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Abstract— Detecting and isolating multiple faults is a compu-
tationally intense task which typically consists of computing a
set of tests, and then computing the diagnoses based on the test
results. This paper proposes a method to reduce the compu-
tational burden by only running the tests that are currently
needed, and dynamically starting new tests when the need
changes. A main contribution is a method to select tests such
that the computational burden is reduced while maintaining the
isolation performance of the diagnostic system. Key components
in the approach are the test selection algorithm, the test initial-
ization procedures, and a knowledge processing framework that
supports the functionality needed. The approach is exemplified
on a relatively small dynamical system, which still illustrates the
complexity and possible computational gain with the proposed
approach. 1

I. INTRODUCTION

Detection and isolation of multiple faults in a dynamic

process is a computationally expensive task, and the cost

increases rapidly with the number of faults and model

complexity. A real-time, model-based diagnosis system often

consists of a set of pre-compiled diagnostic tests together

with a fault isolation module [3], [14]. The diagnostic tests

are based on a formal description of the process, often in the

form of differential or difference equations.

The computational complexity of such a diagnosis sys-

tem mainly originates from two sources: complexity of the

process model and the number of fault modes that are con-

sidered. A high capability of distinguishing between faults,

especially when multiple faults are considered, requires a

large number of diagnostic tests [9]. Also, the more complex

the process model is, the more computationally intense is the

task of executing the diagnostic tests. This paper develops a

reconfiguration scheme to handle computational issues while

still being able to handle multiple faults. Recently, works on

on-line reconfiguration of the diagnosis system has appeared.

For a related work, see e.g. [2], where Kalman-filters are

reconfigured based on diagnosis decisions.

The main idea of this work is to utilize the observation

that all tests are not needed at all times, which can be used to

reduce the overall computational burden. For example, when

starting a fault free system, there is no need to run tests

that are designed with the sole purpose of distinguishing

between faults. In such a case, only tests that are able to

detect faults are needed, which may be significantly fewer

1This work is partially supported by grants from the Swedish Aeronautics
Research Council (NFFP4-S4203) and the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII.

compared to the complete set of tests. When a test triggers an

alarm and a fault is detected, appropriate tests are started to

make it possible to compute a refined diagnosis decision.

Such an approach requires a flexible and reconfigurable

framework where tests can be stopped and restarted on-line

in a controlled fashion, and also be run on historical data.

The objective of this paper is to illustrate how such a

dynamic approach to diagnosis can be designed and imple-

mented using linear dynamical process models. In particular,

it will be shown how such an approach requires controlled

ways of initializing the dynamic diagnostic tests, and how to

select which new tests that need to be started when a certain

set of diagnostic tests has generated an alarm.

The reconfigurable diagnosis framework proposed in this

paper is introduced in Section II, and the theoretical diagno-

sis background needed is presented in Section III. Methods

how to determine, in a specific situation, which tests that

should be started next are treated in Section IV. A proper

initialization procedure for dynamic tests is described in

Section V. The complete approach is exemplified on a

small dynamic system in Section VI, which, in spite of the

relatively small size of the example, clearly illustrates the

complexity of the problem and the possible computational

gain with the proposed approach. The computational frame-

work used to implement the approach, DyKnow, is briefly

described in Section VII, and finally some conclusions are

given in Section VIII.

II. FLEXDX: A RECONFIGURABLE DIAGNOSIS

FRAMEWORK

This section gives an overview of the proposed reconfig-

urable diagnosis framework, named FlexDx. As mentioned in

the introduction, the approach must be capable of switching

on and off tests dynamically while refining the set of diag-

noses. This is done in an iterative manner by the following

procedure:

1) Initiate the set of diagnoses.

2) Based on the set of diagnoses, compute the set of tests

to be performed.

3) Compute the initial state of the selected tests.

4) Run the tests until an alarm is triggered.

5) Compute the current set of diagnoses based on the test

results, then go to step 2.

When dealing with multiple fault diagnosis, it has been

shown useful to represent all diagnoses with the minimal

diagnoses [5]. This representation will also be used here.
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When FlexDx is started, there are no conflicts and the only

minimal diagnosis is the no-fault mode NF, i.e. the set of

minimal diagnoses D is set to {NF} in step 1. Step 2 uses

a function that given a set of diagnoses D returns the set

of tests T to be performed next. Step 3 initiates each of the

tests in T . A test might include a residual generator given in

state-space form. This means that the start-up of such a test

involves the estimation of the initial condition of the residual

generator. In step 4, the tests are performed until at least one

of them triggers an alarm and a test result is generated in the

form of a set of conflicts [4], [16]. Step 5 is a function that

computes the current set of diagnoses D, given the previous

set of diagnoses and the generated set of conflicts. This step

can be performed with algorithms handling multiple fault

diagnoses [4], [11].

Step 4 and 5 are standard steps used in diagnosis systems

and will not be described in further detail, while step 2 and

3 are new steps needed for dynamically changing the test set

T . The details of these steps are given in Section IV and V

respectively. But before that, a brief theoretical background

on test construction for dynamic systems.

III. THEORETICAL BACKGROUND

The diagnosis systems considered in this paper consist

of a set of tests. Each test consists of a residual r(t) that

is thresholded such that it triggers an alarm if |r(t)| > 1.

Note that the threshold can be set to one without of loss of

generality. It is assumed that the residuals are normalized

such that a given false alarm probability pFA is obtained, i.e.

P (|r(t)| > 1|NF) = pFA (1)

The residuals are designed using a model of the process to

be diagnosed.

A. The Model

The class of models considered here are linear differential-

algebraic models. It is worth noting that even if the developed

approach relies on results for linear systems, the basic idea

is equally applicable also to non-linear model descriptions.

There are several ways to formulate differential-algebraic

models. Here, a polynomial approach is adopted but similar

results can be adopted for other model formulations, e.g.

descriptor models. The model is given by the expression

H(q)x + L(q)w + F (q)f = V (q)v (2)

where x(t) ∈ R
mx , w(t) ∈ R

mw , f(t) ∈ R
mf , and

v(t) ∈ R
mv . The matrices H(q), L(q), F (q), and V (q) are

polynomial matrices in the time-shift operator q. The vec-

tor x contains all unknown signals, which includes internal

system states and unknown inputs. The vector w contains all

known signals such as control signals and measured signals,

the vector f contains the fault-signals, and the vector v is

white, possibly multidimensional, zero mean, unit covariance

Gaussian distributed noise.

To guarantee that the model is well formed, it is assumed

that the polynomial matrix [H(z) L(z)] has full column

rank for some z ∈ C. This assumption assures that for any

noise realization v(t) and any fault signal f(t) there exists

a solution to the model equations (2).

B. Residual Generation

Residuals are used both to detect and isolate faults. This

task can be formulated in a hypothesis testing setting. For

this, let fi denote both the fault signal and the corresponding

single fault mode and let F be the set of faults.

A pair of hypotheses associated with a residual can then

be stated as

H0 : fi = 0, fi ∈ F0

H1 : fi 6= 0 for some fi ∈ F0

where F0 ⊆ F is the set of faults the residual is designed

to detect. This means that the residual is not supposed to

detect all faults, only the faults in F0. By generating a set

of such residuals, each sensitive to different subsets F0 of

faults, fault isolation is possible. This isolation procedure is

briefly described in Section III-C.

In the literature there exists several different ways to

formally introduce residuals. In this paper an adapted version

of the innovation filter defined in [10] is used. For this, it will

be convenient to consider the nominal model under a specific

hypothesis. The nominal model under hypothesis H0 above

is given by (2) with V (q) = 0 and fi = 0 for all fi ∈ F0.

With this notion, a nominal residual generator is a linear

time-invariant filter r = R(q)w where for all observations

w, consistent with the nominal model (2) under hypothesis

H0, it holds that limt→∞ r(t) = 0.

Now, consider again the stochastic model (2) where it

is clear that a residual generated with a nominal residual

generator will be subject to a noise component from the

process noise v. A nominal residual generator under H0 is

then said to be a residual generator for the stochastic model

(2) if the noise component in the residual r is white Gaussian

noise.

It can be shown [6] that all residual generators R(q), as

defined above, for the stochastic model (2) can be written as

R(q) = Q(q)L(q)

where the matrix operator Q(q) satisfies the condition

Q(q)H(q) = 0. This means that the residual is computed

by r = Q(q)L(q)w and it is immediate that the internal

form of the residual is given by

r = Q(q)L(q)w = −Q(q)F (q)f + Q(q)V (q)v (3)

Thus, the fault sensitivity is given by

r = −Q(q)F (q)f (4)

and the statistical properties of the residual under H0 is given

by

r = Q(q)V (q)v (5)

A complete design procedure is given in e.g. [10] for state-

space models and in [6] for models on the form (2). The

objective here is not to describe a full design procedure, but

it is worth mentioning that a design algorithm can be made

fully automatic and that the main computational steps involve

a null-space computation and a spectral factorization.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB13.5

1067



C. Computing the Diagnoses

The fault sensitivity of the residual r in (3) is given

by (4). Here, r is sensitive to the faults with non-zero transfer

functions. Let C be the set of faults that a residual r is

sensitive to. Then, if residual r triggers an alarm, then at least

one of the faults in C must have occurred and the conflict

[16] C is generated.

Let a set b ⊆ F represent a system behavioral mode,

which means that fi 6= 0 for all fi ∈ b ⊆ F and fj = 0
for all fj /∈ b. The behavioral mode b is then a diagnosis if

it can explain all generated conflicts, i.e. b has a non-empty

intersection with each generated conflict. A diagnosis b is

considered a minimal diagnosis if no proper subset of b is

a diagnosis [4], [16]. Algorithms to compute all minimal

diagnoses for a given set of conflicts, which is equivalent to

the so called minimal hitting set problem, can be found in

for example [4], [16]. The following example illustrates the

main principle.

Example 1: Let an X in position (i, j) in the table below

indicate that residual ri is sensitive to fault fj

f1 f2 f3

r1 X X

r2 X X

r3 X X
If residuals r1 and r2 trigger alarms, then conflicts C1 =
{f2, f3} and C2 = {f1, f3} are generated. For a set of faults

to be a diagnosis, it must then explain both these conflicts.

It is straightforward to verify that the minimal diagnoses in

this case are b1 = {f3} and b2 = {f1, f2}. ⋄

IV. TEST SELECTION

This section describes step 2 in the procedure given in

Section II, i.e. how the set of tests T is selected given a set

D of minimal diagnoses. There are many possible ways how

this can be done, and the method that will be described here

is based on the deterministic properties of (2) only and relies

on basic principles in consistency-based diagnosis.

A fundamental task in consistency-based diagnosis is to

compute the set of consistent modes [4] given a model, a set

of possible behavioral modes, and observations. The design

goal of the test selection algorithm will be to perform tests

such that the set of consistent modes is equal to the set of

diagnoses computed by the diagnosis system.

A. Consistent Behavioral Modes

The deterministic behavior in a behavioral mode b is

described by (2) when v = 0 and fj = 0 for all fj /∈ b,

and the set of observations consistent with b is consequently

given by

O(b) = {w|∃x,∃fi∈bfi : H(q)x+L(q)w+
∑

fi∈b

Fi(q)fi = 0}

(6)

This means that a mode b is consistent with the deterministic

part of model (2) and an observation w if w ∈ O(b). Hence,

to achieve the goal the set of diagnoses should, given an

observation w, be equal to {b ∈ B|w ∈ O(b)} where B
denotes the set of all behavioral modes. As mentioned in

Section II, we will use minimal diagnoses to represent all

diagnoses. This is possible since (6) implies that O(b′) ⊆
O(b) if b′ ⊆ b. Hence, if b′ is consistent it follows that b is

consistent and therefore it is sufficient to check if the minimal

consistent modes remain consistent when new observations

are processed.

B. Tests for Checking Model Consistency

Next, we will describe how tests can be used to detect

if w /∈ O(b). Let T = {ti|i ∈ {1, 2, . . .}} be the set of

all available tests and let ri = Qi(q)L(q)w be the residual

corresponding to test ti.
A residual generator checks the consistency of a part

of the complete model. To determine which part, only the

deterministic model needs to be considered. It can be shown

[12] that residual ri checks the consistency of ξi(q)w = 0
where ξi(q) is a polynomial in the time-shift operator. By

defining the set of consistent observations for tests in a

similar way as for models, we define

O(ti) = {w|ξi(q)w = 0} (7)

Now, we are ready to characterize all test sets T that are

capable of detecting any inconsistency of w ∈ O(b). For this

purpose, only tests ti with the property that O(b) ⊆ O(ti)
can be used. For such a test, an alarm implies that w /∈ O(ti)
which further implies that w /∈ O(b). This means that a test

set T is capable of detecting any inconsistency of w ∈ O(b)
if and only if

O(b) =
⋂

ti∈{ti∈T |O(b)⊆O(ti)}

O(ti) (8)

A trivial solution to (8) is T = {t} where O(t) = O(b).

C. The Set of All Available Tests

If T is not capable of checking the consistency of b, then

no subset of tests will be capable of doing this either. Hence,

this approach sets requirements on the entire set of tests T .

In this paper, we will use two different types of test sets T
fulfilling (8) for all modes b ∈ B. These are introduced by

the following example.

Example 2: Consider the model

x1(t + 1) = αx1(t) + w1(t) + f1(t)
x2(t) = x1(t) + f2(t)
w2(t) = x1(t) + f3(t)
w3(t) = x2(t) + f4(t)

(9)

where xi are unknowns, wi known variables, α a known

parameter, and fi the faults. There are 24 modes and the set

of observations consistent with each mode is

O(∅) = {w|

[

w1(t) + αw2(t) − w2(t + 1)
−w2(t) + w3(t)

]

= 0}

O({f1}) = {w| − w2(t) + w3(t) = 0}

O({f2}) = O({f4}) = O({f2, f4}) =

= {w|w1(t) + αw2(t) − w2(t + 1) = 0}

O({f3}) = {w|w1(t) + αw3(t) − w3(t + 1) = 0}

The behavioral models for the 10 remaining modes b do not

contain any redundancy and the observations are therefore
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not restricted, i.e. O(b) = R
3. In contrast to (6), the sets of

consistent observations are here expressed in the same form

as for tests that is with linear differential equations in the

known variables only. Any set described as in (6) can be

written in this form [15]. ⋄
The first type of test set T1 will be to design one test

for each distinct behavioral model containing redundancy,

i.e., for the example T1 consists of four tests ti such that

O(t1) = O(∅), O(t2) = O({f1}), O(t3) = O({f2}), and

O(t4) = O({f3}). To check the consistency of w ∈ O(∅),
two linear residuals are needed and this number is the the

degree of redundancy of a model. These two residuals can

be combined in a positive definite quadratic form to obtain

a scalar test quantity. When stochastics are considered, the

quadratic form is chosen such that the test quantity conforms

to a χ2-distribution.

Tests for models with a high degree of redundancy can be

complex and the second type of test set T2 includes only the

tests for the behavioral models with degree of redundancy 1.

For the example, T2 = {t2, t3, t4} and by noting that O(∅) =
O(ti) ∩ O(tj) for any i 6= j where i, j ∈ {2, 3, 4}, any two

tests can be used to check the consistency of w ∈ O(∅).
In [9] it has been shown under some general conditions that

T2 fulfills (8) for all modes b ∈ B.

D. Test Selection Methods

We will exemplify methods that given a set of minimal

diagnoses D select a test set T ⊆ T such that (8) is fulfilled

for all b ∈ D. An optional requirement that sometimes might

be desirable is to select such a test set T with minimum car-

dinality. The reason for not requiring minimum cardinality is

that the computational complexity of computing a minimum

cardinality solution is generally much higher than to find any

solution.

The most straightforward method is to use the first type

of tests and not require minimum cardinality solutions. Since

the first type of test set includes a trivial test O(ti) = O(b)
for all modes b with model redundancy, it follows that a

strategy is to start the tests corresponding to the minimal

diagnoses in D.

Example 3: Consider Example 2 and assume that the set

of minimal diagnoses is D = {∅}. Then it is sufficient to

perform test t1, i.e. T = {t1}. If the set of minimal diagnoses

are D = {{f2}, {f3}, {f4}}, then t3 is used to check the

consistency of both {f2} and {f4} and the total set of tests

is T = {t3, t4}. For this example, this strategy produces the

minimum cardinality solutions, but this is not true in general.

A second method is to use the second type of tests and

for example require a minimum cardinality solution. The

discussion of the method will be given in Section VI where

this method has been applied to a larger example.

V. INITIALIZATION

When a new test selection has been made, new tests have

to be initialized. Since information about faults sometimes

are only visible in the residuals for a short time-period after

a fault occurrence, we would like a new test to start running

before the currently considered fault occurred; otherwise

valuable information would be missed. It is also important

that the state of the new test gets properly initialized, such

that the fault sensitivity is appropriate already from the

start, and the residuals can deliver tests results immediately.

Therefore, the initialization of a new test consists of two

steps:

1) Estimate the time of the fault.

2) Estimate the initial condition.

Both these steps require the use of historical data, which

therefore have to be stored. The fault time estimation will

use the historical residuals from the triggered test, while

the initial condition estimation uses the measured data from

the process before the fault occurred. In case not enough

historical data is available, it is reasonable to use all available

data. In such a case, one may expect some degradation in

detection performance compared to running all tests at all

times.

A. Estimating the Fault Time

There are many possibilities to estimate the fault time.

See for example [13], [1] for standard approaches based on

likelihood ratios. Here, a window-based test has been chosen.

It should be noted, however, that for the given framework,

what is important is not really to find the exact fault time,

but rather to find a time-point before the fault has occurred.

The estimated time-point will be denoted by tf .

Given a number of residuals from an alarming test,

r(1), . . . , r(k), let us compute the sum of the squared resid-

uals over a sliding window, i.e.,

S(t) =
1

σ2

ℓ
∑

j=1

r2(t + j), t = 0, . . . , k − ℓ (10)

If the residual generator is designed such that, under the null

hypothesis that no fault has occurred, (r(j))k
j=1 are white

and Gaussian with variance σ2, then S(t) ∼ χ2(ℓ) in the

fault free case. Hence, S(t) can be used to test whether this

null hypothesis has been rejected at different time-points, by

a simple χ2-test. Since it is preferable to get an estimated

time-point that occurs before the actual fault time, rather than

after, the threshold of the χ2-test should be chosen such that

the null hypothesis is fairly easily rejected. The estimate tf is

then set to the time-point of the last non-rejected test. Also,

in order not to risk a too late estimate, the time-point at the

beginning of the sliding window is used.

B. Estimating the Initial Condition

Having found tf , the next step is to initialize the state of

the new residual generator. The method used here considers

a time-window of samples of w(tf − k), . . . , w(tf ) as input

to find a good initial state x(tf ) of the filter at the last time

point of the window.

Consider the following residual generator:

x(t + 1) = Ax(t) + Bw(t) (11)

r(t) = Cx(t) + Dw(t) (12)

Assume that w(t) = w0(t)+Nv(t) where w0(t) is the noise-

free data (inputs and outputs) from the process model and
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v(t) is Gaussian noise. In fault free operation, there is a state

sequence x0(t), such that the output r(t) = 0 if v(t) = 0,

i.e.,

x0(t + 1) = Ax0(t) + Bw0(t) (13)

0 = Cx0(t) + Dw0(t) (14)

Given w(t), t = tf − k, . . . , tf , we would like to estimate

x0(tf ). This will be done by first estimating x0(tf − k).
From (13) and w(t) = w0(t) + Nv(t) we get

0 = Rxx0(tf − k) + RwW0

⇔ Rxx0(tf − k) + RwW = RwDV V (15)

where

Rx =











C
CA

...

CAk











Rw =











D 0 0 . . .
CB D 0 . . .

CAB CB D . . .
. . .

CAk−1B . . . D











W =







w(tf − k)
...

w(tf )






W0 =







w0(tf − k)
...

w0(tf )







V =







v(tf − k)
...

v(tf )






DV =











N 0 . . . 0
0 N . . . 0
...

...
. . .

...

0 0 . . . N











Assuming that the distribution of V is known, say,

V ∼ N(0,ΣV ), (15) means that Rxx0(tf − k) + RwW
is a zero-mean stochastic vector with covariance matrix

RwDV ΣV DT
V RT

W . Note that the expression above corre-

sponds to the actual residuals obtained when starting in

x0(tf −k). Due to the design of the residual generator giving

white residuals, this means that RwDV ΣV DT
V RT

w ≈ σ2I .

Hence, a reasonable estimate of x0(tf − k) is given by the

regular least-squares estimate,

x̂0(tf − k) = −(RT
x Rx)−1RT

x RwW (16)

From this, x̂0(tf ) can be computed as

x̂0(tf ) = Akx̂0(tf − k)+
[

Ak−1B Ak−2B . . . AB B 0
]

W

The choice of k is made in advance, based on the computed

variance of the initial residuals given x̂0(tf ). The larger k is,

the closer this variance comes to the stationary case. Hence,

k can be chosen based on a maximum probability of false

alarms during the initial time steps.

VI. EXAMPLE

To illustrate the FlexDx framework, let us consider the

simulated example system shown in Figure 1, where a

DC-servo is connected to a flywheel through a rotational

(damped) spring. The system dynamics can be described by

the following equations:

J1θ̈1(t) = ku(t) − α1θ̇1(t) − Ms(t)

Ms(t) = α2(θ1(t) − θ2(t)) + α3(θ̇1(t) − θ̇2(t))

J2θ̈2(t) = −α4θ̇2(t) + Ms(t)

u

J2

θ2

Ms

θ1

J1

Fig. 1. Illustration of the example process; a DC-servo connected to an
inertia with a spring.

where u(t) is an input signal controlling the torque from the

motor (with a scaling coefficient k = 1.1), θ1(t) and θ2(t) are

the angles of the motor axis and the flywheel, respectively,

and Ms(t) is the torque of the spring. The moments of inertia

in the motor is J1 = 1 and for the flywheel J2 = 0.5. The

parameters α1 = 1 and α4 = 0.1 determine the viscous

friction at the motor and flywheel respectively, while α2 =
0.05 is the spring constant and α3 = 0.1 the viscous damping

coefficient of the spring.

As outputs, the motor axis angle and velocity, and the an-

gle of the flywheel are measured. We will design the diagno-

sis system for six possible single faults f1(t), . . . , f6(t); one

for each equation. The augmented system model becomes

J1θ̈1(t) = k(u(t) + f1(t)) − α1θ̇1(t) − Ms(t)

Ms(t) = α2(θ1(t) − θ2(t)) + α3(θ̇1(t) − θ̇2(t)) + f2(t)

J2θ̈2(t) = −α4θ̇2(t) + Ms(t) + f3(t)

y1(t) = θ1(t) + f4(t) + v1(t)

y2(t) = θ̇1(t) + f5(t) + v2(t)

y3(t) = θ2(t) + f6(t) + v3(t)

Here, vi(t), for i = 1, 2, 3, are measurement noise terms.

Since the diagnosis framework will work on sampled data,

we discretize the model before designing the tests, using a

zero-order hold assumption. The noise is implemented as

i.i.d. Gaussian noise with variance 10−3. Here, the second

type of tests described in Section IV-C for the discretized

system is used. Tests for all behavioral models with degree

of redundancy 1 result in a set of 13 tests. Their correspond-

ing fault sensitivities are obtained directly from the model

equations, using expression (4), and are shown in Table I.

A. Reduction of the Computational Burden

To quantify the reduction in computational burden in

this example, a simple measure is used, where the number

of residual values computed in the FlexDx framework is

compared to the number of residual values computed for the

case where no dynamic reconfiguration of tests is used. This

is of course a coarse measure: for instance, it is not taken

into consideration that different tests may have drastically

different computational requirements. However, since the

objective here is to illustrate general principles rather than

to quantify an exact reduction for a particular example, the

simple approach is deemed sufficient.

In a simulated scenario, the system is started in the fault-

free mode. At t = 100, f1 is set to 0.2, and at t = 200,
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TABLE I

THE FAULT SENSITIVITY OF THE RESIDUALS.

f1 f2 f3 f4 f5 f6

r1 X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X
r7 X X X X
r8 X X X X
r9 X X X X
r10 X X X X
r11 X X X X
r12 X X X X
r13 X X X X
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Fig. 2. Residuals computed by FlexDx.

f5 is set to 0.1. The residuals computed by the diagnosis

system are shown in Figure 2. It is important to note that

during time intervals where the residual is plotted as being

exactly 0, no residual computations are performed, and thus

residuals are not computed for all the time-points. Here the

second test selection method in Section IV-D has been used.

By comparing the number of residual values computed for

a diagnosis system running all tests at all times with the

number of residuals computed with the proposed system,

a 78% reduction of the number of computed residuals is

obtained for the simulated scenario. Further, the figure shows

that the largest number of tests is performed during the fault

transitions for a short period of time. The reduction obtained

in the example is significant and for systems with a low

failure rate or high degree of redundancy, a larger reduction

can be expected.

B. Test Reconfiguration

To show how the diagnosis system is reconfigured during

a fault transient, we will describe what is happening when

the fault f1 occurs at t = 100 in the simulated scenario. The

course of events is described in Table II.

Each row in the table gives the most important properties

of one iteration in the procedure given in Section II. In

one such iteration, the set of active tests are executed on

observations collected from time tf to ta. The column

minimal diagnoses shows a simplified representation of the

TABLE II

DIAGNOSIS EVENTS

tf ta Active Tests Minimal Diagnoses

1 0 102.6 1, 2,5 NF

2 98.9 102.7 1, 3, 10,13 1, 3, 5, 6

3 98.9 102.2 1, 2, 6, 7,8, 11,12 1, 3, 25, 26, 45, 46

4 98.9 102.3 1, 2,6, 7, 9, 10, 11 1, 23, 25, 26, 35, 36, 45

5 98.9 102.6 1, 2, 7,9, 10, 11 1, 23, 26, 35, 36, 45

6 98.9 105.2 1, 2, 7, 10,11 1, 23, 26, 36, 45

7 100.6 − 1, 2, 7, 10 1, 23, 26, 36, 245, 345, 456

minimal diagnoses during the corresponding phase. Each

iteration ends when one or several of the active tests trigger

an alarm and these are in bold type.

A step by step description of the procedure given in

Section II will be given next. Step 1 initiates the set of

minimal diagnoses to D = {NF}, which is shown in row 1.

The degree of redundancy of the behavioral model for NF is

3, and therefore 3 tests are needed to check if w ∈ O(NF)
is consistent. Step 2 computes the first, in lexicographical

ordering, minimum cardinality solution to (8), which is the

test set T = {1, 2, 5} given in row 1. Step 3 initiates the

tests T and test 5 triggers an alarm at time ta = 102.6.

From the fault sensitivity of residual r5 given in Table I,

C = {f1, f3, f5, f6} becomes a conflict which is the output

of step 4. The new set of minimal diagnoses, computed in

step 5, are shown in the second row. Returning to step 2,

the degree of redundancy for each of the behavioral models

corresponding to minimal diagnoses are 2, and therefore at

least two tests are needed to check the consistency of each of

them. The minimum cardinality test set computed in step 2 is

T = {1, 3, 10, 13}. This set is shown in row 2. Tests 1 and 3

check the consistency of {f1}, 1 and 10 the consistency of

{f3}, 3 and 13 the consistency of {f5}, and 10 and 13 the

consistency of {f6}. In step 3, the fault time is estimated

to tf = 98.9 by using the alarming residual r5. The initial

states of the residuals used in the tests T are estimated using

observations sampled before time tf . Proceeding in this way,

the diagnosis system concludes in row 4 that {f1} is the only

consistent single fault.

VII. IMPLEMENTATION ISSUES

To implement the FlexDx framework, a number of issues

have to be managed besides implementing the algorithms

and connecting them into a system. When a potential fault is

detected, FlexDx computes the last known fault free time tf
and the new set of residuals to be tested starting at time tf . To

implement this, three issues have to be solved. First, FlexDx

must be reconfigured to compute the new set of residuals and

their tests. Second, these computations must begin at time tf
which will be in the past. Third, at the same time as FlexDx

is computing residuals and performing tests on the historic

data, system observations will keep coming at their normal

rate.

To manage these issues, FlexDx is implemented using

DyKnow, a knowledge processing middleware framework for

describing, implementing and interacting with applications
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Fig. 3. An overview of the components of the FlexDx implementation. The
boxes are computational units and the arrows are streams. A self referring
arrow means that a computational unit has an internal state which is fed
back to itself. The thick black line means that the inputs are synchronized
in time.

processing asynchronous streams of information [7], [8].

DyKnow processes streams on many levels of abstractions

generated by different components in a distributed system

mediating information between sensing and deliberating pro-

cesses. These streams can be viewed as time-series and can

start as continuous streams of sensor readings. Processes

combine such streams by computing, synchronizing, filtering

and approximating to derive higher level abstractions.

A DyKnow application consists of a set of sources rep-

resenting processes providing external streams (e.g., sensor

inputs), a set of computational units representing processes

on streams, and a set of labeled streams generated from

the sources and computational units. A computational unit

can encapsulate any computation on one or more streams.

Examples of computational units are filters and other signal

processing algorithms, but also more complex procedures

such as the test selection algorithm presented in Section IV.

Each stream is described by a declarative policy which

defines both which source it comes from and the constraints

on the stream. These constraints can for example specify

the maximum delay, how to approximate missing values or

that the stream should contain samples added with a regular

sample period.

An overview of the FlexDx implementation is shown in

Figure 3. It consists of four computational units: Residuals
to compute the residuals, ResultSet to perform the tests on

the residuals, Diagnoses to compute the current diagnoses

based on the test results, and TestSet which computes the

set of tests to be performed based on the current diagnoses.

The computational units are connected by streams. The input

to FlexDx is a stream of system observations coming from

a source System and the initial diagnoses.

The three features of DyKnow which provides the nec-

essary support for FlexDx is the ability to buffer streams,

to create streams starting from a time in the past and to

replace computational units at run-time. When the set of tests

changes, TestSet will replace Residuals and ResultSet
with new instances computing the current residuals and tests.

It will also replace the stream of system observations by a

new stream of system observations, but starting from the last

known fault free time. The system will then resume operation

as before, until the next fault is detected.

VIII. DISCUSSION AND CONCLUSIONS

The diagnosis framework proposed here reduces the com-

putational burden of performing multiple fault diagnosis by

only running the tests that are currently needed. This involves

a method for dynamically starting new tests. An important

contribution is a method to select tests such that the com-

putational burden is reduced while maintaining the isolation

performance of the diagnostic system. Key components in

the approach are test selection, test initialization, and the

knowledge processing middleware framework DyKnow that

supports the needed functionality. Specific algorithms for

diagnosing linear dynamical systems have been developed to

illustrate the diagnosis framework, but the framework itself

is more general. In the given example, the proposed approach

has shown a significant reduction of the computational bur-

den for a relatively small dynamical system. For systems with

a high degree of redundancy, i.e. systems for which there

exists many possible tests, the reduction can be expected

to be even higher. Systems with low failure rate are also a

class of systems where the approach can be expected to be

advantageous, since then typically only a small subset of the

tests are required to run continuously, rendering a significant

reduction in computational burden.
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