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Abstract— In order for a team of cooperating agents to
achieve a group goal (such as searching for targets, monitoring
an environment, etc.) those agents must be able to share
information and achieve some level of coordination. Since
realistic methods of communication between agents have limited
range and speed, the agents’ decision-making strategies must
operate with incomplete and outdated information. Moreover,
in many situations the agents must travel to particular locations
in order to perform various tasks, and so there will also be a
delay between any particular decision and its effect. In this
paper we develop an asynchronous framework that models the
behavior of a group of agents that is spatially distributed across
a predefined area of interest. We derive general conditions
under which the group is guaranteed to converge to a specific
distribution within the environment without any form of central
control and despite unknown but bounded delays in sensing
and travel. The achieved distribution is optimal in the sense
that the proportion of agents allocated over each area matches
the relative importance of that area. Finally, based on the
derived conditions, we design a cooperative control scheme for a
multi-agent surveillance problem. Via Monte Carlo simulations
we show how sensing and travel delays and the degree of
cooperation between agents affect the rate at which they achieve
the desired coverage of the region under surveillance.

I. INTRODUCTION

In systems made of a large number of autonomous self-
driven components (called agents) “cooperation” describes
the process of working together in order to meet a com-
mon group objective. Cooperation inherently requires that
agents share information, e.g., either through direct agent-to-
agent communication, indirectly with the aid of intermediate
agents, or via visual cues in the environment. Through
communication each individual agent develops a perception
about both the state of other agents and the environment.
In order to control a cooperative system it is necessary to
design distributed decision-making strategies which lead to a
desired group objective despite each individual agent having
limited and possibly inaccurate information. Not surprisingly,
researchers have devoted plenty of attention to techniques
from the field of distributed algorithms and computation,
where information flow constraints considerably impact the
performance of distributed processors [1], thereby creating
challenges similar to those in cooperative systems.

For example, in iterative computing, agreement algorithms
are widely used to reconcile the updates made by the
individual processors in a distributed control scheme where
several processors update the same set of variables (e.g.,
see Section 7.7 in [1]). Similarly, in cooperative systems,
agents must often decide on a particular variable of interest

and rely on agreement algorithms to achieve coordination of
the group [2]-[6] (e.g., to agree to a heading and speed for
movement in a formation). While many such models have
been developed under various information flow constraints
(see [7], [8] for a recent survey on agreement problems
in multi-agent coordination), they usually require a central
assumption in their results, namely that the updated state
of each agent is a strict convex combination of its own
current state and the current or past states of the agents to
which it connects. Although limited in more general contexts,
such as when the state of the system evolves in partially
obstructed Euclidean spaces [9], the convexity assumption
offers a practical mathematical tool which is often used to
guarantee the desired behavior of a group as a whole.

Broadly speaking, the agent strategies we introduce here
resemble agreement algorithms in the sense that to achieve
a common group objective, agents must divide themselves
into a fixed number of sub-groups (each of which may
represent either a portion of the total environment or a
different type of task) while consenting on “gains” which
are associated to every subgroup. More specifically, we refer
to these sub-groups as nodes (because of a connection to
the terminology of graph theory we will see later) and
let the number of agents at a node represent the state of
the node. Assuming an inverse relationship between the
state of a node and its associated gain, we study how the
agents’ motion dynamics across all nodes may lead to a
desired agent distribution resulting in equal gains over all
nodes. Our framework contemplates three aspects of the
system in particular. First, there exists a mapping between
the state space (i.e., the simplex representing all possible
distributions of the agents across the nodes) and the space
of possible gains that results from all such distributions.
We derive general sensing and motion conditions which
identify key requirements on the amount of agents that
may (or must sometimes) leave certain nodes to guarantee
convergence to the desired distribution, while relying only on
the individual agents’ outdated perceptions about the gains
of the few nodes they can sense. Second, depending on the
total number of agents in the system, there may exist so-
called truncated nodes which can never reach the desired
gain regardless of their state (i.e., if the gain associated
with a node remains relatively low even in the presence of
only a few agents, while the distribution of all other agents
does not degrade the gains of all other nodes to a similar
level). Analyzing this possibility is important because the
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existence of truncated nodes may significantly influence the
group’s distribution (and thus the resulting gains) depending
on the particular scenario. And finally, since our approach
is based on techniques used in diffusion algorithms for load
balancing (where loads move from heavily loaded processors
to lightly loaded neighbor processors [10]-[12]), there is no
requirement to form convex combinations of the current or
past states of the nodes. Although some general ideas are
similar to agreement algorithms, the convergence of diffusion
algorithms cannot be derived from the corresponding results
for agreement algorithms [2]-[6].

The remainder of this paper is organized as follows. In
Section II we define a basic mathematical formulation of our
problem and present a class of distributed control algorithms
that will solve it. Our results in Section III extend the load
balancing theory in [12], [13] by taking into account: (i)
that the “virtual load” is a nonlinear function of the state,
and (ii) the presence of sensing and travel delays. Our
analytical results show that although delays may increase
the time for the agents to converge, a global distribution
pattern will still be reached, provided that agents at any
node have a perception (possibly outdated, but by a finite
delay) about the gains of any other node, i.e., when a fully
connected topology represents the information flow structure
between the nodes. Since fully connected topologies are
rarely applicable we present similar results that show that
under stronger conditions on the total number of available
agents, the desired distribution can still be achieved for
a general topology under only minimal restrictions on the
graph topology.

Finally, in Section IV we apply the theory presented
here to design cooperative control strategies for multi-agent
surveillance problems. We extend our previous results in
[14], [15] by quantifying the degree of cooperation between
agents (i.e., the willingness of the agents of working together
in order to meet the group objective) and show how sensing
and travel delays considerably impact the degree to which
agents should cooperate so that (on average) they achieve
the desired distribution as fast as possible.

II. THE MODEL

Assume that there are N nodes, each of which is char-
acterized by an associated gain. Define the gain function
of node i as si(xi), where xi ∈ R, xi ≥ εp is a scalar
that represents the amount of agents located at node i ∈ H,
H = {1, ..., N}, and εp ≥ 0 is the minimum amount of
agents required at any node. In some cases, if for example,
si(xi) = 1/xi, then we require that εp > 0 so that the gain
function of node i is well-defined at any state. In other cases,
if for example si(xi) = e−xi , then we may let εp > 0 solely
to enforce that a certain amount of agents always remain at
any node. Furthermore, assume the following:
• A fixed group size: Let

∑N
i=1 xi = P , where P > Nεp

is a constant so there is a fixed amount of agents
distributed across all nodes.

• Positive gains: The gain functions si(xi) > 0 for all
i ∈ H, and all xi ∈ [εp, P ].

• Gain changes are related to changes in the amount of
agents: For all gain functions si(xi), i ∈ H, there exists
two constants ai ≥ bi > 0 such that

−ai ≤
si(yi)− si(zi)

yi − zi
≤ −bi (1)

for any yi, zi ∈ [εp, P ], yi 6= zi. Note that Eq. (1) im-
plies that the gain associated with each node decreases
with an increasing amount of agents at that node, and
eliminates the possibility that a very small difference in
agents may result in an unbounded change in gain.

To model interconnections between nodes we consider a
general graph described by G(H,A) with topology A ⊂ H×
H. Let N (i) = {j : ∃(i, j) ∈ A} denote the neighboring
nodes of node i, i.e., the nodes where agents at node i can
move to and whose gain they can sense. If (i, j) ∈ A then
i 6= j and (j, i) ∈ A, which means that agents at node i can
sense the gain of node j and can move from node i to node
j, and vice versa (i.e., if an agent is at node i and can move
to node j (sense the gain at node j), then agents at node j
can also move from node j to node i (sense the gain at node
i, respectively)). For all xi(k), agents at node i at time k
“sensing node j” means that they have a perception pij(k)
of the gain of node j, which is a delayed value of the current
gain of node j. In particular, if (i, j) ∈ A, then we assume
that any changes in the gain of node j at time k can be sensed
by agents at node i by time k+Bs− 1 for some Bs > 0. In
other words, we assume that there exists a constant Bs such
that pij(k) ∈ {sj(xj(k′)) : k −Bs < k′ ≤ k}. Likewise, for
some agents at node i “moving to node j” at time k implies
that they start traveling away from node i at time k and will
arrive at node j at some time k′, for k < k′ ≤ k+Bt−1 and
some constant Bt > 1 (note that the maximum travel delay
is Bt − 1). We assume that agents at node i know the value
of si(xi(k)) so that pii(k) = si(xi(k)), and are assumed to
know xi(k). We also assume that for every i ∈ H, there must
exist some j ∈ H such that j ∈ N (i) and that there exists a
path between any two nodes (which ensures that every node
is connected to the graph G(H,A)).

Let X = RN×(Bs+NBt) define the set of states. Every
state x(k) ∈ X is composed of (i) the total amount of agents
located at the nodes for all k′ such that k − Bs < k′ ≤ k
(which we will capture by xn(k)); and (ii) the total amount
of agent traveling between nodes for all k′ such that k −
Bt < k′ ≤ k (which we will capture by xt(k)). In particular,
xn(k) ∈ RN×Bs and xt(k) ∈ RN×NBt are defined as,

xn(k) =

 x1(k) . . . x1(k −Bs + 1)
...

. . .
...

xN (k) . . . xN (k −Bs + 1)


xt(k) =

[
x1
t (k) . . . xNt (k)

]
,

where

xit(k) =

 xi→1(k) . . . xi→1(k −Bt + 1)
...

. . .
...

xi→N (k) . . . xi→N (k −Bt + 1)
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and xi→j(k) denotes the amount of agents that are traveling
from node i to node j at time k. The state of the system is
defined as x(k) = [xn(k), xt(k)]. Next, we want to define
a set of states, such that any state x(k) that belongs to this
set exhibits the following desired properties:

Property 1: Agents at time k are distributed such that:
– All nodes with more than the minimum amount of

agents εp have equal gains;
– Any node that does not have the same gain as its

neighboring nodes must have a lower gain and the
minimum amount of agents εp only.

Property 2: There are no agents traveling between any
two nodes at times k, k − 1, . . ., k −Bt + 1.
Property 3: At time k every agent at any node i ∈ H has
an accurate perception about the gain of its neighboring
nodes N (i) (i.e., it will sense the actual gain at time
k).

Let (·)ij denote the element in row i and column j of
its matrix argument. Let S = {1, . . . , Bs}, and T =
{1, . . . , Bt}. Note that any distribution of agents such that
the state belongs to the set

Xb = {x ∈ X : ∀i, p ∈ H, q ∈ T , (2)
(xit)pq = 0; ∀i ∈ H, j ∈ S,
either si((xn)ij) = sp((xn)pq),

∀p ∈ H, q ∈ S such that (xn)pq 6= εp,

and si((xn)ij) ≥ sp((xn)pq),
∀p ∈ H, q ∈ S such that (xn)pq = εp;

or (xn)ij = εp}

possesses the desired properties. In particular, note that since
the gain of all nodes has been fixed since time k −Bs + 1,
we are guaranteed agents at every node have an accurate
perception of all of its neighboring nodes. Next, we specify
the set of events that capture the agents dynamics across the
nodes, and define sensing and motion conditions that ensure
that the desired agent distribution will be reached.

Let ei→N (i)
α(i,k) represent the event that some agents from

node i ∈ H start moving to neighboring nodes N (i) at time
k, where α(i, k) is a list (αj(i, k), αj′(i, k), . . . , αj′′(i, k))
such that j < j′ < . . . < j′′ and j, j′, . . . , j′′ ∈ N (i) whose
elements αj(i, k) ≥ 0 denote the amount of agents that start
moving from node i to node j ∈ N (i) at time k (note that
the the size of α(i, k) is |N (i)|). For convenience, we denote
this list by α(i, k) = (αj(i, k) : j ∈ N (i)). Let

{
e
i→N (i)
α(i,k)

}
represent the set of all possible combinations of how agents
can move from node i to neighboring nodes N (i) at any
time k. Furthermore, let ei←N (i)

β(i,k) represent the event that
agents from some neighboring nodes arrive at node i, where
β(i, k) = (βj(i, k), βj′(i, k), . . . , βj′′(i, k)) such that j <
j′ < . . . < j′′ and j, j′, . . . , j′′ ∈ N (i) is a list composed
of elements βj(i, k) that denote the amount of agents that
arrive from a neighboring node j ∈ N (i) at node i at time
k. Again, for convenience we denote this list by β(i, k) =
(βj(i, k) : j ∈ N (i)). Let

{
e
i←N (i)
β(i,k)

}
denote the set of all

possible arrivals at node i at any time k. Finally, let the set
of events be described by

E =
{
P
({
e
i→N (i)
α(i,k)

})⋃
P
({
e
i←N (i)
β(i,k)

})}
− {∅}

where P(·) denotes the power set of its argument. Each
event e(k) ∈ E is defined as a set, with each element of
e(k) representing the departure of agents from i ∈ H or
the arrival of agents at node i ∈ H, and multiple elements
in e(k) representing the simultaneous movements of agents,
i.e., agent departures and arrivals to multiple nodes.

An event e(k) ∈ E may only occur if it is in the set defined
by an “enable function,” denoted by g : X → P(E) − {∅}.
State transitions are defined by the operators fe : X → X ,
where e ∈ E . By specifying g and fe for e(k) ∈ g(x(k)) we
define the agents’ sensing and motion conditions:
• Event e(k) ∈ g(x(k)) if (a), (b), and (c) below hold:

(a) For all ei→N (i)
α(i,k) ∈ e(k), it is the case that:

(i) αm(i, k) = 0 if si(xi(k)) ≥ pim(k)

(ii) xi(k)−
∑

m∈N (i)

αm(i, k) ≥ εp

(iii) si(xi(k)) + ai
∑

m∈N (i)

αm(i, k)

≤ pij∗(k)− aj∗αj∗(i, k)

(iv) αj∗(i, k) ≥
γij∗

bj∗

[
pij∗(k)− si(xi(k))

]
,

if xi(k) ≥ αj∗(i, k) + εp and
αj∗(i, k) = xi(k)− εp, otherwise

where j∗ ∈
{
j : pij(k) ≥ pim(k),∀m ∈ N (i)

}
.

Condition (i) guarantees that if the gain of node
i is at least as high as the perception of any of
its neighboring nodes, then no agent starts moving
away from node i at time k. This condition is
required to guarantee the invariance of the desired
distribution. Condition (ii) guarantees that there is
at least εp agents at any node at any point in time,
and is required so that conditions (iii) and (iv)
are always well defined. Condition (iii) prevents
there being too many agents that start moving
away from node i at time k, so that the gain of
node i just about reaches the highest perception of
all of its neighboring nodes (of course additional
agents could move to the neighboring node with
the highest gain, reducing its value far enough, so
that node i does actually become the node with
the highest again at time k + 1). Condition (iv)
implies that if the gain of node i is less than
the perception of some neighboring node, then at
least a certain amount of agents (if not all but εp)
must move to the neighboring node perceived as
having the highest gain. Without condition (iv)
some node with a high gain could be ignored
by the agents and the desired distribution might
never be achievable. Finally, note that satisfying
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conditions (i)− (iv) requires that agents at node i
know ai, aj∗ , and bj∗ for some neighboring node
j∗ ∈ {j : pij(k) ≥ pim(k), ∀m ∈ N (i)}. We use

γij ∈
(
0, bjai

)
⊆ (0, 1) to characterize the degree

of cooperation between agents at node j and those
at node i. For agents at node j, the higher the
value of γij , the more willing they are to receive
agents from node i, although this movement will
degrade the gain of node j (i.e., if other agents
do not leave node j). In Section IV we will see
how these constants may be defined a priori in a
specific application, in particular for a surveillance
mission. In fact, their value will depend only on
characteristics which are inherent to the group of
agents and the environment being considered (e.g.,
the size of the region agents must cover and their
moving capabilities).

(b) For all ei←N (i)
β(i,k) ∈ e(k), where β(i, k) = (βj(i, k) :

j ∈ N (i)) it is the case that:

0 ≤ βj(i, k)

≤
k−1∑

k′=k−Bt+1

αi(j, k′) −
k−1∑

k′=k−Bt+1

βj(i, k′)

(c) If ei←N (i)
β(i,k) ∈ e(k) with βj(i, k) > 0 for some j

such that j ∈ N (i), then e
i→N (i)
α(i,k) ∈ e(k) with

α(i, k) = (0, . . . , 0). In other words, if some agents
arrive at node i at time k, then no agents will start
moving away from that node i at the same time
instant. Note that this assumption is not unrealistic
in these types of problems, especially since it is
imposed locally only.

• If e(k) ∈ g(x(k)), and e
i→N (i)
α(i) , e

i←N (i)
β(i) ∈ e(k), then

x(k + 1) = fe(k)(x(k)), where

xi(k + 1) = xi(k) (3)

−
X

n
m: m∈N (i), e

i→N(i)
α(i,k) ∈e(k)

oαm(i, k)

+
X

{m: m∈N (i) , e
i←N(i)
βm(i,k)∈e(k)}

βm(i, k)

xi→j(k + 1) = xi→j(k) + αj(i, k) − βi(j, k)

In other words, the amount of agents at node i at time
k + 1, xi(k + 1), is the amount of agents at node i at
time k, minus the total amount of agents leaving node
i at time k, plus the total amount of agents reaching
node i at time k. Note that Eq. (3) implies conservation
of the amount of agents so that if

∑N
i=1 xi(0) = P ,∑N

i=1 xi(k) = P for all k ≥ 0. So if x(0) ∈ X , x(k) ∈
X , for all k ≥ 0 (i.e., X is invariant).

Finally, we define a partial event to represent that some
amount of agents start moving from i ∈ H to neighboring
nodes N (i) and we denoted it by ei→N (i).
• For every substring e(k), e(k + 1), . . . , e(k + Bs − 1),

there is the occurrence of partial event ei→N (i) for all

i ∈ H (i.e., at any fixed time index k for all i ∈ H
partial event ei→N (i) ∈ e(k′) for some k′, k ≤ k′ ≤
k + Bs − 1). This restriction guarantees that by time
k + Bs − 1 agents at any node i ∈ H must sense and
potentially start moving according to conditions (a)(i)−
(iv).

• For every i ∈ H, j ∈ N (i), and k′ such that
e
i→N (i)
α(i,k′) ∈ e(k

′) and αj(i, k′) > 0, there is some k′′,

k′ ≤ k′′ ≤ k′ + Bt − 1 such that ej←N(j)
β(j,k′′) ∈ e(k′′)

and αj(i, k′) = βi(j, k′′). This restriction guarantees
that agents that start moving at time k′ arrive at their
destination node by time k′ +Bt − 1.

Let Ek denote the sequence of events e(0), e(1), . . . , e(k−1),
and let the value of the function X(x(0), Ek, k) denote
the state reached at time k from the initial state x(0) by
application of the event sequence Ek. We now study the
evolution of any X(x(0), Ek, k) that is reached from any
event sequence Ek where e(0), e(1), . . . , e(k − 1) satisfy
conditions a(i)− (iv).

III. RESULTS

The results in this section take into account that truncated
nodes may emerge while agents are trying to achieve the
desired distribution, i.e., the desired state of some nodes
may equal εp. In particular, we consider the emergence of
truncated nodes in graphs G(H,A) with a fully connected
topology. We show that the desired distribution is an invariant
set, and study its stability properties. Moreover, if we assume
that the graph G(H,A) is no longer fully connected, we then
show that for a large enough total number of agents P there
are no truncated nodes at the desired distribution, but the
same stability properties still hold.

Theorem 1: For a fully connected graph G(H,A), un-
known but bounded sensing and travel delays, and agents
that satisfy conditions (a) − (c), the invariant set Xb is
exponentially stable. Moreover, there exists a constant Pc >
Nεp such that if the total amount of agents is at least P > Pc,
the invariant set Xb is exponentially stable for any connected
graph G(H,A).

(Due to space constraints we do not include the proof of
Theorem 1 here. For detailed information about the proof
the reader should contact the authors.) The authors in [12]
study different load balancing problems under different types
of load: discrete, continuous, and virtual. The analysis here
considers the virtual load case, where the load (the agents)
affects the different processors (the nodes) to different ex-
tents. By considering sensing and travel delays our analysis
does not require that the real time between events ek and
ek+1 necessarily be greater than the greatest sensing plus
the greatest travel delay. In this sense, unlike the virtual
load model introduced in [12], we allow for a reduction
of the degree of synchronicity forced upon the system.
Furthermore, the results in Theorem 1 extend the virtual load
case in [12] to allow for a non-linear mapping between the
state and the virtual load, something that in the precence of
delays has not been achieved before.
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Exponential stability of the invariant set means that all
agents are guaranteed to converge to Xb at a certain rate. The
proof of Theorem 1 shows that in the worst case scenario
the higher the value of γ = minij{γij}, the faster agents
achieve convergence. Next, in Section IV we study the
average behavior of the agents, and show how our model
finds application in cooperative control problems.

IV. APPLICATION

Assume that the region of interest can be divided into
equal-size areas, and our goal is to make the proportion
of agents match the relative importance of monitoring each
area. Assume that each node in G(H,A) represents an area.
Agents may travel from one area to another, but they will
require up to Bt− 1 time steps to do so. Let us also assume
that the number of areas is N = 5, εp = 0, P = 100, and
G(H,A) has a fully connected topology. Furthermore, for all
i ∈ H we use gain functions of the form

si(xi(k)) = Ri − rxi(k)

where xi(k) is the amount of agents monitoring area i at
time k (i.e., the amount of agents approaching or attending
targets in that area), Ri is the average rate at which targets
appear in area i, and r is the average rate of targets that an
individual agent εx ≤ εp can attend (i.e., we assume that
P can be expressed as P = nεx, where n is an arbitrarily
large number which represents the total number of agents of
size εx > 0). The size of an agent εx is arbitrarily small and
is only defined to approximate the concept of an individual
agent for the continuous model. The value of r depends only
on the size of the areas and the maneuvering capabilities of
any agent εx within an area. We assume that Ri determines
the importance of monitoring area i, and so the higher its
value, the more agents should be allocated there. The agents
allocated in a particular area do not, however, know the
values of R1, . . . , R5 a priori, and can only sense or compute
outdated gains of all other areas (based on information
they receive or their own onboard sensors). Here, the gain
level of an area represents the average rate at which targets
have appeared in an area, but are not being or have not
been attended by any agent. Note that the gains decrease
linearly with the amount of agents. This relation results from
assuming that agents monitoring the same area randomly
approach any target located within that area (for a detailed
discussion on different gain functions that may be used for
surveillance see [15]).

Furthermore, note that since all areas have the same size
and all agents the same maneuvering capabilities, si((xi))
satisfies Eq. (1) with ai = bi = r for all i ∈ H. Thus, agents
must only know that ai = aj∗ = bj∗ = r to verify conditions
a(i) − (iv). However, if they do not know the precise rate
at which an individual agent can attend targets within the
same area, they must define positive constants a > 0 and
b > 0, such that a ≥ max{ai, aj∗} and b ≤ bj∗ , so that
Eq. (1) still holds. While using γij = b/a ≤ bj/ai < 1 for all
i ∈ H, j ∈ N (i), limits the maximum degree of cooperation
between agents, our results in Section III guarantee that the

agents will achieve the desired distribution as long as γij ⊆
(0, bj/ai). For our simulations we assume that agents know
that the average rate at which an individual agent can attend
targets is at least 0.08, so that b = 0.08, and at most 1, so
that a = 1. We let γij = γpq = γ ≤ 0.08 for all areas.

0 200 400 600
2

3

4

5

6

G
ai

n 
le

ve
ls

0 200 400 600
0

10

20

30

40

50

A
m

ou
nt

 o
f a

ge
nt

s

0 200 400 600
2

3

4

5

6

Time steps

G
ai

n 
le

ve
ls

0 200 400 600
0

10

20

30

40

50

Time steps

A
m

ou
nt

 o
f a

ge
nt

s

Fig. 1. Achieving the desired distribution for N = 5, γ = 0.04, εp = 0,
P = 100 (top plots) and P = 45 (bottom plots) with random bounded
sensing and travel delays.

Figure 1 shows the results of a sample run with R1 =
. . . = R4 = 6 , and R5 = 5, for 100 agents under random
sensing and travel delays (bounded by Bt = Bs = 10). The
top plots show that there are no truncated areas at the desired
distribution. While all nodes achieve the same common gain,
only about 10 agents are required in area 5 because it has a
lower target appearance rate. Furthermore, if we let P = 45,
the bottom plots show that the agents decide to cover only the
areas with higher target appearance rates, and s5(0) remains
below the achieved common gain.
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Fig. 2. Maximum amount of agents departing (solid curve) or reaching
(dotted curve) any area when γ = 0.02 (left plot) and γ = 0.04 (right plot)
with Bt = Bs = 1.

Figure 2 shows how the choice of γ affects the amount of
agents traveling between areas. The left plot illustrates the
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maximum amount of agents that depart (solid curve) or reach
(dotted curve) any area in the first 70 time steps when γ =
0.02. Since both maxima are key variables in determining
the time needed to achieve the desired distribution, they
must obviously decrease over time. Note that if we let
γ = 0.04 agents behave more aggressively, in the sense that
those in areas with higher gains are more willing to receive
other agents from neighboring nodes, which leads to higher
maxima but a faster convergence (see the right plot). In other
words, Figure 2 seems to suggest that if speed of convergence
to the desired distribution is more important than the cost of
traveling (e.g., fuel expenditure), agents should cooperate as
much as possible (i.e., γ should be made as large as possible).
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Fig. 3. The left plot shows the average time to reach Xb under no sensing
or travel delays (Bt = 2, Bs = 1). The right plot illustrates the case
when Bt = 2, but there are random sensing delays bounded by Bs = 10.
Every data point represents 40 simulation runs with varying initial agent
distributions, and the error bars are sample standard deviations for these
runs.

We study this hypothesis in Figure 3 where we show the
time required to achieve the desired distribution for different
values of γ. The left plot shows the results under no sensing
and travel delays (i.e., Bt = 2, Bs = 1), in which case higher
values of γ lead to a faster convergence, as is also suggested
from the worst case analysis (in the proof of Theorem 1).
However, note that this relation no longer holds when sensing
or travel delays are considered. The right plot in Figure 3
shows that the optimal cooperation level reduces from 0.08
to 0.04 when random sensing delays (bounded by Bs = 10)
are considered, suggesting that a less aggressive behavior
becomes desirable as the quality of the available information
degrades. Thus, a higher degree of cooperation does not
necessarily result, on average, in a faster convergence to the
desired state.

Finally, the left plot in Figure 4 shows the average time
when the desired distribution is reached for optimal values
of γ and varying bounds on the sensing delays (i.e., for
values of γ that minimize the average time to reach Xb). It
corroborates that the optimal degree of cooperation between
agents depends on the quality of the information being used
(i.e., the larger Bs, the less agents should cooperate in order
to achieve the distribution the fastest). A similar plot results
from considering travel delays, suggesting likewise that the
longer it takes for agents to travel between different areas,
the less they should cooperate. When comparing both types
of delays, sensing delays seem to have a slightly larger effect
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Fig. 4. The left plot shows the minimum (average) time to reach Xb. The
right plot shows the average time to reach Xb when vary Bs from 1 to 100
while keeping Bt = 2 (dotted curve), and vice versa (solid curve). For the
right plot γ = 0.02. Every data point represents 40 simulation runs with
varying initial agent distributions, and the error bars are sample standard
deviations for these runs.

on achieving the desired distribution than travel delays (see
the right plot in Figure 4 where we vary Bs from 1 to 100
while keeping Bt = 1 (dotted curve), and vice versa (solid
curve)).
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