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Abstract— The sensor network localization problem with
distance information is to determine the positions of all the
sensors in a network given the positions of some sensors and
the distances between some pairs of sensors. One approach to
localizing a large network is to divide the network into smaller
subnetworks whereby each subnetwork is localized in its own
coordinate system. We present two algorithms which use linear
algebra methods for computing the actual sensor positions given
the local solutions of a collection of subnetworks. We also use
graph rigidity theory to characterize collections of subnetworks
for which the algorithms are applicable.

I. INTRODUCTION

The sensor network localization problem with distance
information is to determine the positions of all the sensors
in a network given the positions of some sensors and the
distances between some pairs of sensors. A sensor whose
position is given is called an anchor. A network in Rd is
said to be localizable if there exists exactly one position
in Rd corresponding to each non-anchor sensor such that
the given inter-sensor distances are satisfied. The authors of
[1] use rigidity theory to give the necessary and sufficient
conditions for a network to be localizable. Furthermore, for
networks in Rd where d ≤ 2, the conditions are graph based
and can be checked efficiently. The localization problem
for a network of n sensors and m known distances has
an equivalent formulation as a system of m simultaneous
quadratic equations in 2n variables. In general, such systems
of simultaneous equations are difficult to solve directly,
especially when n is large. In [2], it was shown that the
process of localizing a network is NP-hard even if the
network is known to be localizable.

One approach to localizing a network with a large number
of sensors is to first decompose the network into subnet-
works. A local solution for a subnetwork is any assignment
of positions to the subnetwork’s sensors so that their posi-
tions are correct relative to each other, i.e. the actual positions
of the sensors can be obtained from the assigned positions
by applying a simple Euclidean transformation to all the
assigned positions. Ideally, computing a local solution for a
subnetwork would pose a less difficult localization problem
than attempting to localize the entire network all at once.

† A full-length version of this paper with proofs will appear at a later
date.
∗ The work of Fang and Morse was supported in part, by grants from

the U.S. Army Research Office and the U.S. National Science Foundation
and by a gift from the Xerox Corporation.

Once a local solution is obtained for each subnetwork, the
local solutions must be “merged” into a solution for the entire
network, i.e. an assignment of positions to the sensors so that
all the sensors are correctly positioned relative to each other.
In general, merging local solutions to obtain a solution for
the entire network is difficult. In [3], global optimization
techniques are used for merging local solutions, and heuris-
tics are proposed for detecting local minimums. In [4], an
algorithm is proposed for computing actual sensor positions
from the local solutions by means of “stress matrices.”

In this paper, we study the properties of collections of
subnetworks whose local solutions can be merged into a
solution of the entire network using purely linear algebra
methods. We use graph rigidity theory to characterize collec-
tions of subnetworks for which we present two linear algebra
based algorithms for computing the actual sensor positions
from given local solutions of subnetworks in a collection.
The first is based on an algorithm proposed in [4] which
merges local solutions by means of “stress matrices,” and
the second is based on the sequential localization algorithm
Sweeps proposed in [5], [6], [7].

In Section II, we review the theoretical background of the
localization problem, and we give the terms and definitions
to be used in the exposition that follows. The two algorithms
are presented in Section III and Section IV respectively,
together with the graphical characterizations of subnetwork
collections for which they are applicable. We conclude in
Section V with further characterizations of the “efficiently
localizable” networks studied in [8].

II. BACKGROUND

A multi-point p = {p1, . . . , pn} in d-dimensional space is a
set of n points in Rd labelled p1, . . . , pn. Because we will only
be concerned with networks in the plane, we will henceforth
restrict our attention to the case of d = 2. Two multi-points
p = {p1, . . . , pn} and q = {q1, . . . ,qn} of n points in R2 are
congruent if ‖ pi− p j ‖=‖ qi−q j ‖ for all i, j ∈ {1, . . . ,n}. A
graph with vertex set V and edge set E is denoted (V ,E ). A
point formation of n points at a multi-point p = {p1, . . . , pn}
consists of p and a simple undirected graph G with vertex set
V = {1, . . . ,n}, and is denoted by (G, p). If (i, j) is an edge
in G, then the length of edge (i, j) in the point formation
(G, p) is the distance between pi and p j, i.e. ‖ pi − p j ‖.
Two point formations with the same graph have the same
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edge lengths just in case the length of each edge in the graph
is the same in both point formations.

For any multi-point p = {p1, . . . , pn} in R2 and ε > 0,
let Bp(ε) denote the set of all multi-points q = {q1, . . . ,qn}
in R2 where ‖ pi − qi ‖< ε for all i ∈ {1, . . . ,n}. A point
formation (G, p) is rigid in R2 if there exists ε > 0 such that
for all q∈Bp(ε), p and q are congruent whenever (G, p) and
(G,q) have the same edge lengths. Roughly speaking, a rigid
point formation is one that cannot be continuously deformed
without causing an edge length to change. A graph G is
said to be rigid in R2 if there exists a multi-point p in R2

and ε > 0 such that (G,q) is rigid in R2 for all q ∈Bp(ε).
A set consisting of a finite number of elements from R is
said to be algebraically independent over the rationals if
its elements do not satisfy any non-zero polynomial with
rational coefficients. A multi-point is said to be generic if the
set consisting of the coordinates of its points is algebraically
independent over the rationals. It is known that if a multi-
point p is generic, then a point formation (G, p) is rigid if
and only if G is rigid. A point formation (G, p) in R2 is
globally rigid in R2 if multi-points p and q are congruent
whenever (G, p) and (G,q) have the same edge lengths. In
other words, edge lengths of a globally rigid point formation
uniquely determine all inter-vertex distances. A graph G is
said to be globally rigid in R2 if there exist multi-point p
in R2 and ε > 0 such that (G,q) is globally rigid in R2 for
all q ∈Bp(ε). It is known that if a multi-point p in R2 is
generic, then the point formation (G, p) is globally rigid in
R2 if and only if G is globally rigid in R2. There are a
number of efficient algorithms for determining if a graph is
rigid or globally rigid in Rd when d ≤ 2 [9], [10]. Since we
are only concerned with networks in the plane, we will in
the following refer to graphs or point formations which are
(globally) rigid in R2 as simply (globally) rigid.

A network with n sensors is modelled by a point formation
(G, p) where each sensor corresponds to exactly one vertex
of G, and vice versa, with (i, j) being an edge of G if i and
j are distinct and the distance between the corresponding
sensors is known, and p = {p1, . . . , pn} where pi is the
position of the sensor corresponding to vertex i. We say that
G is the graph of the network, and p is the multi-point of the
network. It is known that if the multi-point of a network in
R2 is generic, then the network is localizable if and only if
it has 3 non-collinear anchors and the graph of the network
is globally rigid. A number of efficient algorithms exist for
determining if a graph is globally rigid in R2 [10], [9].
Hence, for a network in R2 with a generic multi-point, it
can be efficiently determined if the network is localizable by
counting the number of its sensors and analyzing its graph.
Since almost all multi-points are generic, we will without
loss of generality restrict our attention to those networks
with generic multi-points. In particular, this implies no two
sensors occupy the same point and no three sensors are
collinear in the networks we consider.

By an assignment of a network with sensor set V is meant
any function α : V →R2 where α(u) 6= α(v) for all u,v∈V ,
u 6= v. An assignment is consistent if for all sensors u,v ∈ V

such that the distance between u and v is known, say as
duv, then ‖ α(u)−α(v) ‖= duv. By a sub-assignment of a
network is meant any function that is the restriction of an
assignment of the network to some nonempty subset of its
domain. A sub-assignment β : U → R2 is consistent if for
all sensors u,v ∈ U such that the distance between u and
v is known, say as duv, then ‖ β (u)−β (v) ‖= duv. For any
sub-assignment β , let D(β ) denote the domain of β , and for
any U ⊂ D(β ), let β (U ) denote the set {β (u) | u ∈ U }.
Given two sub-assignments α and β , we write α ∼ β if there
does not exist u ∈D(α)∩D(β ) such that α(u) 6= β (u).

For a graph G = (V ,E ), and any subset U of V , let
G(U ) denote the graph induced in G by vertices in U . For
any subset F of edge set E , let V (F ) denote the set of all
vertices some edge in F is incident on, and let G(F ) denote
the graph (V (F ),F ). We call G(F ) the graph induced in
G by edges in F . A subgraph of G is said to be proper
if it is not equal to G, and a subgraph of G with the same
vertex set as G is called a spanning subgraph of G. Given
a subgraph H = (U ,F ) of G and a set T = {(u,v)|u,v ∈
V ,u 6= v}, let H∪T denote the graph (U ∪V (T ),F ∪T ).
For subgraphs Gi = (Vi,Ei) and G j = (V j,E j) of G, let the
union of Gi and G j, denoted Gi∪G j, be the graph denoted
by (Vi∪V j,Ei∪E j). A subgraph Gi of G is said to be edge
distinct from subgraph G j of G if there is at least one edge
in Gi which is not in G j. For any matrix A, let A′ denote
the transpose of A.

A. Local Solutions

Let N denote a localizable network in R2 with sensors
labelled 1 through n, and positioned at π(1), . . . ,π(n), re-
spectively. Let G = (V ,E ) denote the graph of N. For
each (u,v) ∈ E , let duv denote the known distance between
sensors u and v. Since N is localizable and the multi-point
of N is assumed to be generic, we have that G must be
globally rigid in R2. Let N1,. . ., Ns, s ≥ 2, be subnetworks
of N, and suppose a local solution is computed for each Ni
using only the known inter-sensor distances in Ni. For each
i ∈ {1, . . . ,s}, let Vi denote the set of sensors in Ni. It is
easy to show that G(Vi) must be globally rigid in order for
a local solution of Ni to be computable using just the known
distances among sensors in Ni. For each Ni, let Gi denote any
spanning subgraph of G(Vi) which is also globally rigid. By
definition, the vertex set of Gi must be Vi, and let Ei denote
the edge set of Gi.

For each i ∈ {1, . . . ,s}, let the computed local solution of
Ni be denoted by sub-assignment αi. In the following, we
present two algorithms for computing a consistent assign-
ment of the entire network N from the given local solutions,
using purely linear algebra methods. Since N is localizable,
it follows that for all consistent assignments α of N, it must
be the case that ‖α(u)−α(v) ‖=‖ π(u)−π(v) ‖ for all u,v∈
V . Hence, any consistent assignment α of N is a solution
of the entire network N, and the actual sensor positions
can be obtained from α(V ) by a Euclidean transformation
which can be easily computed by solving a linear system of
equations using the anchor positions. For each i ∈ {1, . . . ,s},
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we will without loss of generality assume the multi-point
consisting of the points in αi(D(αi)) is generic since almost
all multi-points are generic, and in particular, the multi-point
of N is assumed to be generic.

III. STRESS MATRICES

In [4], it was shown that a “stress matrix” which satisfies a
maximal rank condition can be used to compute a consistent
assignment of N using strictly linear algebra methods. In
this section, we use graph rigidity theory to characterize
the properties of subnetwork collections for which the local
solutions can be used to obtain a stress matrix of maximal
rank. More specifically, we will do so by considering the
kernel of the transpose of the “rigidity matrix” associated
with the point formation modelling the network.

Let (H,q) be any point formation in R2, and suppose H
has m edges and k vertices. Let {1, . . . ,k} denote the vertex
set of H, and for each vertex i of H, let qi denote the point
in q corresponding to vertex i, and let q1

i and q2
i denote the

x and y coordinates of qi respectively. Let F denote the
edge set of H, and order the edges of H lexicographically,
i.e. edge (u,v), u < v, precedes edge (y,z), y < z, if either
u < y or u = y,v < z. Let ω be a 1×m row vector of real
numbers. For each edge (u,v) ∈ F , let ωuv denote the ith
element of ω if (u,v) is the ith edge in the lexicographical
ordering of the edges of H. The row vector ω is called
a stress of (H,q) if the following holds for each vertex
v of H: ∑(u,v)∈F ωuv(qu − qv) = 0. Suppose ω is a stress
of (H,q). A stress matrix of (H,q) corresponding to ω ,
and denoted Ω(ω), is the k× k matrix defined as follows.
For i, j ∈ {1, . . . ,k} where (i, j) ∈F , let Ω(ω)i j = ωi j. For
i, j ∈ {1, . . . ,k} where i 6= j and (i, j) /∈F , let Ω(ω)i j = 0.
For each i ∈ {1, . . . ,k}, let Ω(ω)ii =−∑ j 6=i Ω(ω)i j. Clearly,
a point formation has infinitely many stresses and stress
matrices associated with it.

The rigidity matrix of (H,q), denoted M, is the m× 2k
matrix defined as follows. For each i ∈ {1, . . . ,m}, associate
the ith row of M with the ith edge in the lexicographical
ordering of the edges of H. For the ith row of M, where
row i is associated with edge (u,v), let Mi,2u−1 = q1

u− q1
v ,

Mi,2u = q2
u− q2

v , Mi,2v−1 = q1
v − q1

u, Mi,2v = q2
v − q2

u, and let
Mi j = 0 for all j /∈ {2u− 1,2u,2v− 1,2v}. It is known that
the rank of the rigidity matrix of any point formation in R2

with k points is at most 2k−3. Furthermore, when the multi-
point q is generic, it is known that the point formation (H,q)
is rigid if and only if its rigidity matrix M has rank 2k−3.
Let w be any 1×m row vector where wM = 0. We say the ith
element of w corresponds to edge (u,v) if the ith row of M is
associated with edge (u,v) of H. A 1×m row vector ω is a
stress of (H,q) if and only if ωM = 0 [11]. Since each stress
of (H,q) corresponds to a stress matrix of (H,q), it follows
that each vector w where wM = 0, or equivalently w in the
kernel of M′, corresponds to a stress matrix of (H,q), which
we denote by Ω(w). The following is a simple observation
on the kernel of M′:

Lemma 1: Let (H,q) be any point formation in R2 where
H is rigid and q is generic, and let U and F denote the

vertex and edges sets of H respectively. The nullity of the
transpose of the rigidity matrix of (H,q) is |F |−(2|U |−3).

It is easy to show that any stress matrix (H,q) has rank at
most k− 3 when k ≥ 4. From [12], [11], it is known that
when k ≥ 4 and the multi-point q is generic, there exists
vector w where wM = 0 and Ω(w) has rank k−3 if and only
if H is globally rigid.

Let α be any consistent assignment of N, and let p =
{α(1), . . . ,α(n)}. Without loss of generality, suppose p
is generic. Let R denote the rigidity matrix of the point
formation (G, p). Since G is globally rigid and p is generic,
there exists vector w where wR = 0 and Ω(w) has rank n−3
when n ≥ 4. To avoid degenerate cases, suppose n ≥ 4 and
|Vi| ≥ 4 for each i∈{1, . . . ,s}. Suppose that without knowing
R, we are given a vector w for which wR = 0 and Ω(w) has
rank n−3. In [4], it was shown that such a Ω(w) can be used
to compute a consistent assignment of N using strictly linear
algebra methods; the proof is included for completeness in
the Appendix. Hence, if a vector w is known where wR = 0
and the corresponding stress matrix Ω(w) has rank n−3, then
a consistent assignment of N can be computed using only
linear algebra methods. However, without knowing some
consistent assignment of N to begin with, and therefore,
without knowing R, it is not obvious how such a w can
be obtained. In the next section, we give conditions on Gi,
i∈ {1, . . . ,s}, and G so that such a w can be computed using
just the given local solutions αi, i ∈ {1, . . . ,s}.

A. Graphical Conditions

For i ∈ {1, . . . ,s}, let Ri denote the rigidity matrix of
the point formation (Gi,αi(Vi)) where each vertex u ∈ Vi
corresponds to the point αi(u). For i ∈ {1, . . . ,s}, and vector
x where xRi = 0, the stress matrix of (Gi,αi(Vi)) correspond-
ing to x has rank at most |Vi|−3. By assumption, |Vi| ≥ 4 and
Gi is globally rigid for all i ∈ {1, . . . ,s}. Hence, there exists
a vector x where xRi = 0 and the stress matrix of (Gi,αi(Vi))
corresponding to x, i.e. Ω(x), has rank |Vi|−3 [12]. Clearly,
R is not known, but each Ri, i ∈ {1, . . . ,s}, can be directly
obtained using Gi and the given αi. In the following, we
will give conditions on Gi, i ∈ {1, . . . ,s}, so that a vector w,
where wR = 0 and Ω(w) has rank n− 3, can be computed
using just Ri, i ∈ {1, . . . ,s}.

Consider any Ri where i ∈ {1, . . . ,s}. Given a vector x
where xRi = 0, let xe denote the element of x corresponding
to edge e in Gi. We define the “extension” of x, denoted
x+, as follows. Let m denote the number of edges in G, i.e.
m = |E |, and let x+ be a 1×m vector whose elements are
defined as follows. Order the edges of G lexicographically,
and for each k ∈ {1, . . . ,m}, let ek denote the kth edge in the
ordering. Let the kth element of x+ be zero if ek is not an
edge in Gi. If ek is an edge in Gi, then let the kth element
of x+ be xek . When x+ is thus defined, we say that x+ (of
R) is extended from x (of Ri).

Lemma 2: If x is a vector such that xRi = 0 for some
i ∈ {1, . . . ,s}, then x+R = 0.
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For i ∈ {1, . . . ,s}, let xi be any vector where xiRi = 0, and
let w be any linear combination of x+

i , i ∈ {1, . . . ,s}. From
lemma 2, we have that wR = 0, which implies w corresponds
to a stress matrix of (G, p) which is denoted by Ω(w). For
each row i of R, if the ith row of R corresponds to edge
e, then we write we for the ith element of w. We now give
a graphical necessary condition for stress matrix Ω(w) of
(G, p) to have rank n−3:

Lemma 3: If Ω(w) has rank n−3, then the graph induced
in G by the edge set {e | e ∈ E , we 6= 0} is globally rigid
and is a spanning subgraph of G.

It is a direct consequence of Lemma 3 that if Ω(w) has rank
n−3, then the union of Gi, i∈ {1, . . . ,s}, must be a spanning
globally rigid subgraph of G.

A globally rigid graph is said to be minimally globally
rigid if the removal of any edge causes the graph to not be
globally rigid. A minimally globally rigid graph of n ≥ 4
vertices has exactly 2n− 2 edges, and any globally rigid
graph has a spanning subgraph which is also minimally
globally rigid. The following can be shown using Lemmas
1 and 3:

Lemma 4: Suppose |Vi| ≥ 4 and Gi is minimally globally
rigid for some i ∈ {1, . . . ,s}. If w is a nonzero vector where
wRi = 0, then the stress matrix of (Gi,αi(Vi)) corresponding
to w, denoted Ω(w), has rank |Vi|−3, and each element of
w is nonzero.

A natural question to ask is if a globally rigid subgraph of at
least four vertices can be obtained by removing vertices from
a minimally globally rigid graph. A simple consequence of
lemma 4 shows the answer to be negative:

Lemma 5: If H is a minimally globally rigid graph of
at least four vertices, then H does not contain any proper
subgraph of at least four vertices which is globally rigid.

Obviously, the set of all vectors u where uR = 0 is just the
kernel of R′. In the following, we use edge distinct minimally
globally rigid graphs to give some graphical properties of
collection of subnetworks from which we can “easily” obtain
a basis of the kernel of R′.

Lemma 6: Suppose each Gi is edge distinct from
⋃

j 6=iG j,
and is minimally globally rigid. If s = |E |− (2|V |−3), and
for i∈ {1, . . . ,s}, xi is any nonzero vector such that xiRi = 0,
then {x+

i | i∈{1, . . . ,s}} is a basis for the space of all vectors
w where wR = 0.

The next lemma considers a case where not all of the Gi are
edge distinct from

⋃
j 6=iG j:

Lemma 7: Suppose each Gi is minimally globally rigid,
and s = |E | − (2|V | − 3). Suppose Gk is not edge distinct
from

⋃
j 6=kG j, but Gi is edge distinct from

⋃
j 6=iG j for all

i 6= k. If for i ∈ {1, . . . ,s}, xi is a nonzero vector such that
xiRi = 0, then {x+

i | i ∈ {1, . . . ,s}} is a basis for the space
of all vectors w where wR = 0.

As noted previously, there exists vector w where wR = 0 and
Ω(w) has rank n−3. Lemmas 6 and 7 immediately suggest

a way to compute such a w using just Ri, i ∈ {1, . . . ,s}, and
without knowing R. Suppose the premise of either Lemma
6 or 7 is satisfied. For each i ∈ {1, . . . ,s}, first compute
nonzero vector xi where xiRi = 0, and let x+

i denote the vector
extended from xi. Note that each xi and x+

i , i∈ {1, . . . ,s}, can
be computed from just Ri. From lemmas 6 and 7, we have
that each vector w where wR = 0, and stress matrix Ω(w) of
(G, p) has rank n−3, must be a linear combination of vectors
in {x+

i | i ∈ {1, . . . ,s}}. Hence, there are elements ai ∈ R,
i∈{1, . . . ,s}, such that the stress matrix Ω(∑i∈{1,...,s} aix+

i ) of
(G, p) has rank n−3, which implies there is a nonzero minor
of Ω(∑i∈{1,...,s} aix+

i ) of order n−3. This minor corresponds
to a polynomial P with integer coefficients whose variables
take on values from the entries of Ω(∑i∈{1,...,s} aix+

i ). Note
that P cannot be trivial, i.e. P cannot be the zero polynomial,
since P is nonzero for the elements of Ω(∑i∈{1,...,s} aix+

i ).
Hence, for almost all linear combinations of vectors in
{x+

1 , . . . ,x+
s }, i.e. u = ∑i∈{1,...,s} cix+

i for ci ∈R, P is nonzero
for the elements of Ω(u), in which case Ω(u) must have rank
n−3 since it has a nonzero minor of order n−3.

We now give some non-graphical conditions for obtaining
a maximally ranked stress matrix from the given local
solutions. Let Bi, i ∈ {1, . . . ,s}, denote a basis for the space
of all vectors x where xRi = 0, and let di = |Bi|. Let B+

i
denote the set of vectors x+ of R extended from vectors x of
Ri in Bi: B+

i = {x+ | x ∈Bi}, and let B+ =
⋃

i∈{1,...,s}B
+
i .

The set B+ is directly computable using the given local
solutions αi, i ∈ {1, . . . ,s}. From Lemma 2, we have that if
w is a linear combination of vectors in B+, then wR = 0.
Let m denote the number of edges in G. It follows from
Lemma 1 that B+ is a spanning set of the space of all
vectors w where wR = 0 if and only if B+ has m− (2n−3)
linearly independent vectors. As shown above, once a basis
or spanning set of the space of all vectors w where wR = 0
is known, then it is easy to obtain a vector w such that the
stress matrix of (G, p) corresponding to w has rank n−3. A
non-graphical necessary condition for B+ to be a spanning
set for the space of all vectors w where wR = 0 is that
∑i∈{1,...,s} di ≥m−(2n−3). Let w be any linear combination
of vectors in B+. By construction, we have that wR = 0. We
now give a non-graphical sufficiency condition for Ω(w) to
be a stress matrix of (G, p) with rank n−3:

Lemma 8: If the set consisting of the elements of w is
algebraically independent over the rationals, then Ω(w) has
rank n−3.

For each Ni, i ∈ {1, . . . ,s}, all inter-sensor distances in Ni
are implicitly known from the given local solution αi. In the
following, for each i∈ {1, . . . ,s}, let Hi be any globally rigid
graph with vertex set Vi such that

⋃
i∈{1,...,s}Hi is globally

rigid and
⋃

i∈{1,...,s}Vi = V . Let H=
⋃

i∈{1,...,s}Hi. For each
i ∈ {1, . . . ,s}, let R̄i denote the rigidity matrix of the point
formation (Hi,αi(Vi)), and let R̄ denote the rigidity matrix
of the point formation (H, p). Clearly, R̄ is unknown, and
each R̄i can be obtained directly from Hi and the given local
solution αi. Furthermore, if w is a vector where wR̄ = 0
and the stress matrix Ω(w) of (H, p) has rank n− 3, then
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Ω(w) can be used to obtain the sensor positions of N via the
linear algebra based methods outlined in the Appendix. It is
straightforward to show that the results in this section apply
virtually verbatim when Gi, Ri, i ∈ {1, . . . ,s}, G and R are
replaced by Hi, R̄i, i ∈ {1, . . . ,s}, H and R̄ respectively.

IV. SEQUENTIAL MERGING

The merging of local solutions into a global solutions
is equivalent to solving a system of non-linear equations
which is in general difficult. In this section we present a
“sequential” merging algorithm which processes the local
solutions according to a specified order by solving a sequence
of systems of linear equations. We then characterize the
graph properties of subnetworks whose local solutions can
be merged into a solution of the network by the algorithm.
To avoid degenerate cases, suppose that the network contains
at least four sensors, and each subnetwork Ni, i ∈ {1, . . . ,s},
contains at least two sensors.

We will begin with some definitions to be used in describ-
ing the sequential algorithm. Consider two sub-assignments
β and δ where β ∼ δ . If β (u) 6= δ (v) for all u ∈D(β ), v ∈
D(δ ) and u 6= v, then define e(β ,δ ) as the sub-assignment
β+ where β+(u) = β (u) for all u∈D(β ) and β+(v) = δ (v)
for all v∈D(δ )−D(β ). If β (u) = δ (v) for some u∈D(β ),
v∈D(δ ) and u 6= v, then define e(β ,δ ) as the empty function
/0→ R2.

Consider a sub-assignment α where no three points of
α(D(α)) are collinear, and let U be any subset of V . For
W ⊂ V , let I (W ,U ) be the set of all vertices u ∈U such
that either u∈W or u is adjacent to three or more vertices of
W in G. Since no three points of α(D(α)) are collinear, it
follows that there is at most one sub-assignment δ where
D(δ ) = D(α) ∪I (D(α),U ) whose restriction to D(α)
is equal to α and ‖ δ (u)− δ (v) ‖= duv for all u,v where
u ∈I (D(α),U ), v ∈D(α) and (u,v) ∈ E . When such a δ
exists, then let ē(α,U ) = δ ; otherwise, let ē(α,U ) denote
the empty function /0→ R2.

Let E denote the space of all Euclidean transformations
in R2. Let S be a set consisting of a finite number of sub-
assignments with the same domain, and let D(S ) denote
the domain of any sub-assignment in S . Let α be a sub-
assignment denoting the local solution of some subnetwork,
and define g(S ,α) as:

g(S ,α) = {e(ē(β ,D(α)),L◦α) | β ∈S , L ∈ E,

D(ē(β ,D(α))) 6= /0, ē(β ,D(α))∼ L◦α,

D(e(ē(β ,D(α)),L◦α)) 6= /0}
Lemma 9 gives a simple condition on the domains of sub-
assignments in S and the domain of α so as to guarantee
that g(S ,α) consists of a finite number of sub-assignments:

Lemma 9: Suppose |D(α)| ≥ 2 and there is a sub-
assignment in S which is the restriction of a consistent
assignment of N to D(S ). Then g(S ,α) is finite if and
only if I (D(S ),D(α))≥ 2.

For i ∈ {1, . . . ,s}, let Gi = G(Vi), and let Go(1), . . . ,Go(s)
denote some ordering of G1, . . . ,Gs. We now describe a

sequential merging algorithm which computes a sequence of
sub-assignment sets B(i), i = 1, · · · ,s, by processing the lo-
cal solutions αi, i ∈ {1, . . . ,s}, in the ordering o(1), . . . ,o(s).
For i ∈ {1, . . . ,s}, let V1,i =

⋃
j≤i Vo( j). Let B(1) = {αo(1)},

and define B(i), i ∈ {2, . . . ,s}, as:

B(i) = g(B(i−1),αo(i)) (1)

It can be shown from Lemma 9 and the assumption that αo(1)
is a local solution that B(i) is finite for all i ∈ {1, . . . ,s} if
and only if |I (V1, j−1,Vo( j))| ≥ 2 for all j ∈ {2, . . . ,s}. It
is straightforward to show that if each B(i) is finite, then
each B(i+1) can be computed by solving a finite number of
systems of linear equations. Henceforth, assume the ordering
Go(1), . . . ,Go(s) specified above satisfies |I (V1, j−1,Vo( j))| ≥
2 for all j ∈ {2, . . . ,s}.

For U ,W ⊂ V , let E (U ,W ) denote the set of
all edges (u,w) ∈ E where u ∈ U and w ∈ W . Let
Go(1) +Go(2) denote the union of Go(1), Go(2) and edges
in E (Vo(1),I (Vo(1),Vo(2))− Vo(1)). For i ∈ {3, . . . ,s}, let
Go(1) + · · ·+Go(i) denote the union of Go(i), Go(1) + · · ·+
Go(i−1) and E (V1,i−1, I (V1,i−1,Vo(i))−V1,i−1). Using the
‘+’ operation and globally rigid graphs, we can now give
the necessary and sufficient condition for each element of
B(s) to be a consistent assignment of N:

Lemma 10: Each element of B(s) is a consistent assign-
ment of N if and only if Go(1) + . . .+Go(s) is globally rigid
and V1,s = V .

As can be seen from equation 1, the complexity of
computing each B(i), i ∈ {2, . . . ,s}, is entirely dependent
on |B(i− 1)|. In the following, we consider a special case
where |B(i)| = 1 for all i ∈ {1, . . . ,s}. We say that the
ordering Go(1), . . . ,Go(s) is a super-trilateration ordering if
|I (V1, j−1,Vo( j))| ≥ 3 for all j∈{2, . . . ,s}. If Go(1), . . . ,Go(s)
is a super-trilateration ordering and V1,s = V , then it is
straightforward to show using Lemma 10 that |B(i)| = 1
for all i ∈ {1, . . . ,s}, and B(s) consists of a consistent
assignment of N. For each vertex v∈V , let N (v) = {u | u∈
V and (u,v)∈ E }. The graph G is said to be locally globally
rigid if for each v ∈ V , the graph G(N (v)∪{v}) contains
at least four vertices and is globally rigid.

Lemma 11: If G is locally globally rigid, and for each v∈
V , there is some Gi, i∈ {1, . . . ,s}, such that Gi =G(N (v)∪
{v}), and for each i ∈ {1, . . . ,s}, Gi = G(N (v)∪{v}) for
some v ∈ V , then there exists a super-trilateration ordering
of G1, . . . ,Gs and V1,s = V .

V. EFFICIENTLY LOCALIZABLE NETWORKS

A graph is said to have a trilateration ordering if its
vertices can be ordered as v1,v2,v3, . . . ,vn so that v1,v2,v3
induce a complete graph, and each vi, i > 3, is adjacent
to three or more vertices v j where j < i [8]. Graphs with
trilateration orderings are globally rigid. A network with
three anchors and whose graph has a trilateration ordering is
efficiently localizable in that it can be localized by solving
a number of linear systems of equations that is polynomial
in the number of sensors. In the following, we characterize
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a subclass of graphs with trilateration orderings using the
notions of chordal and split graphs. 1 The following is an
easily shown property of split graphs:

Lemma 12: If each vertex of a split graph has degree at
least three, then the graph has a trilateration ordering.

For each integer k > 0, let C (k) denote the set of all chordal
graphs on k vertices, let H (k) denote the set of graphs H
in C (k) such that each vertex of H has degree at least three,
and let T (k) denote the set of all graphs in H (k) which
has a trilateration ordering.

Lemma 13: As k → ∞, |T (k)|
|H (k)| → 1.

For each integer k, let S (k) denote the set of all split graphs
on k vertices. Lemma 13 is a consequence of lemma 12 and
the following well known result on the relationship between
chordal and split graphs from [13]: |S (k)|

|C (k)| → 1 as k → ∞.
So, given a network N of n sensors with graph G and three
anchors, Lemma 13 implies that in the limit as n→ ∞, if G
is chordal and each vertex of G has degree at least three,
then it will almost always be the case that N will be not
only localizable but “efficiently” localizable in that its graph
G will have a trilateration ordering.

VI. APPENDIX

In the following, let w be a row vector such that wR =
0 and Ω(w) has rank n− 3. Let 1 be the n× 1 vector of
all ones, and let x and y denote n× 1 vectors whose ith
elements are the x and y coordinates of α(i), respectively,
i.e. α(i) =

(
x(i) y(i)

)′. From [11], we have that: 1, x and
y are in the kernel of Ω(w). Note that {1,x,y} is a linearly
independent set since the multi-point of N is assumed to be
generic. Let s and t be any two linearly independent vectors
in the kernel of Ω(w) which are both orthogonal to 1, and let
s(i) and t(i) denote the ith elements of s and t, respectively.
Let q(i) denote the 2×1 vector consisting of s(i) and t(i):
q(i) =

(
s(i) t(i)

)′. Let δ denote the assignment where
δ (i) = q(i) for each i ∈ V . In the following, we compute a
2×2 matrix L satisfying equation 2 using s, t and the known
inter-sensor distances:

di j =‖ Lq(i)−Lq( j) ‖, ∀(i, j) ∈ E (2)

Clearly, if an L satisfying 2 can be computed, then L ◦ δ ,
must be a consistent assignment of the entire network N.

Since s and t were chosen to be orthogonal to 1,
there are a,b,c,d ∈ R such that s = ax + by and

t = cx + dy. If we let A =
(

a b
c d

)
, then we get

q(i) = Aα(i), ∀i ∈ {1, . . . ,n}. Note that A must be
invertible since s and t are linearly independent. So
A−1 exists, and α(i) = A−1q(i), ∀i ∈ {1, . . . ,n}.

1A graph is said to be chordal if each of its subgraphs which is also a
cycle with at least four edges contains at least one “chord.” Where by a
chord of a cycle is meant any edge not in the cycle but which is incident on
two vertices of the cycle. A graph S is called a split graph if its vertex set
is the disjoint union of subsets C and I where the vertices in C induce a
complete graph in S, and no two vertices in I are adjacent to each other.
Split graphs are also chordal graphs.

For each (i, j) ∈ E , we can write ‖ α(i) − α( j) ‖2=
(q(i)′ − q( j)′)(A−1)′A−1(q(i) − q( j)). Since α is a
consistent assignment, we have that ‖ α(i)−α( j) ‖2= d2

i j
for all (i, j) ∈ E . By letting M = (A−1)′A−1, we can
write d2

i j = (q(i)′ − q( j)′)M(q(i) − q( j)). From this
equation, and the fact that M is symmetric, we can obtain
ri j

(
M11 M12 M22

)′ = d2
i j, where ri j is the row vector(

(s(i)− s( j))2 2(t(i)− t( j))(s(i)− s( j)) (t(i)− t( j))2
)
.

Since G is globally rigid, it must have at least three edges,
so let (i1, j1), (i2, j2), (i3, j3) be any three edges of G.
Let D be the 3 × 3 matrix whose kth row is rik jk for
k = 1,2,3. By letting d =

(
d2

i1 j1 d2
i2 j2 d2

i3 j3

)′
, we can

write D
(

M11 M12 M22
)′ = d. Since the multi-point

of N is generic, the rank of D is three for almost all
vectors s and t in the kernel of Ω(w). So without loss
of generality, suppose D has rank three, in which case
there is exactly one solution to Dx = d, namely, x = D−1d.
Hence, we can solve for M11, M12, and M22 using equation
D

(
M11 M12 M22

)′ = d. Since M is the product of a
nonsingular matrix, i.e. A−1, and its transpose, we have
that M is both symmetric and positive definite. Therefore,
one can compute the Cholesky decompositin of M. Let
L′L denote the Cholesky decomposition of M: M = L′L.
Using the Cholesky decomposition of M, we get that
d2

i j = (q(i)′ − q( j)′)L′L(q(i)− q( j)), ∀(i, j) ∈ E , which
implies d2

i j =‖ Lq(i)− Lq( j) ‖2, ∀(i, j) ∈ E . Hence, we
have computed a matrix L for which equation 2 holds.
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