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Abstract— In this paper the robust behavior in some piece-
wise affine systems with minimally spaced transition times is
studied. Such systems are found e.g. in satellites and satellite
launchers. On-off thrusters are frequently used as actuators
for attitude control and are typically subject to switching
constraints. In these systems, persistent motions of different
nature may occur, such as limit cycles, quasi-periodic-like and
chaotic motions. Thus, in the presence of model uncertainties,
the emergence of bifurcations can seriously affect performance.
In this contribution, we use Tsypkin’s method in order to
investigate the robustness of the condition for the existence
of limit cycles. Robustness frontiers in the space of control
parameters are identified. These frontiers are verified via
simulation and compared to those given by the describing
function method, revealing the difficulties of this latter method
to address the robustness analysis in this system. Moreover,
we present a design method for robust controllers based on
the Hamel locus. An evaluation of performance requirements
such as fuel consumption, limit cycle amplitude and transient
response is carried out in the identified regions of robust
behavior.

I. INTRODUCTION

Throughout the last decades, attitude control systems with
switching actuators have been used in satellite and launching
systems [1], [2], [3], [4], [5]. In the attitude stabiliza-
tion phase, such systems typically have been operated in
limit cycle conditions. As actuators, several types of on-
off thrusters are employed, such as hydrazine, cold-gas and
pulsed plasma thrusters [2]. These thrusters are typically
affected by switching constraints, which have been a cause of
concern about the degradation of the system’s performance.
As shown by Oliveira and Kienitz [4], non-conventional
analysis/design problems arise when actuators are subject
to switching-time restrictions. Certain conditions ensure that
limit cycles exist. When these conditions do not hold, system
motion may not be of limit cycle type.

During recent research on the issue of limit cycle control
for a system with minimally spaced switching-times, we
observed [6] that the optimal control parameter set, which
guarantees minimum amplitude and minimum fuel consump-
tion, lies on the frontier where the system bifurcates into
nonperiodic persistent motions. Here arises the concern with
the robustness of an optimal controller. In this paper, we are
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interested in the design of robust controllers that preserve
a good performance for the uncertain system while guar-
anteeing operation in the limit cycle mode, i.e., controllers
that mitigate the possibility of bifurcations. More specifically,
we focus on the bifurcation that arises when the limit cycle
frequency reaches a certain threshold.

Computing the limit cycle points of uncertain nonlinear
systems has attracted the attention of researchers in the
last decade. Most of them were simply concerned with
the inhibition of limit cycles in order to prove stability. In
the main papers available on this issue [7], [8], [9], [10],
[11], [12], [13], [14], first harmonic approximation has been
adopted. The deficiency of this approximated analysis for the
studied system was shown in [6] and is further exemplified
in section VI.

Tan and Atherton [11] present a method to compute
magnitude and phase envelopes of uncertain transfer func-
tions and apply describing function analysis to predict the
existence of limit cycles. We adopt a similar approach in
this paper, with the difference that we do not use the
describing function approximation. Among the other possible
approaches, the most consistent ones are proposed by Katebi
and Zhang [14] and [13], which incorporate the dynamics
neglected by the describing function approximation as an
unstructured uncertainty into the problem description. Nev-
ertheless, these approaches are not useful when dealing with
some relay-type nonlinearities, for the uncertainty due to the
approximation may be conservative to the point that a robust
controller result may not exist.

A natural conclusion is that the intended robustness anal-
ysis should take advantage of the knowledge of higher-order
harmonics. Hence, in this contribution we consider exact
methods for limit cycle prediction. Using Tsypkin’s method,
we are able to address both parametric uncertainties and
magnitude-phase envelopes of uncertain transfer functions.
By analyzing each point in a grid of the space of control
parameters, we can find a frontier that determines robust
limit cycle behavior and, as a consequence, we are able to
avoid nonperiodic regimes as we are looking for an amplitude
minimization. On this frontier, we calculate an interval of
amplitude variation and study the vanishing of transients. In
addition, we propose a design procedure using a Hamel-type
locus, which allows a decrease in the dimension of the space
of control parameters.

II. PROBLEM DESCRIPTION

The problem description given here is akin to that in
[4] and it is based on the attitude control design of the
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Brazilian Satellite Launcher. We shall consider the single-
axis problem only since coupling can be ignored under
reasonable conditions as in [15, Sec. 6.3]. Yet, the analysis
of the 3-axis problem could be carried out according to the
same principle applied in this paper. Consider a simple rigid
body (e.g. satellite or rocket in the upper atmosphere) whose
attitude φ is to be controlled using sets of small thrusters,
which are on-off actuators with switching-time restrictions.
A simplified representation of the system is shown in Fig.
1, where the thrust F may assume final values −Fmax, 0 or
Fmax .

Fig. 1. Rigid body with a set of thrusters

A body inertia J = 1500 [kgm2] is given. The small
thruster actuators do have delays and switching-time restric-
tions:

• Maximum absolute torque: ρFmax = 308 [Nm].
• Switching-time restrictions:

– minimum duration of pulses: ton = 100 [ms].
– minimum rest between successive pulses of the

same sign: ts = 50 [ms].
– minimum rest between pulses of different sign:

toff = 500 [ms].
• Thrust build up dynamics (On):

– 10% of maximum thrust: 10-30 [ms]
– 90% of maximum thrust: 20-50 [ms]

• Thrust build up dynamics (Off):
– 90% of maximum thrust: 9-16 [ms]
– 10% of maximum thrust: 15-50 [ms]

The typical requirement for the controlled system is that
initial conditions and attitude perturbations shall asymptot-
ically die away into a well behaved limit cycle. For the
purpose of achieving an appropriate performance, a tacho-
metric feedback law (feedback of position and velocity) and
a single-pole controller C(s) = 1

s−p are often added to the
loop, resulting in the controlled system represented in Fig.
2.

The Actuators block of Fig. 2 is decomposed into a series
structure with two sub blocks. The first one contains a
relay with the above switching restrictions and with output
in {kr,−kr, 0}, where kr = Fmaxρ/J . The second one
contains a linear dynamics which models thrust build up.
In practice, actuator delays may vary during the operation of
the system. Their value may depend on several parameters.
Thus, the model is affected by uncertainty. All the gains

Fig. 2. Block diagram of the controlled system

in the system are rearranged to the output M of the Time-
Constrained Switch block. Since the controller is linear, these
gains affect only the amplitude of the response.

According to relay systems theory, for appropriate values
of p and z, we should expect symmetric unimodal limit
cycle behavior. Necessary conditions to the existence of this
limit cycle can be provided either by approximate or exact
methods (see [16]). The above switching-time restrictions
impose another condition, which states the existence of a
maximum value for the switching frequency f :

f ≤ fmax =
1

2(ton + toff)
. (1)

Since the controller is linear, the period for which the
actuator is off at each half-cycle is always toff. Thus, the
fuel consumption will be minimum if the period for which
the actuator is on is also minimum, that is, if the limit
cycle frequency is maximum. Additionally, if we calculate
φ(t) approximately by double-integrating the periodic train
of pulses M(t), one can intuitively see that the amplitude
decreases monotonically with f as well. However, if the
controller demands a switching frequency higher than fmax,
nonperiodic persistent motions arise [6] and the amplitude
may vary significantly in the presence of uncertainties. In
[17], we characterize a quasi-periodic-like motion that arises
as a bifurcation from periodic motion.

Hence, the robust performance aimed in this paper consists
of the occurrence of single-switching (unimodal) limit cycles
that possess a set of possible frequencies with upper bound
fmax and maximum lower bound.

III. AN EXACT METHOD TO PREDICT LIMIT
CYCLES

In this section we obtain necessary conditions to the
existence of limit cycles in the fashion of Tsypkin [18]. Sup-
pose the existence of a single-switching (unimodal) periodic
output M(t) with period T as depicted in Fig. 3.

As noted in [4], this wave is equivalent to the sum of a
square wave with amplitude kr/2 and another square wave
with the same amplitude but delayed by toff. If we call ω0 =
2πT−1, the following Fourier series decomposition can be
verified:

M(t) =
∑

k odd

4kr

πk
Im

{(
1 + e−jkω0toff

2

)
ejkω0t

}
. (2)
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Fig. 3. Unimodal periodic actuators’ output

Thus, in the case of single-switching periodic motion, the
Time-Constrained Switch block can be replaced by a simple
relay with output M ′(t) in {kr,−kr} and followed by the
transfer function

(
1 + e−stoff

)
/2.

Two necessary conditions to the existence of such output
will be considered, see [18, Eq. 5.47]:

u(T/2) = 0
du

dt
(T/2) < 0 . (3)

These conditions are not sufficient because we do not take
into account the possibility of intermediary crossings u(t) =
0 for t < T/2. The Tsypkin locus in the complex plane is
defined in [18, Eq. 6.1] as

Λ(ω) =
1
ω

du

dt
(T/2) + ju(T/2) , (4)

where ω = 2πT−1. According to the conditions in (3), the
existence of a limit cycle of angular frequency ω0 requires
that ∠Λ(ω0) = π. Defining the transfer function L(s) =
−U(s)/M ′(s) and recurring to (2) and (4), we can verify
the following expression for the Tsypkin locus

Λ(ω) =
∑

k odd

4kr

π

[
Re{L(jωk)}+ j

1
k

Im{L(jωk)}
]

.

(5)
Thus, the Tsypkin locus is a useful tool for the de-

termination of limit cycle properties such as frequency
and amplitude. Though other exact methods exist, such as
the state-space based method [19], Tsypkin’s is a more
convenient method when dealing with uncertain systems,
since it is more convenient to express uncertainties in the
frequency domain. A useful criterion to address the limit
cycle stability graphically from the Tsypkin locus is provided
by the following necessary condition from [18, Eq. 10.69]:

Im
{

dΛ(ω)
dω

}
> 0 . (6)

Another useful result from [18, Eq. 6.54] is the exact
expression of the Tsypkin locus in the case the transfer
function from the relay output to the relay input has the
form:

L(s) =
P (s)

s2Q(s)
e−sτ , (7)

where P (s) and Q(s) are polynomials with non-zero simple
roots.

This expression is applied in the parametric robustness
analysis and is also interesting since it provides qualitative
knowledge on the Tsypkin’s locus, such as the maximum
number of possible limit cycles.

Notice that, there was not a minimal pulse duration, a
limit cycle with frequency ω0 = π/toff would exist, since
Λ(π/toff) = L(π/toff) = 0. At this frequency, however,
the output M(t) is always zero, that is, this limit cycle is
an equilibrium point at the origin. If this limit cycle was
proved to be stable, the system could be stabilized by the
application of infinitesimal duration pulses. As these pulses
are not allowed, an undesirable quasi-periodic-like motion
would arise.

IV. MODEL UNCERTAINTIES

The main uncertainty that affects the dynamical behavior
of the system is the thrust build up dynamics. Though build
up dynamics are different when actuators switch on or off,
one can verify that assuming symmetric build up dynamics
will just make our robustness analysis more conservative.
Therefore, we model these dynamics by the transfer function
D(s), whose step response must be contained in a time
envelope given by the fastest and the slowest responses that
we describe in section II.

In this paper we utilize both parametric and a nonparamet-
ric representations for the uncertainty in D(s). A detailed
derivation of these representations is provided in [20]. The
parametric representation assumes the following structure for
D(s):

D(α, τ, s) =
e−sτ

αs + 1
. (8)

The parametric domain is given by τ ∈ [τmin, τmax] and
α ∈

[
αmin, τ−0.05

ln 0.1

]
, where τmax = 29.04 [ms], αmax =

18.66 [ms] and τmin = 7.03 [ms].
The unstructured representation is given by magnitude and

phase envelopes defined by the transfer functions

D̄(jω) =


∣∣ 1
αminjω+1

∣∣ DF (jω)
|DF (jω)| , if ω < 28∣∣ 1

αminjω+1

∣∣ , if ω ≥ 28
(9)

and

D̄(jω) =


∣∣ 1
αmaxjω+1

∣∣ DG(jω)
|DG(jω)| , if ω < 30.5∣∣ 1

αmaxjω+1

∣∣e−jωτa , if ω ≥ 30.5
, (10)

where τa = 65 and DF (s) and DG(s) denote, respectively,
the transfer functions related to the fastest and to the slowest
curves in the time envelope described in section II.
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V. LIMIT CYCLE ROBUSTNESS ANALYSIS

In this section we test the necessary conditions for the
existence of limit cycles with respect to their robustness.
Since these conditions are necessary only, we validate them
via simulation. The robust controller to be designed is that
for which the supremum of the set of predicted possible
frequencies is not larger than ωmax = 2πfmax, in such a way
that (1) is satisfied. Therefore, a bifurcation frontier in the
space of control parameters can be calculated by checking
for values of z and p such that this supremum is ωmax. Let
B be the family of possible Tsypkin loci for the uncertain
system and assume that Re{Λξ(ωmax)} < 0 for all Λξ ∈ B .
Then, the periodic to quasi-periodic-like bifurcation frontier
must lie on the curve

(z, p) : min
Λξ∈B

{Im{Λξ(ωmax)}} = 0 . (11)

As shown in Fig. 4, a point of the bifurcation frontier
occurs whenever the lower bound of the interval of possible
Im{Λ(ωmax)} crosses zero. However, the bifurcation frontier
may not coincide with the above curve, given that we do not
verify sufficient conditions for the existence of stable limit
cycles.

Fig. 4. Uncertain Tsypkin locus for p and z on the bifurcation frontier

In the case of parametric uncertainties, the bifurcation
frontier is calculated by the evaluation of the exact Tsypkin
locus expression in a grid of the parameter space. We have
adopted ∆α = 0.8 [ms] and ∆τ = 1.1 [ms]. For each
combination of z and p, if we find Im{Λξ(ωmax)} < 0
for Λxi ∈ B, we may interrupt the search and conclude
that the limit cycle is not robust at this point. In fact, as
Λξ(π/toff) = 0 and π/toff > ωmax, the Tsypkin locus must
cross the real axis positively for some ω > ωmax, which
violates the condition in (1).

In the case of unstructured uncertainty, we can establish
a lower bound for minΛξ∈B {Im{Λξ(ωmax)}} by choosing
D(jω) = Dξ∗(jω) inside the phase and magnitude en-
velopes in such a way that each harmonic contribution to
Im{Λ(ωmax)} in (5) is minimized.

A. ANALYSIS/DESIGN VIA HAMEL’S METHOD

In this section we present an alternative analysis method
that can be useful in synthesis. It uses the Hamel locus, which
allows for a more intuitive zero allocation. If we define ε =

u(T/2) and ε̇ = du
dt (T/2), the Hamel locus is given by the

curve in the phase plane:

H = (ε, ε̇) = (ω Re{Λ}, Im{Λ}) . (12)

The oscillation frequency is also determined by the cross-
ing of the abscissa. On the other hand, we can interpret the
placing of a block (s − z) in the open loop as a change in
the switching condition from ε = 0 to −zε + ε̇. Therefore,
the oscillation frequency can be found in the crossing of the
line ε = ε̇/z by the Hamel locus of the system without the
zero. This suggests that a robust controller synthesis can be
done by the proper allocation of a line passing through the
origin and tangent to the set of possible Hamel locus points
at ω = ωmax. If we consider this set to be rectangular and
that H(ωmax) belongs to the second quadrant, we conclude

z =
min ε(ωmax)
min ε̇(ωmax)

= ωmax
min {Re{Λξ(ωmax)}
min {Im{Λξ(ωmax)}

. (13)

The above procedure is illustrated in Fig. 5. Since one
considers a rectangular set of possible H(ωmax), this pro-
cedure is expected to be somewhat more conservative than
that we present using the Tsypkin’s method.

Fig. 5. Robust design by allocation of the switching line (dashed) on the
Hamel locus (solid)

B. INSTABILITY FRONTIER

Besides the periodic to quasi-periodic-like bifurcation
frontier, we can identify another important frontier given
by the arising of instability. Indeed, the double integrator in
L(s) implies that limω→0+ ∠Λ(ω) = limω→0+ ∠L(ω) = π.
If this limit cycle is stable, there will be trajectories with no
switching at all, that is, there will be instability. Based on
(6), the instability frontier is expressed as follows:

(z, p) : max
Λξ∈B

(
lim

ω→0+
Im
{

dΛξ

dω
(ω)
})

= 0 . (14)

For each combination of z and p on the frontier, we must
have limω→0+ Im

{
dΛξ

dω (ω)
}

= 0 in the worst case, which

occurs if and only if limω→0+ Im
{

dLξ

dω (ω)
}

. As Lξ∗(jω) →
π in the limit, the above condition is equivalent to

lim
ω→0+

d∠Lξ∗

dω
(jω) = 0 . (15)
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Replacing Lξ∗(jω), we obtain

1
p
− 1

z
− toff

2
+ lim

ω→0+

d

dω
∠Dξ∗(jω) = 0 . (16)

According to the phase envelope, the limit in (16) must
be in the interval [-53,-8.7] [ms]. In the case of paramet-
ric uncertainties, the limit is given by −(α + τ) , where
−(α + τ) ∈ [−38.1,−9.8] [ms], that is contained by the
interval for unstructured uncertainty. As the derivative of the
phase and of the imaginary part of Lξ∗(jω) have opposite
signs in the limit ω → 0+, we conclude that the instability
frontier is determined by (16) with Dξ∗(jω) being such that
limω→0+

d
dω ∠D(jω) is minimum.

VI. NUMERICAL RESULTS

The numerical assessment considers the space z × p =
[−3, 0] × [−60,−10] with grid resolution ∆z × ∆p =
0.2 × 0.1. The choice of the number N of harmonics in
the truncation of the Tsypkin locus expression is empirical.
In Fig. 6 we exhibit the bifurcation frontier given by Hamel
locus approach for different N . From this we decided to
adopt N = 27. The figure also indicates that a first order
approximation would seriously affect a robust design.

Fig. 6. Convergence of the bifurcation frontier as the truncation term N
is increased

Fig. 7 exhibits the regions where the limit-cycle frequency
is robustly bounded. The region for proper control is that
where 0 < ω0 < ωmax. Especially, the amplitude is mini-
mized on the bifurcation frontier and increases indefinitely as
we move towards the instability frontier. We should remark
that for z > 0 limit cycles become unstable. In fact, when
z changes sign the residue of the term 1/s2 in L(s) also
changes sign, which makes unstable the related closed-loop
sampled-data system we use to assess limit cycle stability,
as done in [18, Chapter 10].

In order to evaluate the conservativeness of the robustness
frontier we use Fig. 8 to compare it with frontiers given
by other approaches. The parametric analysis is carried on
the domain of z and p with grid resolution ∆α = 0.8 [ms]

Fig. 7. Regions of robust limit cycle behavior (unstructured uncertainty)

and ∆τ = 1.1 [ms]. We compare the frontier obtained for
the unstructured uncertainty to the one for the structured
uncertainty. On the p axis the second curve may be at most
12 [s−1] below the first one; in the z axis, at most 0.4 [s−1]
to the right. It is remarkable that the worst case Λξ(ωmax)
is always verified for the case of fastest thrust build up,
that is, for α = αmin and τ = τmin. The frontier provided
by the Hamel locus design was slightly more conservative
than that given by unstructured uncertainties. On the p axis
they differ at most by 1 [s−1]; on the z axis, by 0.04
[s−1]. At length, we trace the frontier obtained when we
consider D(jω) = DF (jω). This frontier suggests that the
envelope technique is an important cause of conservativeness,
otherwise we would have the curve for DF (jω) closer to the
frontier given by the unstructured uncertainty than to that
given by parametric uncertainties.

Fig. 8. Comparison of the bifurcation frontiers based on unstructured
uncertainty (solid), on parametric uncertainties (cross), on the function
DF (s) (dashed) and on Hamel locus approach (dot-dashed)

The large area of the region in Fig. 7 where 0 < ω0 <
ωmax, suggests that the desired robust controller will be sub-
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ject to great intervals of frequency and amplitude variation.
Indeed, one verifies that the largest intervals of amplitude
variation occur nearby the instability frontier and the smallest
intervals occur in the limit cycle stability boundary at z = 0.
Choosing z in order to have a minimum amplitude variation
has obviously a drawback, since in this case the limit
cycle would be marginally stable. This drawback is the
duration of transient responses, which increases unboundedly
as z approaches 0. The maximum value of the roll angle
amplitude settling time for 1% was obtained via simulation
and plotted in Fig. 9. Thus, the designer can establish a trade
off between length of the amplitude intervals and duration
of transients.

Fig. 9. Maximum roll angle settling time along the bifurcation frontier

As stated in the previous sections there is a series of
hypotheses that must be verified in order that all points
on the calculated bifurcation frontier be correct. Among
the cited hypotheses are: the uniqueness of the stable limit
cycle; the sufficiency of limit cycle stability condition; the
absence of intermediary switches; the unimodal limit cycle
is a global behavior. Though the designer need to validate
only the chosen control parameter combination, it would be
interesting to know whether the entire frontier is correct. In
[20], we show via simulations that the calculated frontier is
indeed correct.

VII. CONCLUSION

In this paper we presented a study of the robust limit
cycle control in an attitude control system with relay-type
actuators subject to minimally spaced transition times. As the
emergence of bifurcations in this system can seriously affect
performance, we developed analysis/synthesis techniques for
robust prevention of bifurcations and efficient employment of
actuators. The proposed techniques introduce a robust limit
cycle control that relies in an exact limit cycle prediction.
The discussed attitude control problem is an important in-
stance for which an exact prediction would be noticeably
advantageous in obtaining an improved performance. First-
order linear controllers that robustly reduce both amplitude
and fuel consumption can be obtained. However, the designer

should establish a trade off between amplitude interval and
transient duration. In addition, since most relay control
systems are subject to similar time restrictions, the presented
techniques may be useful to efficiently exploit actuators in
other systems that alternate among unstable dynamics.

A disadvantage of exact methods in relation to the de-
scribing function methods is the low availability of control
synthesis procedures. We believe that such a deficiency can
be overcome through a joint analysis that uses describing
function and exact methods.
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