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Abstract— We consider the maximum lifetime routing prob-
lem in wireless sensor networks, which has been formulated
as a linear programming problem in the literature (Chang
and Tassiulas [1]). The optimal value and optimal solution
of this problem provide optimal flows for the network and
the corresponding predicted lifetime, respectively. We study
the situation when there is uncertainty in various network
parameters (available energy and energy depletion rates). We
show that for specific, yet typical, network topologies the actual
lifetime will reach the predicted value with a probability that
converges to zero as the number of nodes grows large. We
develop a series of alternative robust problem formulations,
ranging from worst-case to optimistic. A set of parameters
enable the tuning of the conservatism of the formulation to
obtain network flows with a desirably high probability that the
corresponding lifetime prediction will be achieved. We establish
a number of properties for the robust network flows and provide
an illustrative set of numerical results to highlight the trade-off
between predicted lifetime and the probability it is achieved.

I. INTRODUCTION

Wireless Sensor Networks (WSNETs) have emerged as

an exciting new paradigm of inexpensive, easily deployable,

completely untethered, self-organizing device networks that

enable the automated and intelligent monitoring and control

of physical systems. WSNET nodes can be equipped with a

variety of sensors, have a built-in radio to communicate with

each other, are powered by batteries, and have limited infor-

mation storage and processing capabilities. WSNETs can be

useful in a plethora of applications including industrial and

building automation, health monitoring, wildlife monitoring,

and asset and personnel tracking [2].

Battery technology (at small enough sizes appropriate for

WSNETs) imposes very stringent limitations on what the

nodes can do and on the lifetime of the network. In many

applications a large number of sensor nodes have to be

deployed; replacing batteries is not desirable and may even

be impossible. Still, one would like to use the WSNET for

long periods, often years. As a result, energy conservation

is a primary concern and aggressive optimization of network

operations becomes indispensable.

In this paper we focus on the problem of selecting an

optimal routing strategy for routing packets from the data

collecting sensor nodes to a set of gateways (or sinks)

so as to minimize the rate at which energy is consumed,
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or equivalently, to maximize the lifetime of the network.

Routing, of course, has received quite a bit of attention in

WSNETs. Even the task of finding and maintaining correct

routes to sinks is not trivial [3]. Optimization, primarily to

minimize energy use, is a harder task. Most of the literature

(e.g., [4–8]) focuses on finding a single path from an origin to

a specific destination, often adapting to a changing topology

and statistics on connectivity and node availability. A more

static view is adopted in [1] which considers long-term

average flows between nodes as the quantities that are subject

to optimization. [9] devises a similar formulation and studies

the routing problem in some regular planar topologies.

The starting point of our work is the flow optimizing

formulation of [1]. Key data to solving this problem include

the total available energy at the nodes and the rates at which

packet transmissions and receptions consume energy. These

quantities are hardly known with any degree of certainty or

accuracy. Yet, they critically affect both the optimal solution

– the network flows – and the corresponding optimal value

– the predicted network lifetime. The optimal value of the

problem will in fact be equal to the actual network lifetime

if all problem data are known with certainty. Uncertainty

though, has rather drastic consequences rendering the pre-

dicted lifetime overly optimistic. We show that for specific,

yet typical, topologies including linear and two-dimensional

grid-like networks, the actual lifetime will reach the predicted

value with a probability that converges to zero as the number

of nodes grows large. This suggests that the optimal value

of the maximum lifetime formulation can not be used as

a “quote” for the actual network lifetime. We also find that

uncertainty impacts the optimal policy as well, and one needs

to use a different set of flows to protect against uncertainty.

To that end, we develop a series of alternative robust problem

formulations, ranging from worst-case to optimistic. A set

of parameters enable the tuning of the conservatism of the

formulation to obtain network flows with a high probability

that the corresponding lifetime prediction will be achieved

– a lifetime guarantee probability. Our robust formulations

are based on recent work in robust linear programming

in [10, 11]. However, the problem we consider has special

structure which we exploit to show a number of interesting

properties of the robust solutions and establish the result on

the optimism of the predicted lifetime.

The rest of the paper is organized as follows. In Sec. II

we present the nominal and a series of robust problem

formulations based on a parameter uncertainty model we

introduce. Sec. III establishes key properties of optimal

flows that maximize the network lifetime under the vari-

ous formulations. Sec. IV considers a restricted uncertainty

setting (when only node initial energies are uncertain) and
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establishes for specific topologies that the predicted network

lifetime is achieved with a probability that converges to zero

as the number of nodes increases. Sec. V contains numerical

results. Conclusions are in Sec. VI.

II. MAXIMUM LIFETIME ROUTING FORMULATIONS

We represent a WSNET as a directed graph G (N ,A )
where N is the set of all nodes and A is the set of all

directed links (i, j) with i, j ∈ N . Link (i, j) exists if and

only if j ∈ Si, where Si is the set of nodes “reachable”

from i. Each node i has an initial battery energy of Ei. The

transmission energy consumed at node i to transmit a data

unit to node j is denoted by et
ij and the corresponding energy

consumed at the receiver j is denoted by er
ij . We assume that

every WSNET node is able to relay packets and to adjust

the transmit power level to the minimum required in order

to reach the intended receiver.

We define the set of origin nodes O containing all nodes

i with a positive (constant) information generation rate Qi,

i.e., O = {i|Qi > 0, i ∈ N }. Let D be a set of sink nodes.

We assume that O∩D = ∅. We will refer to nodes in N \D

simply as sensor nodes. Every node in O seeks to send each

data unit generated to one of the nodes in D , not necessarily

the same one for each data unit. To that end, node i may use

multiple other nodes as relays. Let qij be the transmission

rate of information from node i to node j to be assigned by

the routing algorithm. We will use q to denote the vector

of all qij’s for all i ∈ N and j ∈ Si.
1 Note that the

routing decision and the transmission power level selection

are intrinsically connected since the power level is adjusted

depending on the choice of the next hop node.

We consider only the energy consumed for transmissions

and receptions. Additional energy consumption terms could

be incorporated into et
ij , e

r
ij , and Ei, for instance a constant

processing energy cost per received data unit can be easily

incorporated into er
ij . We also assume that et

ij is monotoni-

cally increasing with the distance between two nodes i and

j. Finally, the sink nodes are assumed to be powered by line

power or have an infinite amount of initial energy.

The lifetime of a sensor node i under a given set of flows

q is given by

Ti(q) =
Ei

∑

j∈Si
et
ijqij +

∑

j|i∈Sj
er
jiqji

, ∀i ∈ N \ D .

We define the network lifetime under flow q as the minimum

lifetime over all nodes, i.e.,

Tnet(q) , min
i∈N \D

Ti(q).

The network lifetime is equivalent to the earliest time a

sensor node runs out of energy. Let q̂ij = qijT ; [1] observed

that the maximum lifetime routing problem can be written

as the following linear programming problem:

max T (1)

s.t.
∑

j|i∈Sj

q̂ji + QiT =
∑

j∈Si

q̂ij , ∀i ∈ N \ D ,

1In general, we use bold letters to denote vectors and all vectors are
assumed to be column vectors unless explicitly stated otherwise.

∑

j∈Si

et
ij q̂ij +

∑

j|i∈Sj

er
jiq̂ji ≤ Ei, ∀i ∈ N \ D ,

q̂ij ≥ 0, ∀i ∈ N , ∀j ∈ Si,

T ≥ 0,

where the decision variables are T and the q̂ij’s. The

first set of constraints correspond to flow conservation for

sensor nodes. The second set of constraints follows from the

definition of lifetime. We refer to problem (1) as the nominal

problem. Note that it is always feasible if for every sensor

node there exists a path to a sink node. We assume that this

will always be the case.

The data for the nominal problem are the quantities et
ij ,

er
ij , and Ei and these affect both the optimal solution and the

optimal value. To accommodate uncertainty, we model the

data as symmetrically bounded nonnegative random variables

with ranges given by: et
ij ∈ [ēt

ij − ∆et
ij , ē

t
ij + ∆et

ij ],
er
ij ∈ [ēr

ij − ∆er
ij , ē

r
ij + ∆er

ij ], and Ei ∈ [Ēi − ∆Ei, Ēi +
∆Ei]. We will call ēt

ij , ēr
ij , and Ēi the nominal values

and assume that these are the means of the corresponding

random variables. The values ∆et
ij , ∆er

ij , and ∆Ei are the

maximum deviations from the mean and are defined so that

all random variables we consider have positive support. We

define the uncertainty sets J t
i , {j|∆et

ij > 0, j ∈ Si} and

Jr
i , {j|∆er

ji > 0, i ∈ Sj}, ∀i ∈ N \ D .

Due to the uncertainty of the data, the optimal solution of

the nominal problem (1) may not be feasible. To guarantee

feasibility for any realization of the data we consider the

following worst-case formulation:

max T (2)

s.t.
∑

j|i∈Sj

q̂ji + QiT =
∑

j∈Si

q̂ij , ∀i ∈ N \ D

∑

j∈Si

ēt
ij q̂ij +

∑

j∈Jt
i

∆et
ij q̂ij +

∑

j|i∈Sj

ēr
jiq̂ji

+
∑

j∈Jr
i

∆er
jiq̂ji ≤ Ēi − ∆Ei, ∀i ∈ N \ D ,

q̂ij ≥ 0, ∀i ∈ N , ∀j ∈ Si,

T ≥ 0.

We refer to the above problem as the fat routing problem.

By construction, its optimal solution is feasible for any

data realization but it may be overly conservative, that is,

predicting a much smaller lifetime than what can actually be

achieved. Intuitively, the probability that all data values take

their “extreme” value should not be high in most cases. This

motivates a less conservative formulation we present next.

We introduce the uncertainty budget Γe
i ∈ [0, |J t

i | + |Jr
i |]

for every sensor node i and define the restricted uncertainty

set Ri(Γ
e
i ) as

Ri(Γ
e
i ) =

{

et
ij , e

r
ji

∣

∣

∣
et
ij ∈ [ēt

ij − ∆et
ij , ē

t
ij + ∆et

ij ],

er
ij ∈ [ēr

ij − ∆er
ij , ē

r
ij + ∆er

ij ],
∑

j∈Jt
i

|et
ij − ēt

ij |
∆et

ij

+
∑

j∈Jr
i

|er
ji − ēr

ji|
∆er

ji

≤ Γe
i

}

.

The role of the uncertainty budget Γe
i is to limit the sum of

the normalized deviations of et
ij and er

ji. One can also view
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the uncertainty budget constraint as an ℓ1-norm constraint for

the vector
(

( et
ij−ēt

ij

∆et
ij

)

j∈Jt
i

,
( er

ji−ēr
ji

∆er
ji

)

j∈Jr
i

)

. In short, Ri(Γ
e
i )

is the set of all realizations of et
ij , e

r
ji that satisfy the uncer-

tainty budget constraint. Similarly, we define ΓE
i ∈ [0, 1]

to be the uncertainty budget for Ei. In particular, Ei ∈
[Ēi − ΓE

i ∆Ei, Ēi + ΓE
i ∆Ei] and we will also refer to this

interval as the restricted uncertainty set for Ei. The following

robust maximum lifetime routing problem is formulated so

that we can guarantee feasibility for all data realizations in

the restricted uncertainty sets:

max T (3)

s.t.
∑

j|i∈Sj

q̂ji + QiT =
∑

j∈Si

q̂ij , ∀i ∈ N \ D

max
et

ij
,er

ji
∈Ri(Γe

i
)

{

∑

j∈Si

et
ij q̂ij +

∑

j|i∈Sj

er
jiq̂ji

}

≤ Ēi − ΓE
i ∆Ei, ∀i ∈ N \ D ,

q̂ij ≥ 0, ∀i ∈ N , ∀j ∈ Si,

T ≥ 0.

Using duality it can be shown that the robust routing problem

is equivalent to the following linear programming problem:

max T (4)

s.t.
∑

j|i∈Sj

q̂ji + QiT =
∑

j∈Si

q̂ij , ∀i ∈ N \ D

∑

j∈Si

ēt
ij q̂ij +

∑

j|i∈Sj

ēr
jiq̂ji +

∑

j∈Jt
i

ωij +
∑

j∈Jr
i

νji

+Γe
i pi ≤ Ēi − ΓE

i ∆Ei, ∀i ∈ N \ D ,

pi + ωij ≥ ∆et
ij q̂ij , ∀i ∈ N \ D , j ∈ J t

i ,

pi + νji ≥ ∆er
jiq̂ji, ∀i ∈ N \ D , j ∈ Jr

i ,

q̂ij ≥ 0, ∀i ∈ N , j ∈ Si,

ωij ≥ 0, ∀i ∈ N \ D , j ∈ J t
i ,

νji ≥ 0, ∀i ∈ N \ D , j ∈ Jr
i ,

pi ≥ 0, ∀i ∈ N \ D

T ≥ 0.

This result is summarized in the following theorem; we omit

the proof due to space limitations.

Theorem II.1 The robust routing problem (3) is equiv-

alent to the linear programming formulation (4). Fur-

thermore, by solving (4) we obtain an optimal solution

(q̂R, TR,pR,ωR,νR) so that (q̂R, TR) is feasible for (3)

and TR is equal to the optimal value of (3).

III. PROPERTIES OF THE OPTIMAL SOLUTIONS

In this section, we study the relationship between the for-

mulations introduced earlier and establish certain properties

of the corresponding optimal solutions. We also introduce

a metric – the lifetime guarantee probability – to quantify

how likely it is for the lifetime predicted by one of these

formulations to be achieved.

A. Optimal Lifetime

Let T ∗
N , T ∗

F , T ∗
R denote the optimal values of the nominal,

fat, and robust routing problem, respectively. Let Γe =
(Γe

1, . . . ,Γ
e
|N \D|) and ΓE = (ΓE

1 , . . . ,ΓE
|N \D|). Note that

T ∗
R depends on Γe and ΓE . To express this dependence, we

write T ∗
R(Γe,ΓE). Due to space limitations, we omitted the

proofs for the following results.

Proposition III.1 T ∗
R(Γe,ΓE) is an non-increasing function

of both Γe and ΓE . Furthermore, T ∗
F ≤ T ∗

R(Γe,ΓE) ≤ T ∗
N .

Standard sensitivity analysis results from linear program-

ming yield the following corollary.

Corollary III.2 T ∗
R(Γe,ΓE) is a concave function of ΓE .

Noticing the structure of our three maximum lifetime

routing formulations we observe that at optimality at least

one of the energy constraints (2nd set of constraints in each

formulation) will be active. This is stated in the following

proposition. We will call dead the nodes that correspond to

active constraints at optimality. The lifetime of a dead node

equals the lifetime of the network.

Proposition III.3 At optimality at least one of the energy

constraints in each of the nominal, fat, and robust formula-

tions will be active.

B. Optimal Flows

Consider an optimal flow vector q̂ obtained by solving one

of the three formulations. Recall that q̂ denotes total flow

over the network lifetime and q the flow per unit of time.

We associate a directed graph Gq = (N ,Aq) to q where

N is the set of WSNET nodes and Aq contains all directed

links (i, j) such that qi,j > 0. We will say that a flow q is

acyclic if the associated graph Gq contains no cycles and we

will say that q is cyclic otherwise.

Theorem III.4 For all three routing formulations there exist

acyclic optimal flows.

Proof: Suppose we have an optimal solution (q∗, T ∗).
Let q∗i1i2

, q∗i2i3
, q∗i3i4

, . . . , q∗iki1
form a cycle in Gq∗ . Let

δq = min{q∗i1i2
, q∗i2i3

, . . . , q∗iki1
}. Subtract δq from all the

flows on the cycle. At least one of q∗i1i2
, q∗i2i3

, q∗i3i4
, . . . , q∗iki1

becomes zero and all others remain non-negative. Because

both the in-flow and out-flow at each node is reduced by

the same amount, the flow conservation condition for all

the nodes i1, . . . , ik still holds. Since the above operation

only reduces flows all the energy constraints remain satisfied.

Hence, the reduced flows remain optimal. We can repeat the

same process to eliminate any other cycles.

We omit the proofs of the following corollaries due to

space limitations.

Corollary III.5 For all three routing formulations there ex-

ists an optimal flow q which satisfies qijqji = 0 for all

possible links (i, j) and (j, i).

Corollary III.6 For all three routing formulations let q be a

cyclic optimal flow. There exists at least one dead node that

does not participate in any cycle.

Corollary III.7 For all three routing formulations there ex-

ists an optimal flow q satisfying qij = 0, ∀i ∈ D .
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C. Lifetime Guarantee Probability

Consider one of our three formulations and let q∗, T ∗ be

an optimal flow vector and the corresponding optimal value

(lifetime), respectively. We will refer to the probability

P
[

min
i∈N \D

Ei
∑

j∈Si
et
ijq

∗
ij +

∑

j|i∈Sj
er
jiq

∗
ji

≥ T ∗
]

,

evaluated under the distributions of the random variables

Ei,e
t
ij ,er

ji, as the lifetime guarantee probability. This is the

probability that the actual lifetime obtained by applying the

optimal flow q∗ achieves the predicted lifetime. We denote

by PN , PF , PR the lifetime guarantee probabilities for the

nominal, fat, and robust formulations, respectively.

The following result states that the fat formulation pro-

vides an “absolute” guarantee. Again, proofs are omitted for

brevity.

Theorem III.8 It holds PF = 1.
The straightforward observation is that when Γe

i → |J t
i | +

|Jr
i | and ΓE

i → 1, ∀i ∈ N \D , then PR → PF , while when

Γe
i → 0 and ΓE

i → 0, ∀i ∈ N \ D , then PR → PN .

Let now A N be the set of active energy constraints

at optimality in the nominal formulation. We establish the

following upper bound on PN .

Theorem III.9 If Ei,e
t
ij ,er

ji are independent uniformly dis-

tributed random variables then PN ≤ ( 1
2 )|A

N |.

IV. UNCERTAINTY IN INITIAL ENERGIES

Next, we study a simplified version of the maximum

lifetime routing problem where uncertainty appears only in

the available initial energies Ei at every sensor node.

We define an overall robustness budget Γ =
∑

∀i∈N \D
Γi

and incorporate the allocation of Γ to individual Γi into the

following robust formulation:

max T (5)

s.t.
∑

j∈Si

et
ij q̂ij +

∑

j|i∈Sj

er
jiq̂ji ≤ Ēi − Γi∆Ei,

∀i ∈ N \ D ,
∑

j|i∈Sj

q̂ji + TQi =
∑

j∈Si

q̂ij ,∀i ∈ N \ D

∑

∀i∈N \D

Γi = Γ,

q̂ij ≥ 0, ∀i ∈ N , ∀j ∈ Si,

0 ≤ Γi ≤ 1, ∀i ∈ N \ D ,

T ≥ 0,

where the decision variables are T , q̂ij’s, and Γi’s. The

proofs of the following two propositions are omitted in the

interest of space.

Proposition IV.1 The optimal value T ∗
R of (5) is monotoni-

cally nonincreasing with the robustness budget Γ.
The following upper bound on PN will be useful in

proving the key results in this section. Recall that A N

denotes the set of active constraints at optimality in the

nominal formulation.

Proposition IV.2 Assuming that Ei are i.i.d. we have PN ≤
∏

i∈A N P
[

Ei ≥ Ēi

]

.

Note that if Ei are uniformly distributed then PN ≤ ( 1
2 )|A

N |

which is consistent with Thm. III.9.

Next we study two regular network topologies — linear

arrays and square arrays. Linear arrays appear, for instance,

in pipeline monitoring applications and square arrays in

environmental monitoring applications.

A. Linear Arrays

We consider the linear array like the L1 depicted in Fig. 1

where the sink node is at the center and an equal number of

sensor nodes are aligned one by one on both sides of the sink.

The distance between neighboring nodes is d. Assume that

the radio range is less than 3d, which means that every node

can only communicate with the very next four neighbors.

We can form a large linear network by lining up multiple

segments. A network with two such segments is shown

in Fig. 1. The motivation for growing the network in this

particular way is that typically one would need a sink per

given number of sensor nodes.

L2

L

k −kd L1

Fig. 1. A linear array consisting of two segments.

The following establishes a decomposition property that

holds for all three formulations.

Theorem IV.3 The maximum lifetime routing problem under

either the nominal, fat, or robust formulation for the network

L of Fig. 1 can be decomposed into the corresponding

problem for L1 (or L2).
Proof: Consider either the nominal, fat, or robust

formulation and let T ∗
L1

, T ∗
L2

, T ∗
L be the optimal values for

networks L1, L2, and, L respectively. Clearly, T ∗
L1

= T ∗
L2

≤
T ∗

L since by combining the optimal flow vectors for L1 and

L2 we obtain a feasible flow vector for L.

Due to the symmetric structure of L there exists an optimal

optimal flow vector which is symmetric about the center of

L. Moreover, due to Thm. III.4 and Corollary III.7, such

a flow vector is acyclic and has no outflows from sinks.

Flows in the interface between the two segments L1 and

L2 can fall into one out of two possible cases shown in

Fig. 2 (top). In each case, we can reconstruct the optimal

flows between nodes k and k − 1 of L1 and nodes −k
and −k + 1 of L2 as shown in 2 (bottom). This flow

Case I

L1 L2

k−1 −kk −k+1

L1 L2

k−1 −kk −k+1

q q

q q

Case II

L1 L2

k−1 −kk −k+1

L1 L2

k−1 −kk −k+1

Fig. 2. Flow reconstruction for an optimal flow of L.

reconstruction process maintains feasibility and eliminates
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any communication between segments L1 and L2. Then

T ∗
L = min{TL1

, TL2
} ≤ T ∗

L1
= T ∗

L2
. Together with our

earlier observation it follows T ∗
L = T ∗

L1
= T ∗

L2
, which

establishes the result.

The following is our main result for linear arrays. It

establishes that the nominal formulation is not particularly

useful since its predicted lifetime will be achieved with a

diminishing probability as the size of the network increases.

Theorem IV.4 Consider a linear network consisting of 2n

linear segments of the type shown in Fig. 1 and let Ei be

i.i.d. and non-degenerate random variables (i.e., not equal

to a constant). Then, as n → ∞, PN → 0.
Proof: By applying Theorem IV.3 n times, we can

decompose the network into 2n identical segments. Then we

can establish the result by Proposition IV.2.

B. Square Arrays

We next consider a square array like the S1 depicted in

in Fig. 3, where the sink node is at the center. The vertical
S2

S4S3

S1

S

d

d

Fig. 3. A square array with four segments.

and horizontal distance between neighboring nodes is d and

we assume that the radio range is less than d
√

5. As earlier,

we grow a square network in both dimensions by stitching

together arrays. Fig. 3 depicts a network S consisting of four

segments S1, S2, S3, and, S4.

Theorem IV.5 The maximum lifetime routing problem under

either the nominal, fat, or robust formulation for the network

S of Fig. 3 can be decomposed into the corresponding

problem for S1.
Proof: Fix a particular formulation, fat, nominal, or

robust. Let T ∗
Si

, T ∗
S be the optimal values for network Si, i =

1, . . . , 4, and S, respectively. As in the proof of Thm. IV.3

T ∗
Si

≤ T ∗
S for all i.

Due to the symmetry of S, Thm. III.4, and Corollary III.7,

there exists an acyclic optimal flow vector for S with no

flows out of sinks which is symmetric about the vertical line

that separates (S1, S3) and (S2, S4). As in Thm. IV.3 we

consider all possible cases and reconstruct the optimal flow

as shown in Fig. 4, resulting in a flow with no communication

between (S1, S3) and (S2, S4). A similar flow reconstruction

process can result in a flow with no communication be-

tween (S1, S2) and (S3, S4). These flow reconstruction steps

maintain flow conservation and do not violate the energy

constraints, so the resulting flow is optimal. It follows that

T ∗
S ≤ T ∗

Si
for all i which concludes the proof.

q1 q1

q2 q2

q3 q3
q3 q3

q2 q2

q1 q1

S1 S2 S1 S2

Fig. 4. Flow reconstruction for an optimal flow of S.

As in the linear array case we can now show that the

nominal formulation does not provide a useful lifetime

prediction. We omit the proof as it is similar to the proof

of Thm. IV.4.

Theorem IV.6 Consider a square network constructed by

repeating n times the process of constructing S from S1,

. . . , S4. Let Ei be i.i.d. and non-degenerate random variables

(i.e., not equal to a constant). Then, as n → ∞, PN → 0.

V. NUMERICAL EXAMPLES

In this section we present a set of numerical examples. For

all these examples we adopt the following communication

energy consumption model.

Let dr be the transmission range of each node. Then

j ∈ Si if and only if dij ≤ dr, where dij is the distance

between nodes i and j. The energy expenditure per data unit

transmitted from node i to j satisfies

et
ij = e◦ + ǫampd

4
ij , er

ij = eR,

where e◦ = 50 nJ/bit and eR = 150 nJ/bit denote the energy

consumed in the transceiver circuitry at the transmitter and

the receiver respectively, and ǫamp = 100 pJ/bit/m4 is

the energy consumed at the output transmitter antenna for

transmitting a bit over one meter. The receiver circuitry in

general consumes more energy than the transmitter circuitry

within the same order of magnitude. The path loss exponent

of four is chosen to account for the multipath reflection

instead of using a free space model which uses two.

A. A 4-node WSNET

We start with a toy example to gain some intuition on the

routing policies produced by each formulation. The WSNET

consists of one origin node, two relay nodes, and one sink

node. The origin node O has an information generation rate

QO = 500 bits/sec. The radio range is 25 m. Thus, the

origin node has to use relays R1 and R2 to reach the sink

S (see Fig. 5). All Ei, et
ij , er

ji are uniformly distributed

with Ēi = 10 J, EO ∈ [9, 11] J, ER1
∈ [8.5, 11.5] J,

ER2
∈ [9.5, 10.5] J, ∆et

ij/ēt
ij = 0.1, and ∆er

ji/ēr
ji = 0.1.

Note Γe
O ∈ [0, 4], Γe

R1
∈ [0, 6], Γe

R2
∈ [0, 6], and ΓE

i ∈ [0, 1]
for all i. Set Γe

O = 1.6, Γe
R1

= 2.4, Γe
R2

= 2.4, and ΓE
i = 0.5

for all i. Fig. 5 depicts the optimal flows under each of

the nominal, robust, and fat formulations and Table I lists

the corresponding optimal values and the lifetime guarantee

probability, where Treal denotes the lifetime achieved by

implementing the corresponding policy.
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Fig. 5. A 4-node WSNET and optimal flows under the three formulations.

TABLE I

T ∗ AND P[Treal > T ∗] FOR THE 4-NODE WSNET OF FIG. 5.

Nominal Fat Robust

T ∗ (
T∗

R−T∗

F

T∗

F

× 100%) 1239.81 983.26 1056.01 (7.40%)

P[Treal > T ∗] 0.25 1.0 0.91

It can be seen that all three policies prefer the path

(O,R1, S) which is shorter, thus, less energy demanding.

The lifetime prediction of the nominal policy has a low prob-

ability of being achieved. The robust policy provides a 7.4%
higher lifetime quote with a high enough (0.91) probability

of being achieved, so it is an interesting compromise between

the nominal and the fat.

B. Linear and square arrays

In this example, every linear array has 10 origin nodes

and one sink node. The distance between two neighboring

nodes is 10 m. The radio range is 25 m, Qi = 500 bits/sec,

and Ēi = 10 J. We consider instances formed as the one

in Fig. 1 with 1, 2, 4, and 8 segments, respectively. The

results are in Table II where Γe
i = (|J t

i | + |Jr
i |) · 30%

for all instances, and ΓE
i = 0.6, 0.7, 0.8, 0.9 for each of

the 4 instances, respectively. We observe that the nominal

TABLE II

RESULTS FOR LINEAR ARRAYS WITH 1, 2, 4, AND 8 SEGMENTS.

LAs T ∗
N PN T ∗

F PF T ∗
R PR

T∗

R−T∗

F

T∗

F

× 100%

1 3480.77 1.9 × 10−3 2847.91 1.0 2976.25 0.87 4.51%

2 3480.77 8 × 10−6 2847.91 1.0 2944.57 0.91 3.37%

4 3480.77 0.0 2847.91 1.0 2912.91 0.94 2.28%

8 3480.88 0.0 2847.99 1.0 2881.25 0.98 1.17%

formulation does not provide a useful lifetime prediction

while the robust provides a gain (in terms of quoted lifetime)

over the fat (diminishing with the size of the network).

Finally, we consider square array networks. Each square

array has 48 origin nodes and one sink node where d = 10 m,

the radio range is 21 m, Qi = 500 bits/sec, and Ēi = 10 J.

We consider instances formed as the one in Fig. 3 consisting

of 1, 4, and 16 segments, respectively. The results are in

Table III where Γe
i = (|J t

i |+|Jr
i |)·20% for all instances, and

ΓE
i = 0.75, 0.85, 0.9 for each of the 3 instances, respectively.

TABLE III

RESULTS FOR SQUARE ARRAYS WITH 1, 4, AND 16 SEGMENTS.

SAs T ∗
N PN T ∗

F PF T ∗
R PR

T∗

R−T∗

F

T∗

F

× 100%

1 1889.72 0.0 1546.14 1.0 1589.36 0.84 2.80%

4 1889.72 0.0 1546.14 1.0 1572.17 0.81 1.68%

16 1889.72 0.0 1545.82 1.0 1563.57 0.74 1.15%

VI. CONCLUSIONS

We considered a maximum lifetime routing problem in

WSNETs which can be formulated as a linear programming

problem. Our main observation is that in the presence of

uncertainty in key network parameters a nominal – certainty

equivalence – formulation that uses mean parameter values

is not particularly useful. In particular, it provides a routing

policy which almost never achieves the lifetime predicted by

the formulation. To accommodate uncertainty, we develop a

worst-case (fat) formulation that computes a policy yielding

a lifetime that always exceeds the one predicted by the

formulation. The fat formulation is “tight” in the sense that

there exist random network parameter instances under which

the fat policy will result in a lifetime equal to the predicted

one. However, in many cases one may want to be more

optimistic, that is, predict a lifetime with a reasonably high

probability of being achieved by the corresponding policy.

To that end, we develop a series of robust formulations

with a tunable set of “robustness budgets” that allow the

WSNET designer to trade-off the predicted lifetime with the

probability it is achieved.
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