) = 0, for all t ≥ t1, which implies that

v(1) (t) =
d

dt
π(1)(t) = M2e (t) , for all t ≥ t1. (23)

Now, for recovering M3e (t) we design s(2) and its cor-

responding output injection v(2) by a similar procedure,

detailed as follows. The variable s(2) is given by the formula

s(2) (t) = π(2)(t) −

∫ t

0

v(2) (τ ) dτ (24)

π(2)(t) :=

[

(M2D)
⊥

v(1) (t)
∫ t

0
ye(t)dτ

]

=

[

(M2D)
⊥

M2e
∫ t

0
ye(t)dτ

]

(25)

In the last equation it was considered (23). Since d
dtπ

(2)(t) =
M3e (t), we get the following expression for ṡ(2):

ṡ(2) (t) = M3e − v(2) (t) (26)

To steer to zero s(2) and its unmeasurable derivative ṡ(2),

the components of vector v(2) can be defined as v̇(2) =
GSO

(

s(2), ‖M3‖ ϕ(t)
)

. As before, there exists a finite time

t2 such that s(2) (t) = ṡ(2) (t) = 0, for all t ≥ t2 ≥ t1.

Therefore considering (26) we have

v(2) = M3e (t) t ≥ t2 ≥ t1

Let us define l ≤ n as the least integer so that rankMl =
n. Thus, we can resume the general design of sliding surfaces

with their corresponding output injection terms. Design the

output injection v(k) at the k-th level as

v̇(k) =

{

GSO
(

s(k), ‖Mk+1‖ϕ(t)
)

1 ≤ k ≤ l − 2

GSO
(

s(k), ϕ(t)
)

k = l − 1
(27)

with

s(k) = π(k) −

∫ t

0

v(k) (τ ) dτ (28)

π(k) =







































[

(MÃ,1D)⊥ye(t)
∫ t

0
ye(t)dτ

]

k = 1
[

(MÃ,kD)⊥v(k−1)(t)
∫ t

0 ye(t)dτ

]

1 < k < l − 2

M+

Ã,l

[

(MÃ,l−1D)⊥v(l−2)(t)
∫ t

0 ye(t)dτ

]

k = l − 1

(29)
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We included M+
l =

[

MT
l Ml

]−1
MT

l in the last variable

π(l−1) of (29) in order to recover directly the state vector

e (t) by means of the output injection signal v
(k)
i .

Theorem 1: Consider system (1) satisfying the assump-

tions A1-A2. Implement the auxiliary observer (5) and let

e = x − x̃ and ye = y − ỹ. Implement the output injection

terms v(k) (k = 1, 2, . . . , l− 1) according to (27)-(29). Then

there exist t1 < t2 < ... < tl−1 such that

v(k) = Mk+1e (t) , t ≥ tk k = 1, .., l − 2

v(l−1) = x (t) − x̃ (t) t ≥ tl−1
(30)

which implies that the state vector x can be reconstructed

exactly at t ≥ tl−1 by means of the following relationship

x = v(l−1) + x̃ (31)

Proof: Since it has already been proven for k = 1 and

k = 2, the remaining of the proof can be done by induction.

V. EXAMPLE

A fifth-order system with unknown inputs is studied:

ẋ (t) = Ax (t) + Dw (t) , x(0) = (1, 3,−1, 4, 5)
y (t) = Cx (t) , t ≥ 0

(32)

The matrices in (32) take the form

A =













−1.49 −0.17 −0.42 0.27 0.31
−1.08 −0.83 −0.66 0.02 0.12
−2.26 −0.12 −1.00 0.09 −0.08
−2.78 −0.37 −0.89 −0.58 0.27
−1.55 −0.22 −0.90 0.18 −0.49













DT =

[

0 0 1 0 −1
−1 −1 −1 1 1

]

, C=





1 0 0 0 0
0 1 0 0 0
0 0 1 1 1





The unknown input terms are wT =
[

1 + x2 sin (t) 0.9 cos (0.85t)
]

. Let us implement

the method suggested in this manuscript. The auxiliary

observer (4) is implemented with the matrix L chosen in

order that the eigenvalues of Ã = A − LC are {−0.27,

−1.539 + 1.007i, −1.539− 1.007i, −1.635, −1.217}.

As for the assumption A2, the following bound to the

unknown inputs are considered in the observer design

‖w‖ ≤ F (‖y‖) = 2 + |y2|. The matrix MÃ,2 has full

rank equal 5. Thus, we must design only one sliding surface

for the construction of the observer. In order to reconstruct

MÃ,2e, the signal v(1) is implemented according to

v̇(1) = GSO

(

s(1), ‖M2‖ ϕ(t)
)

(33)

s(1)(t) = M−1
2

[

(M1D)⊥ye(t)
∫ t

0
ye(t)dτ

]

−

∫ t

0

v(1)(t)dτ (34)

With the matrices M1 and M2 designed according to (18).

The term ϕ(t) is constructed as specified in the Lemma 2

with the resulting parameters

b = 0.1, µ = 17.75, ǫ = 0.08, δ = 2e − 5 (35)

After a finite time we get that v(1) (t) = e (t). So that the

state is reconstructed as

x = x̃ + v(1) (36)

The algorithm is run with zero initial condition for all

internal variables. Simulations are performed by discretizing

the system and observer by Euler method with sampling step

Ts = 10−5s. Since x1 and x2 are already known, the state

reconstruction is shown for the states x3, x4, x5. The figures

1, 2, 3 show the trajectories of the actual and estimated states

x3, x4, x5, with corresponding zoom on the steady state.
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Fig. 1. The actual and estimated state x3.
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Fig. 2. The actual and estimated state x4.
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Fig. 3. The actual and estimated state x5.

VI. CONCLUSIONS

Without requiring the system to be expressed in (or being

transformed to) any normal form, it is shown that strong

observability is a necessary and sufficient condition for state

estimation in the presence of unknown inputs which are

bounded by unknown functions which may be non-uniformly

bounded. By using a global version of a second-order sliding-

mode control algorithm, the global boundedness assumptions

on the unknown inputs, often made in the related literature,

are dispensed with. The suggested observer design ensures

the insensitivity of the observer with respect to the unknown

inputs, and, furthermore, under an additional smoothness

condition on the unknown inputs, it also offers the possibility

of reconstructing them exactly, and in finite time.

APPENDIX I

GLOBAL SUBOPTIMAL REAL-TIME DIFFERENTIATOR [29]

Say x(t) some scalar signal to be differentiated. Let a

known bounded function be available such that

|ẍ| ≤ Φ1(t) (37)

The considered system is described by the simple model

θ̇1 = θ2, θ̇2 = u, ˆ̇x = θ2 (38)

where θ1, θ2, u ∈ R and u is an observer control signal to

be specified. If the available sliding quantity γ1 = θ1 − x

and its unmeasurable derivative γ2 = θ2 − ẋ are steered to

zero in a finite time T , then it turns out that

θ1(t) = x(t), θ2(t) = ẋ(t) t ≥ T (39)

Thus, the differentiator design reduces to the problem

of finding a control signal u providing for the finite-time

stabilization of the following second-order uncertain system

γ̇1 = γ2, γ̇2 = −ẍ + u(t) (40)

where γ2 is not available and ẍ is uncertain. The solution

strictly depends on the assumed conditions regarding ẍ.

Consider now the finite-time stabilization problem for system

(40) under the general assumption (37). The GSO should

be considered as the solution of this control problem. The

differentiator here discussed thus represents only a specific

application of the GSO algorithm.

Consider the next Lemma 1.

Lemma 1 ([29]): Consider a measurable quantity x(t),
satisfying condition (37), and system (38). Let γ1 = θ1 − x

and γ2 = γ̇1. In order to guarantee that, for some finite

T > 0, the following condition holds

θ2(t) = ẋ(t) t ≥ T (41)

it is sufficient to apply the control signal

u(t)=







- [Φ1(t)+χ] sign (γ1(t)-γ1(t0)) , t0≤ t ≤ tM1

- [Φ1(t)+χ] sign (γ1(tMi
)), tMi

< t ≤ tci
[

Φ1(t)+1
3+χ

]

sign (γ1(tMi
)), tci

< t ≤ tMi+1

(42)

where χ is a positive arbitrary constant customarily set to

χ = 1, tMi
(i = 1, 2, . . .), is the sequence of time instants

at which γ2(tMi
) = 0, and tci

(i = 1, 2, . . .) is the first

time instant subsequent tMi
at which one of the following

relationships is verified

γ1(tci
) =

1

2
γ1(tMi

), γ2(tci
) =

√

|γ1(tMi
)|

where γ2(t) is defined for t ≥ tM1
as

γ2(tMi
) = 0 i = 1, 2, . . .

γ̇2(t) =

{

2Φ1(x, t) + χ tMi
≤ t ≤ tci

0 tci
< t < tMi+1

(43)

Proof: See [29].

Remark 1: The control law u(t) in the Lemma 1 is fully

determined by the knowledge of γ1 and Φ1(t). Thus it is

convenient to express it using the compact notation

u(t) = GSO(γ1; Φ1(t)) (44)

As shown in the Lemma, when the GSO algorithm is

applied by using the sliding quantity γ1 constructed as above

it implements a real time differentiator, in the sense that the

integral of the discontinuous control signal u(t) converges

in finite time to the derivative of x(t).

APPENDIX II

PROOF OF LEMMA 2

Since Ã is Hurwitz, for any Q = QT > 0, there exists

a matrix solution P = PT > 0 of the Lyapunov equation

ÃT P + PÃ = −Q. Select the Lyapunov function as V =
eT Pe. Its time derivative is V̇ = −eT Qe+2eT PDw. Thus,

it can be written that

V̇ ≤ −eT Qe + 2 ‖P‖ ‖D‖ ‖w‖ ‖e‖ (45)

Using the inequality 2ab ≤ a2

ǫ + ǫb2, which is valid for

any real numbers a, b, ǫ with ǫ > 0, it can be written that

2 ‖w‖ ‖e‖ ≤ 1
ǫ ‖w‖

2
+ ǫ ‖e‖

2
. Hence, it derives that

V̇ ≤ −
(λmin (Q) − ǫ ‖P‖ ‖D‖)

λmax (P )
V +

1

ǫ
‖P‖ ‖D‖ ‖w‖

2
(46)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA02.1

1887



Thus, the magnitude of the Lyapunov function can be

overestimated by considering the maximal solution of (46):

V (t) ≤ exp−δt V (0)+
1

ǫ
‖P‖ ‖D‖

t
∫

0

exp−δ(t−τ) ‖w (τ )‖
2
dτ

(47)

with δ given in (7). Therefore, we get the following bound

for the error vector

‖e (t)‖
2
≤ exp−δt λmax (P )

λmin (P )
‖e (0)‖

2

+
‖P‖ ‖D‖

ǫλmin (P )

t
∫

0

exp−δ(t−τ) ‖w (τ)‖
2
dτ

Finally, by the assumption A2, we have that

‖e (t)‖ ≤ γ exp- δ

2
t ‖e (0)‖+µ

(

t
∫

0

exp−δ(t−τ) F 2(‖y‖)dτ

)

1
2

where γ =
(

λmax(P )
λmin(P )

)1/2

. Let T1 < ∞ be the time

when γ exp−(δ/2)T1 ‖e (0)‖ < b. Thus it directly follow the

condition (8) which proves the Lemma.
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