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Abstract— A quantized progressive second price auction
mechanism called ADQ-PSP is presented which improves upon
the performance of the so-called Q-PSP mechanism presented
in [1], [2]. The Q-PSP mechanism was developed for the fast
convergence properties that can be proven for it subject to the
assumption that all agents share similar demand (i.e. marginal
valuation) functions. For the ADQ-PSP mechanism applied to
agent populations with randomly distributed demand functions
it is shown in this paper that the states (i.e. bid prices and
quantities) of the corresponding dynamical systems rapidly
converge with high probability to a quantized (Nash) equilib-
rium with a common price for all agents. This property holds
for ensembles containing populations which have significantly
different demand functions. Furthermore, the convergence rates
are independent of the number of quantization levels. Finally,
the ǫ-efficiency of the quantized equilibria is established and
numerical examples are given.

I. INTRODUCTION

This work is motivated by pricing problems for com-

munication networks. Flat rate pricing is a scheme that

charges a fixed fee for service regardless of usage and it is

widely employed not only in traditional telecommunications,

electricity and transportation areas, but also, for instance, for

pricing Internet access. However, it has many well known

drawbacks (see e.g. [1], [3], [4]); this has led to the study

of game theoretic methods for the design of market pricing

mechanisms because each agent (consumer) in such networks

will typically have its own demand (marginal valuation)

function and revenue function.

The classical Vickrey-Clarke-Groves (VCG) mechanism

[5] has been applied to distributed large-scale systems due

to the fact that for VCG (i) incentive compatibility (i.e. an

agent’s bids corresponds to true valuations) is a dominant

strategy and (ii) knowledge of other agents’ valuations (de-

mand functions) cannot improve an agent’s expected utility.

This reduces the complexity of auction mechanism design

and of the decision making itself. The modification and

generalization of the VCG mechanism has been studied in

[3], [6], and [7], among others. Recently, a non-VCG efficient

mechanism design was proposed by R. Jain [8] and R. Jain

and P. Varaiya [9] to achieve efficiency (i.e achievement of

social optima), budget-balance and individual rationality by

compromising on incentive compatibility in combinatorial

(i.e. agents may bid on combinations of items) and double

(i.e. sellers and buyers submit bids) auctions.

The convergence analysis of bidding processes usually

focuses upon the existence and stability of those Nash equi-
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libria which can in principle be obtained from the differential

equations describing the time evolution of allocated resources

and agents’ payments (see e.g. [10], [11]). Furthermore,

approximations have been used [12] to obtain computa-

tional tractability for the linear programming and integer

programming problems of equilibrium computation which

would otherwise be NP-hard. In general, convergence rates

of auction processes have not been thoroughly studied, an

exception being the PSP analysis [4] where the rate depends

upon the reserve price, see below.

In [3], [4], a so-called Progressive Second Price auction

mechanism (PSP) was proposed for dynamic market-pricing

and the allocation of variable-size resources in communica-

tion networks. This mechanism efficiently and dynamically

allocates a divisible resource to price-taking agents capable

of exerting their market power to generate successive price

and quantity bids. It was proved in [4] that this VCG-like PSP

mechanism has the desirable properties of incentive compat-

ibility (i.e truthful bidding) and efficiency (i.e achievement

of social optima), in that an (ǫ-Nash) equilibrium is achieved

if all agents use truthful ǫ-best responses to the strategy

profile (i.e. bid set) of their opponents at each iteration.

However, the rate of convergence is inversely proportional

to ǫ which corresponds to a bid fee. P. Maille and B. Tuffin

presented a one-step bid version of PSP in [13] to avoid the

slow convergence of the PSP algorithm; but the accelerated

convergence is achieved at a computational cost, furthermore

it requires a large message space. This is the case since

agents are required to use a high dimensional bid set in

order to closely approximate their own demand functions

and hence to guarantee the precision and efficiency of the

mechanism.

A quantized version of PSP, called the Quantized Pro-

gressive Second Price auction mechanism (Q-PSP), was

developed in [1] to deal with the slow convergence and signal

overhead problems of PSP. Q-PSP uses the basic allocation

rules and cost functions of the PSP mechanism in that at each

stage each agent submits a two-dimensional bid consisting of

the reserve price (the highest price an agent is willing to pay

for the unit of a resource) and the corresponding quantity

of this resource. However the Q-PSP mechanism operates as

follows: at each step the best quantity response for each agent

is achieved with respect to the previous strategy profile of its

opponents, i.e. the quantity such that the marginal valuation

of the agent exceeds its current reserve price; the unit bid

price is then chosen based on this best quantity and on

the agent’s market price (inverse residual supply) function;

finally the bid quantity at this stage is calculated based on the

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThC12.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 5476



unit bid price and the agent’s own demand function. In Q-

PSP auctions all agents submit quantized bids synchronously

until a (Nash) equilibrium in the quantized framework is

reached or periodic behaviour (i.e. an oscillation) sets in. It

was proved in [1] that if all agents have similar demand

functions the nonlinear dynamical system corresponding

to this mechanism is such that its state (equivalently, bid

prices and bid quantities) process converges, or begins to

oscillate, in at most five iterations; not only is this behaviour

independent of the number of agents involved, but it is also

independent of the number of quantization levels.

In this paper an extended version of Q-PSP, called the

Aggressive-Defensive Quantized Progressive Second Price

auction mechanism (ADQ-PSP) is presented in order to

handle the more general case where the agents may have

significantly different demand functions. We consider agents’

behaviours in two different situations during the dynamical

auction process: that where the agents’ aggregate demand

is less than, or, respectively, exceeds, the market supply

(resource constraint). In these cases two different strategies

are respectively employed: the defensive quantized strategy

where the response is that used in the Q-PSP mechanism,

and the aggressive response which requires that the price

offer is set equal to the lowest price which exceeds each

agent’s marginal valuation and the quantity offer is then set

equal to the value of inverse marginal valuation function

corresponding to the calculated price response. (This scheme

may be motivated by the fact that the agents’ knowledge

that the market supply is insufficient with respect to agents’

current aggregate demand leads to aggressive bidding.)

By considering agent populations with randomly dis-

tributed demand functions, it is shown here that the nonlinear

dynamics induced by the ADQ-PSP mechanism converges

with high probability to a small set of quantized bid prices

at the first step. Subsequently the available quantized bid

price set shrinks linearly until the price component of the

state process of the associated dynamical system converges

(see Fig. 1). In addition, approximate efficiency and (Nash)

equilibria are shown to be achieved within this quantized

framework.

II. AD QUANTIZED PROGRESSIVE SECOND PRICE

AUCTIONS

A. Quantized Progressive Second Price Auction

To begin we give a summary of the PSP and Q-PSP

auctions introduced respectively in [4] and [1].

• In a non-cooperative game, N agents buy the fixed

amount of bandwidth C from one seller.

• Each agent Ai, 1 ≤ i ≤ N, makes a two-dimensional

bid si = (pi, qi) to the seller, where qi is the quantity

the agent desires and pi is the unit-price the agent would

like to pay for qi.

• The bidding profile is defined as s , [si]1≤i≤N and

s−i , [s1, · · · , si−1, si+1, · · · , sN ]

is the profile of Agent Ai’s opponents.
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Fig. 1. Rapid convergence to a final bid price of an ADQ-PSP system with
15 agents (see Theorem III.4). (Note that in this and all subsequent simu-

lation figures neither the horizontal nor the vertical scales are necessarily

the same.)

• The market price function (MPF) of Agent Ai is a left-

continuous function defined as:

Pi(z, s−i) = inf







y ≥ 0 : C −
∑

pk>y,k 6=i

qk ≥ z







which is interpreted as the minimum price an agent bids

in order to obtain the bandwidth z given the opponents’

profile s−i. Clearly the function is only reasonable when

z > 0. Its inverse function Qi is defined as follows:

Qi(y, s−i) =



C −
∑

pk>y,k 6=i

qk





+

,

which means the maximum available quantity at a bid

price of y given s−i.

• The PSP allocation rule ( [14]) is defined as

ai(s) = min{qi,
qi

∑

k:pk=pi
qk

Qi(pi, s−i)},(II.1)

ci(s) =
∑

j 6=i

pj [aj(0; s−i) − aj(si; s−i)] , (II.2)

where ai denotes the quantity Agent Ai obtains by a bid

price pi (when the opponents bid s−i) and the charge

to Agent Ai by the seller is denoted ci.
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• A real valued function θ(·) is an (elastic) valuation

function on [0, C] if

– θ(0) = 0;

– θ is differentiable;

– θ
′ ≥ 0, non-increasing and continuous;

– There exists γ, γ > 0, such that for all z, z ∈
[0, C], θ

′

(z) > 0 implies that for all η ∈ [0, z),
θ
′

(z) ≤ θ
′

(η) − γ(z − η).

Its derivative function θ
′

(·) on [0, C] is called an (elas-

tic) demand function.

• Agent Ai’s utility is defined as

ui(s) = θi(ai(s)) − ci(s), (II.3)

which implies the agent’s preferences.

• Given s−i, Agent Ai’s ǫ-best response si = (wi, vi)
( [4]) is given by:

vi = sup
{

z ≥ 0 : θ
′

i(z) > Pi(z)
}

− ǫ

θ
′

i(0)

(best quantity reply) (II.4a)

wi = θ
′

i(vi) (best unit-price reply), (II.4b)

where
∫ z

0
Pi(η)dη ≤ bi, ǫ > 0 is the bid fee, bi is Agent

Ai’s budget, and every agent has an elastic demand

function. Further it is shown in [4] that the bidding

iterations converge at a rate inversely proportional to

ǫ to an ǫ-Nash equilibrium.

We now introduce the Quantized Progressive Second Price

Auction and the associated dynamical system in [1].

Hypothesis I. In the context of the equations (II.4), we

adopt the following hypotheses:

1) All bid quantities q are bounded by C, i.e. 0 ≤ q ≤ C,

2) There is no bid fee, i.e. ǫ = 0,

3) The budget bi of each agent is sufficiently large that

the condition
∫ z

0
Pi(η)dη ≤ bi in (II.4) is always

satisfied. �

Due to 3) of Hypothesis I above, the integral constraint in

(II.4) is not referred to again.

Subject to Hypothesis I, the quantized PSP (Q-PSP)

dynamical (state space) system (with state (v, p, q)) equations

are defined as follows:

P k+1

i (z, sk
−i) = inf







y ≥ 0 : C −
∑

pk
j
>y,j 6=i

qk
j ≥ z







vk+1

i = sup
{

z ≥ 0 : θ
′

i(z) > P k+1

i (z, sk
−i)

}

(II.5a)

pk+1

i = P k+1

i (vk+1

i , sk
−i) (II.5b)

qk+1

i = θ
′−1

i (pk+1

i ), (II.5c)

with the initial conditions p0
i ∈ B0

p , q0
i = θ

′−1

i (p0
i ), 0 ≤ k <

∞, 1 ≤ i ≤ N . Here B0
p is defined as the initial quantized

bid price set. One may verify that {(pk
i , qk

i ); 1 ≤ i ≤ N, k ≥
0} constitutes a minimum dimension state process for the

dynamical system (II.5) and for all k, Bk
p ≡ {pk

i ; 1 ≤ i ≤
N} ⊆ B0

p and hence
{

qk
i , 1 ≤ i ≤ N

}

⊆ ⋃

i θ
′−1

i (B0
p).

It was proved in [1] that the nonlinear dynamic system

(II.5) converges or begins to oscillate in at most five iterations

if all agents share similar demand functions.

B. AD Quantized Progressive Second Price Auctions

The Aggressive-Defensive Quantized Progressive Second

Price auction (ADQ-PSP) is formulated as follows:

P k+1

i (z, sk
−i) = inf







y ≥ 0 : C ≥ z +
∑

pk>y,k 6=i

qk







vk+1

i = sup
{

z ≥ 0 : θ
′

i(z) > P k+1

i (z, sk
−i)

}

(II.6a)

pk+1

i =















P k+1

i (vk+1

i , sk
−i)

(if
∑

1≤j≤N qk
j < C)

min
{

pk
j ∈ Bk

p : pk
j > P k+1

i (vk+1

i , sk
−i)

}

(if
∑

1≤j≤N qk
j ≥ C)

(II.6b)

qk+1

i = Di(p
k+1

i ) ≡ θ
′−1

i (pk+1

i ), (II.6c)

where P k+1

i (·, sk
−i) is seen to be defined as in the original

Q-PSP system and may be verified to be continuous from

the left. vk+1

i is also defined as in the original system.

The aggressive and defensive strategies of ADQ-PSP are

illustrated by Fig. 2.
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Fig. 2. Switching strategies in (II.6)

Compared with the Q-PSP mechanism, each agent in

ADQ-PSP has a switching strategy which works in the

following way. The quantized best strategy is one of the

adjacent two prices on either side of the intersection of the

agent’s demand function and its market price function (the

two prices corresponding to p1 and p3 in Fig. 2). The original

Q-PSP strategy, where agents bid the lower one of these two

prices (i.e. p1 in Fig. 2), can be regarded as a defensive

strategy. Bidding the higher price (p3 in Fig. 2) can be viewed

as an aggressive action. When the total quantity C is violated,

i.e. the sum of bid quantities is greater than C, agents choose

to act aggressively with

pk+1

i = min
{

pk
j ∈ Bk

p : pk
j > P k+1

i (vk+1

i , sk
−i)

}

.

As stated above, this may be motivated by the interpretation

that the MPF is a common knowledge and agents obtain the
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information that the total quantity is limited (see the right

part of Fig. 2). On the other hand, they bid defensively with

pk+1

i = P k+1

i (vk+1

i , sk
−i),

when there is any unallocated quantity left (see the left part

of Fig. 2).

Remark II.1. The best reply bid analysis in Section 2.3 of

[1] still holds for (II.6). It has been noted above that the

best reply bid for each agent Ai at the kth step, i.e. (wk
i , vk

i )
with wk

i = θ
′

i(v
k
i ), is derived from the intersection of the

agent’s own demand function and its market price function.

And the quantized best strategy is one of the adjacent two

quantization levels on either side of this intersection, which

correspond to the aggressive and defensive strategies. Hence,

the aggressive-defensive quantized strategy is optimal up to

a quantization level, that is to say, the strategy is a γ-best

reply with

γ = ui(v
k+1

i , sk
−i) − ui(a

k+1(pk+1

i , sk
−i), s

k
−i),

where ui is the utility function of Agent Ai and defined in

(II.3).

Moreover, if the states of an ADQ-PSP dynamical system

converge to a quantized price p∗, then s∗ is a δ-Nash

equilibrium with s∗i = (p∗, θ
′−1

i (p∗)) in the sense that:

ui(s
∗
i , s

∗
−i) ≥ sup

pi∈B0
p

ui(si, s
∗
−i) − δ, (II.7)

where δ is such that

δ > max
i

|ui(s
∗) − ui((p

∗∗, θ
′−1

i (p∗∗)), s∗−i)|(II.8)

p∗∗ = min{p : p > p∗, p ∈ B0
p}.

�

III. RAPID CONVERGENCE OF ADQ-PSP

In order to study the convergence of (II.6) we will first

create a new auction dynamical system by a possible left

shift on both agents’ demand functions and the corresponding

market price functions. It is then shown that the bid prices

generated by the new dynamical system for all agents are the

same as those generated by the original ADQ-PSP dynamical

system (II.6). The new dynamical system possesses a single

market price function (which we term the Enveloping Market

Price Function) for all agents at each step. This significantly

simplifies an otherwise very complex analysis; moreover,

under a set of reasonable probability assumptions on the

initial bid prices and agents’ demand functions, we will

show that such a system converges with high probability to a

small (compared with the number of agents) set of available

bid prices at the first step. Subsequently, the bid price set

decreases linearly until the system converges.

A. Enveloping Market Price Function (EMPF)

We begin by defining the enveloping market price function

as

PE(z, s) = inf

{

y ≥ 0 : C ≥ z +
∑

pk>y

qk

}

,

0 ≤ z ≤ C (III.9)

which denotes the market price function (MPF) without an

agent being omitted; this gives an upper contour to the set

of market price curves. Comparing PE(·) with any market

price function

Pi(z, s−i) = inf







y ≥ 0 : C ≥ z +
∑

pk>y,k 6=i

qk







,

1 ≤ i ≤ N,

we obtain the following results (see Appendix of [15]):

(a) If C ≥ z > C − ∑

pk≥pi,k 6=i qk,

Pi(z, s−i) = PE(z, s) ≥ pi, (III.10)

(b) If 0 < z ≤ C − ∑

pk≥pi,k 6=i qk,

Pi(z, s−i) = PE(z − qi, s) ≤ PE(z, s) < pi.(III.11)

Fig. 3 illustrates the results above.
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Fig. 3. Relationship between Pi and P
E

B. PE for the Dynamical ADQ-PSP System

Define pk
max ∈ Bk

p as the maximum bid price at the kth

step, and pk
T ∈ Bk

p ∪ {p0 = 0} as the threshold price which

satisfies

PEk
(0, sk) = pk

T . (III.12)

Define

θ̂
′k

i (z) ,







θ
′

i(z + qk
i ) if pk

i > pk
T ;

θ
′

i(z) otherwise,

(III.13)

as the shifted demand function, which is adopted to compen-

sate for the difference between between Pi and PE in the

sense that the recursion using PE and θ̂
′

i generates the same

bid {pk
i } as the original ADQ-PSP system.

For convenience we define

Di(p) , θ
′−1

i (p), and D̂k
i (z) , θ̂

′k−1

i (z).
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Then the PE dynamical ADQ-PSP system is specified by:

PEk+1
(z, ŝk) = inf







y ≥ 0 : C ≥ z +
∑

p̂k
j
>y

q̂k
j







v̂k+1

i = sup
{

z : θ̂
′k

i (z) > PEk+1
(z, ŝk

−i)
}

(III.14a)

p̂k+1

i =

{

PEk+1
(v̂k+1

i , ŝk
−i) if

∑

1≤j≤N q̂k
j < C

p̂
′k+1

i if
∑

1≤j≤N q̂k
j ≥ C

(III.14b)

q̂k+1

i = Di(p̂
k+1

i ), (III.14c)

with

p̂
′k+1

i = min
{

p̂k
j ∈ B̂k

p : p̂k
j > PEk+1

(v̂k+1

i , ŝk
−i)

}

ŵk = θ̂
′k

i (v̂k+1

i )

ŝk =
{

(p̂k
i , q̂k

i ); 1 ≤ i ≤ N
}

B̂k
p =

{

p̂k
i ; 1 ≤ i ≤ N

}

.

Compared to (II.6), we now apply an EMPF to take the

place of each agent’s individual MPF in such a way that

only one MPF needs to be considered at each iteration

for all agents in (III.14). In order to guarantee for each

agent the same system behavior as in (II.6), we employ the

shifted demand functions θ̂
′k

i defined in (III.13) instead of

θ
′

i in (III.14). We claim that with the same initial states,

both systems (II.6) and (III.14) possess the same system

trajectories. Hence, if the sequence of prices (i.e. the price

components of the states) generated by one system converges

then so it must in the other system.

C. Main Results

We now adopt the following general hypothesis concern-

ing the initial states of the ADQ-PSP systems:

Hypothesis IC. The initial conditions

s0 ≡ (p, q)0 =
[

(p0
1, q

0
1), 0N , q0

N )
]

, N > 2

for the ADQ-PSP system are such that 0 < p0
i , 0 < q0

i ,

1 ≤ i ≤ N , where p0
i < p0

i+1, 1 ≤ i ≤ N − 1. The initial

set of prices shall be denoted by B0
p = {p0

i ; 1 ≤ i ≤ N}.

Moreover, if p0
T = 0, p0

T+i ≡ p0
i for all 1 ≤ i ≤ N ; and

if p0
T = p0

j > 0, p0
T+i ≡ p0

j+i for all 1 ≤ i, j, i + j ≤ N . �

Then we have

Lemma III.1. ( [15]) Given the same initial states (s0 =
ŝ0), the systems (II.6) and (III.14) generate the same trajec-

tories (states). That is to say, sk = ŝk, k ≥ 0.

From Lemma III.1 and the definition of the modified

demand functions, we obtain in [15] the following facts:

Corollary III.2. ( [15]) Subject to Hypothesis IC, all agents

in an ADQ-PSP system (III.14) are such that 0 = pk
T ≤ pk

i

if
∑

1≤j≤N qk
j < C, and such that bid prices pk+1

i at the

next step satisfy

0 = pk
T ≤ pk+1

i < pk
i ≤ pk

max.

Otherwise, if
∑

1≤j≤N qk
j ≥ C at the k-th step,

pk
T < pk+1

i ≤ pk
max

holds for all agents.

In all cases, pk
max ≥ pk+1

max for all k ≥ 0.

In the following, we first establish a general estimation of

the number of convergence steps for an ADQ-PSP system

(II.6) or (III.14).

Let us define Nk as the cardinality of Bk
p .

Lemma III.3. ( [15]) For (III.14), if Nk = m > 1 at the

kth step (k ≥ 0), then the system converges within 2(m− 1)
additional steps.

Outline of proof: The proof argument has three phases:

First we show under the condition
∑

1≤j≤N qk
j < C for

k = l and l +1 with l ≥ 0, at least one bid price is removed

from Bk
p at each two steps. Then we demonstrate under the

condition
∑

1≤j≤N qk
j ≥ C, at least one bid price leaves the

system at each step until
∑

1≤j≤N qk
j < C. Finally, we prove

that at least one price disappears at each switching between

the two strategies. See [15] for the complete proof. �

From Lemma III.3, it is clear that a dynamical system

(III.14) with N agents and N initial bid prices converges to

a unique price within at most 2(N − 1) steps. Furthermore,

the following theorem proves that, under some assumptions

of the initial bid price set and the probability measure of the

agents’ demand functions, the system (III.14) will converge

rapidly in a limited number of steps with a high calculable

probability.

We finally adopt the following hypothesis:

Hypothesis DF. The set of agents’ demand functions

{θ′

i, 1 ≤ i ≤ N} are linear and determined independently

by the intercepts (xi, 0) and (0, yi), where {xi; 1 ≤ i ≤ N}
are independent random variables with uniform distribution

on [0, B] and {yi; 1 ≤ i ≤ N} are also independent random

variables with uniform distribution on [0, A], A > pN
0 . �

Then we may establish the main result.

Theorem III.4. ( [15]) Subject to Hypotheses I, IC and DF,

the ADQ-PSP system (II.6) with N agents converges to one

final bid price within at most 2m − 1 steps, m ≥ 3, with

probability greater than

1 − (N − m + 1) exp
−2(m − 2)2α2

m
;

here α is strictly greater than 0 and is determined by

p0
N , A,B.

Outline of proof: The proof argument is in two parts. First

it is shown that, under the given hypotheses, the probability

for the system to keep more than m, m ≥ 3, bid prices after

the first iteration decreases exponentially with respect to m.

Then by use of Lemma III.3 it is shown that a system which

has m bid prices initially will converge to a limit price in

less than (2m − 2) steps. See [15] for the detailed proof. �
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Remark III.5. (Efficiency of ADQ-PSP)

When the ADQ-PSP system converges to a quantized price

p∗ and the quantity allocation is a∗, the steady state is a δ-

Nash equilibrium in the quantized framework as described

in (II.7) and (II.8). Applying Proposition 3 in [4], we obtain

max
a∈A

∑

i

θi(ai) −
∑

i

θi(a
∗
i ) = O(

√
δκ)

where A is the set of quantity allocations under the quantiza-

tion assumption, and it is assumed that for all i, 0 < i ≤ N ,

the elastic demand functions θ
′

i satisfy

θ
′

i(z) − θ
′

i(z
′) > −κ(z − z′),

whenever z > z′ ≥ 0 (see Assumption 2 in [4]). �

Two numerical simulations are presented below to demon-

strate the convergence behaviors of dynamical ADQ-PSP

systems. Fig. 1 displays such a system with 15 agents which

converges in two steps. Fig. 4 illustrates convergence in

two steps in the case where 40 agents compete for the

quantity C = 150. These two cases illustrate the convergence

behaviors of dynamical ADQ-PSP systems with significantly

different demand curves, showing the rapid convergence

property can still hold for dynamical ADQ-PSP systems in

general cases.
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Fig. 4. Rapid convergence to a final bid price of an ADQ-PSP system
with 40 agents.

IV. CONCLUSION AND FUTURE WORK

Subject to probabilistic assumptions on the agents’ de-

mand functions, we provide a probabilistic analysis for

the convergence of ADQ-PSP dynamical systems. Rapid

convergence is achieved even if all agents have significantly

different demand functions and efficiency is guaranteed up

to a quantization level. Furthermore, the convergence results

have been extend to the double auction case where sellers and

buyers compete for one divisible commodity without budget

constraints on the buyers’ side in the recent work [15].

Finally we remark that is of interest to extend the analysis

here to auctions where bids are made on both the supply and

the demand sides for multiple commodities with and without

budget constraints.
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