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Abstract—This paper investigates the closed-loop properties
of multivariable (MIMO) linear systems where the sensed
information is centralized and coded on the basis of a ∆-
modulation algorithm often used for minimizing the numbers
of transmitted bits. In particular we propose a new centralized
vector coding algorithm that allows us to extend our previous
results in [4] to any type of linear multivariable systems. In
addition, we provide an estimation of the stability attraction
domain, and we give some simulation results validating the
proposed approach.

Index Terms—Delta modulation, Networked controlled sys-
tems, NCS, quantized systems.

I. INTRODUCTION

THis paper deals with the stabilization problem of a linear

multivariable system through a communication network

where information is transmitted via a particular coding

algorithm. Coding algorithms seeking to transmit a mini-

mum number of information bits are appealing in wireless

networks since they allows a substantial channel bandwidth

reduction. Many of such types of control architecture using

that type of codes have been studied in the past. See [6],

[11], [10], [8], [1], [13] among others.

Delta modulation (∆-M ) is one alternative to minimize

the numbers of bits to be coded. Recent works in [4] have

re-adapted the standard form of the delta modulation structure

to their use in a feedback setup. Inspired by this approach

several variants of [4] have been studied: asynchronous

entropy coding [2], energy-aware coding [3], adaptive delta

modulation [7], and gain scheduling multi-bit coding [9].

Except for the trivial case of diagonalizable multivariable

system that can be reformulated as a set of n-scalar ones, all

these works deal exclusively with scalar system.

In this paper, we present a generalization of the delta-

modulation coding presented in [4], to MIMO systems. In

particular we introduce a vector coding structure for multi-

variable centralized linear systems. The notion of central-

ization refers here to the fact that both the encoder-decoder

and the control law use the full available information from

all sensors. The idea is shown in Fig. 1, where we can

see that all the sensed system outputs are collected in a

central point, then transformed into a different coordinate-

basis (using the transform matrix T k) before they are coded

using a vector-coding algorithm. At the receiver side, it is

similarly assumed that the transmitted information arrives

to a central receiver, then decoded, and finally the control

is computed using this centralized information. It is worth

to notice that decentralized case is clearly much more con-

strained, even in absence of a coding process. A recent work

[12] dealing with the case of decentralized multi-controller

stability over communication channel illustrates well the

fundamental difficulties, and provides an interesting preview

on how to handle these problems when information is not

centralized.
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Fig. 1. Schematic representation of the system in our study.

The paper is organized as follows. After formalizing the

problem in section II, we introduce in section III the general

vector coding algorithm that can be adapted for all different

forms of Jordan blocks resulting from the change of coordi-

nate basis. Then, vector coding is performed in the transform

domain. Vector coding here refers to the fact that a specific

code-word is assigned for specific combinations between

states. Closed-loop stability properties resulting from this

approach are also exposed here. Section V characterizes

the attraction set associated to the previous local stability

conditions. This allows a finer estimation of quantization

values to be used in the coding process. Finally simulation

results are shown in section VI.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The problem considered here is the stabilization of a

multivariable system in which sensor signals are centralized,

and then transmitted through a digital communication link

to the controller. The coding design aims to achieve stability

with a minimal information rate, thanks to a judicious coding

strategy selection during the quantization step.
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Let us assume the following:

• the coding process is centralized : a single encoder can

be used to encode all the sensed states of the system,

• the encoded information is transmitted through a noise-

less perfect transmission channel. Hence delay, errors

due to the transmission are not considered,

• the encoder and decoder clocks are assumed synchro-

nized, and samples are assumed to occur at each Ts.

The following notations will be used:

• xk = [x1
k, . . . , xn

k ]T ∈ R(n×1) is the n-dimensional

sensed state vector at instant kTs (each xi
k corresponds

to the i − th sensor) ;

• uk = [u1
k, . . . , um

k ]T ∈ R(m×1), is m-dimensional

control input vector at instant kTs.

The discretized system is described by:

xk+1 = Axk + Buk (1)

uk = −Kx̂k (2)

with K such as A−BK is Hurwitz. x̂k is an estimation of

xk, and x̃k denotes the estimation error :

x̃k = xk − x̂k, (3)

and, more generally, for a given signal sk, ŝk represents an

estimated value of sk and s̃k represents the error sk − ŝk.

Without loss of generality, we suppose that system (1) is

expressed in its Jordan’s form, such that A is of the form,

A =




Jλ1

0 0

0 Jλl
0

0 0 Jλγ



 (4)

where we assume that there are α Jordan’s blocks, of

dimension µl × µl, with multi-valued real eigenvalue, and

γ − α Jordan’s blocks, of dimension 2µl × 2µl, with multi-

valued complex conjugated eigenvalues.

For the multi-valued real eigenvalue case, the Jλl
, for 1 6

l 6 α, are of the form,

Jλl
=





λl 1 0
0 λl 1

0 λl 1
0 λl



 (5)

and, for the multi-valued complex conjugated eigenvalues,

the Jλl
, are, for all α + 1 6 l 6 γ, of the form,

Jλl
=





|λl|R(θl) I2 0
0 |λl|R(θl) I2

0 |λl|R(θl) I2

0 |λl|R(θl)





(6)

where λl = |λl|(cos(θl) + j sin(θl)) describes the complex

eigenvalues, with magnitude |λl|, and angle θl. R(θl) is the

rotation matrix associated to the form adopted above, i.e.

R(θl) =

(
cos(θl) sin(θl)
− sin(θl) cos(θl)

)
(7)

With µ1 + . . . + µγ = n.

III. MULTIVARIABLE ∆-MODULATION CODING

STRATEGY

In this section, we present the multivariable coding strat-

egy. This strategy is inspired from the ∆-modulation al-

gorithm studied previously in [4] for the one-dimensional

case. The n-dimensional case considered here does not result

from the simple extension of the one-dimensional case, but

requires a new vector coding strategy, and a particular change

of coordinates (matrix Tk) for the multi-valued complex

conjugated eigenvalue case. The role of the rotation matrix Tk

is to align the direction of the eigenvector (signal oscillation)

to the vector quantizer block.

A. Principle of multivariable coding and decoding process

Figure 1 shows the architecture of the proposed differential

coding algorithm. It is composed of three main components:

• The vector quantizer block transforms the error z̃k,

into a finite codeword set

• The predictor , that transforms back the codeword into

a system state prediction x̂k

• The rotation matrix Tk transforms the estimation error

x̃k between the signal xk and its estimated (recon-

structed) value x̂k into a new set of coordinates z̃k, i.e.

z̃k = T−1
k x̃k (8)

Each of these components are explained in detail next.

1) vector quantizer: it maps the transformed vector z̃k

into the quantized vector ˆ̃zk. The multi-level quantizer is

constructed as follows:

• we consider Mi (odd or even) subdivisions for each z̃i

with respective quantization step ∆i. The partition is

centered at the origin,

• This partition generates an hypercube of dimension n
with a total of nC =

∏i=n
i=1 Mi quantized volumes (see

example in Figure 2),

• To each quantized volume is associated a value for the

quantized vector ˆ̃zk (see example in the Table I).

The formula used to compute ˆ̃zk is the following:
ˆ̃zi
k is given as:

ˆ̃zi
k =






(Mi − 1)∆i/2 if C1

N∆i if C2

−(Mi − 1)∆i/2 if C3

If Mi is odd, then Ci are:

C1 : z̃i
k > (Mi − 1)∆i/2

C2 : z̃i
k ∈ [(N − 1/2)∆i, (N + 1/2)∆i],

(N ∈ {−(Mi − 1)/2, . . . , (Mi − 1)/2})
C3 : z̃i

k < −(Mi − 1)∆i/2

If Mi is even, the conditions Ci are:

C1 : z̃i
k > (Mi − 1)/2∆i

C2 : z̃i
k ∈ [N∆i, (N + 1)∆i],

(N ∈ {−(Mi − 1)/2, . . . , (Mi − 1)/2})
C3 : z̃i

k < −(Mi − 1)∆i/2
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Fig. 2. Evolution of z̃k where z̃0 begins in Ωext = {[−1.5∆1, 1.5∆1]×
[−1.5∆2, 1.5∆2]} and z̃k ∈ Ωint = {[−d1, d1]× [−d2, d2]} and the dots
delimit the nine subdivisions of the space.

Remark 1: Note that quantizer vector ˆ̃zi
k is associated to

a codeword of dimension nC that can be coded directly into

R = ⌈log2(nC)⌉ bits, where ⌈.⌉ denotes the ceil function.

2) Predictor: The estimation of the signal x̂k is computed

thanks to a model-based predictor:

x̂k+1 = (A − BK)x̂k + Aˆ̃xk

= (A − BK)x̂k + AT k
ˆ̃zk

(9)

where the last expression results from the use of the inverse

transformation matrix, i.e.

x̃k = T kz̃k (10)

Due to the particular nature of this transformation (rotation

matrix) its inverse always exists. Thus, using equations (8),

(10) and (9), we get :

z̃k+1 = T−1
k+1AT k(z̃k − ˆ̃zk) (11)

Note that, as this predictor is used at both the encoder and

the decoder side, their respective initial conditions x̂0 and ˆ̃z0

are assumed to be the same.

3) Transformation matrix T k: The selection of this matrix

for the general case is quite involved. In what follows we

present two examples: a trivial choice ( T k = I), and an

other where its choice depends on the eigenvalues position

in the complex plane. The general case will be treated in

detail in section IV.

B. Example 1: two-dimensional system with a real eigen-

value

Consider a system of the form (1), with

A =

(
λ 1
0 λ

)

TABLE I
CODING STRUCTURE RELATED TO FIGURE 2

Codeword Value of ˆ̃zk Codeword Value of ˆ̃zk

1 (∆1, 0) 6 (−∆1,−∆2)
2 (∆1, ∆2) 7 (0,−∆2)
3 (0, ∆2) 8 (∆1,−∆2)
4 (−∆1,∆2) 9 (0, 0)
5 (−∆1, 0)

and some B such that (A, B) is controllable. Then, we can

take T k = I2, where In denotes the n-entry identity matrix,

which leads, with x̃k = z̃k, to

z̃k+1 =

(
λ 1
0 λ

)
(z̃k − ˆ̃zk)

Fig. 3. Evolution of z̃k , in the first figure, we choose that z̃0 ∈ Ωext(0),
z̃1 ∈ Ωint but if we code the signal z̃k+1 with Tk = I2 we loose some space

and, to ensure that Ωint ⊂ Ωext, the constrained eigenvalue is |λ| < 3/
√

2.
The second figure shows a forced rotation which permits better performances

Let us choose Mi = 3 subdivisions per signal, with a

different step for each one; a quantization step of ∆1 > 0
for z̃1

k, and ∆2 > 0 for z̃2
k. This partition is shown in Figure 2,

and the associated coding strategy in Table I.

Now if we assume that |λ| < 3, and that the quantization

steps are chosen such that

∆2 < ∆1(3 − |λ|) (12)

then it is easy to show that if the z̃0 is initiated inside the

centered rectangle set Ωext, then the evolution of z̃k will enter

(in one step) inside the set Ωint as defined in Figure 2.

To see that, note that if z̃k ∈ Ωext, then we have |z̃i
k−

ˆ̃zi
k| 6

∆i

2 , ∀i ∈ {1, 2}. Now, from error equation in z̃k, we have that

|z̃1
k+1| < |λ|∆1

2 + ∆2

2 = d1, and that |z̃2
k+1| < |λ|∆2

2 = d2.

This defines the set Ωint. From here it is obviously needed

that Ωint ⊂ Ωext, which leads to the condition (12).

C. Example 2: two-dimensional system with complex conju-

gate eigenvalues

Consider a system of the form (1), with

A = |λ|R(π/4)

with R(π/4) is defined in (7), and B such that the pair

(A, B) is controllable. Suppose that we take T k = I2 ,
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which gives x̃k = z̃k and from (3) we get

z̃k+1 = |λ|R(π/4)(z̃k − ˆ̃zk)

As in the former example, let us choose Mi = 3 subdivisions

per signal, with quantization steps ∆1, ∆2 > 0.

We suppose that the initial condition at k = 0 z̃0 ∈ Ωext

defined in the Figure 3 a), thus at k = 1 we obtain z̃1 ∈
Ωint (Figure 3 b)). It can be proved following similar steps

as in Example 1 that Ωext is an invariant set if |λ| < M1√
2

with ∆1 = ∆2. This condition is more conservative than the

one obtained in Example III-B, where we only require that

|λ| < M1. It is also possible to retrieve the same result by

redefining the transform matrix T k as shown below

Let us choose T k such that

T k = R(kπ/4)

Then z̃k = R(−kπ/4)x̃k with R(π/4)−1 = R(−π/4).
Equation (3) becomes

z̃k+1 = R(−(k + 1)π/4)|λ|R(π/4)R(−kπ/4)−1(z̃k − ˆ̃zk)

= |λ|R(−(k + 1)π/4)R(π/4)R(kπ/4)(z̃k − ˆ̃zk)

= z̃k+1 = |λ|I2(z̃k − ˆ̃zk)

Hence, we obtain a fully decoupled system and it is straight

forward to show that if z̃0 begins in the set Ωext, it is

necessary that Ωint ⊂ Ωext to ensure that Ωext is an invariant

set, this condition leads to |λ| < 3 and a independent choice

of ∆1 and ∆2. The generalization of this result needs an other

transformation to have the same properties as real eigenvalues

system.

IV. CONSTRUCTION OF THE TRANSFORM MATRIX T k :

GENERAL CASE

Consider a system of the form (1), with A defined in (4)

and B such that (A, B) is controllable. The error equation:

x̃k+1 = A(x̃k − ˆ̃xk)

As we have assumed that A is a block diagonal matrix,

the associated stability properties can be analyzed separately

for Jλl
. In the following paragraph, we will first deal with

the case of real eigenvalues 1 6 l 6 α and latter we will

focus on the complex conjugate case α + 1 6 l 6 γ.

To simplify the notation, we only note x̃k instead of

x̃k(l) ∈ Rµl , Jλ = Jλl
and µ = µl.

A. Case of multiple-valued real eigenvalues

Lemma 1: Case of multiple real eigenvalues. Assuming

that ˆ̃zk is computed thanks to the quantization procedure

given in section III-A1, and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
µ : |z̃i| 6 Mi

∆i

2
, 1 6 i 6 µ}

and the quantization steps satisfy the equations

|λ| +
∆i+1

∆i

6 Mi, 1 6 i 6 µ − 1 (13)

Then

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
µ : |z̃i| 6 |λ|∆i/2 + ∆i+1/2

∀i : 1 6 i 6 µ − 1 and |z̃µ| 6 λ∆µ/2}

Proof: According to (5):

z̃i
k+1 = λ(z̃i

k − ˆ̃zi
k) + (z̃i+1

k − ˆ̃zi+1
k ) (14)

z̃µ
k+1 = λ(z̃µ

k − ˆ̃zµ
k ) (15)

Given that ˆ̃zi+1
k is quantized by the procedure given in section

III-A1, we have |z̃i+1
k − ˆ̃zi+1

k | 6
∆i+1

2 . Then using (13), for

1 6 l 6 µ − 1, we get

|z̃i
k+1| 6 |λ||z̃i

k − ˆ̃zi
k| + |z̃i+1

k − ˆ̃zi+1
k | 6 |λ|

∆i

2
+

∆i+1

2

6 Mi

∆i

2
(16)

Finally, (13) implies that |λ| < Mi, so that

|z̃µ
k+1| 6 Mi

∆µ

2
(17)

B. Case of complex conjugate eigenvalues.

We now consider the case where λ ∈ C for α+1 6 l 6 γ.

So, let us introduce matrices W (θ) and Q(θ) defined by

W (θ) =

(
R(θ) 0

0 R(θ)

)
(18)

Q(θ) =

(
R(−θ) 0

0 R(−µθ)

)
. (19)

It can be shown after a few calculations that

Q−1(θ)W −1((k + 1)θ)JλW (kθ)Q(θ)

=





|λ|I2 I2 0 0
0 |λ|I2 I2 0
...

. . . |λ|I2 0
. . . 0 |λ|I2




=̂J̌λ

Let us choose T k = W (kθ)Q(θ). Then, as in the case of

real-valued eigenvalues, we have

z̃k+1 = J̌λ(z̃k − ˆ̃zk) (20)

and J̌λ is a block diagonal matrix, so that we can consider

separately each block again.

Then, considering separately even indices and odd indices,

we exactly recover the results of the case of real-valued

eigenvalues. Indeed, if we denote z̃e
k = [z̃2

k, z̃4
k, . . . , z̃2µ

k ] and

z̃o
k = [z̃1

k, z̃3
k, . . . , z̃2µ−1

k ], we have

z̃o
k+1 = F (|λ|)(z̃o

k − ˆ̃zo
k); z̃e

k+1 = F (|λ|)(z̃e
k − ˆ̃ze

k)

Where F (|λ|) is the matrix given by the structure of Eq 5,

namely sum of diagonal matrix |λ| plus the superior diagonal

with only 1.
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Lemma 2: Case of multiple complex eigenvalues. Assum-

ing that ˆ̃zk is computed thanks to the quantization procedure

given in section III-A1, and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
2µ : |z̃i| 6 Mi

∆i

2
}

|λ| + ∆i+2/∆i 6 Mi, ∀i : 1 6 i 6 2µ − 2 (21)

Then we ensure that

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
2µ : |z̃i| 6 |λ|∆i/2 + ∆i+2/2

1 6 i 6 2µ − 2 and else |z̃i| 6 |λ|∆i/2}

Proof: The proof is identical to the demonstration of

Lemma 1 in the case of real-valued eigenvalues.

C. General case: combined real and complex eigenvalues

Theorem 1: Suppose the system (2)

xk+1 = Axk + Buk

with the pair (A, B) controllable.

And a channel rate R bounded by

n∏

l=1,|λl|>1

⌈|λl|⌉ < 2R

Then, the coding structure that ensures that xk is bounded,

is realized with the Delta-modulation coding explained in

section III where z̃k = T−1
k x̃k with T k defined as

Tk =





Iµ1
0 0 0...

0 Iµα 0 0...
0 0... Wι(kθι)Qι(kθι) 0
0 0... 0 Wγ(kθγ)Qγ(θγ)



 (22)

with α + 1 = ι.
Then z̃k+1 = J̆(z̃k − ˆ̃zk) and where A = T k+1J̆T−1

k

J̆ =





J1 0 . . . 0
... Jα . . . 0
... 0 J̌ ι 0
0 . . . 0 J̌µ





with the properties for Mi and ∆i given in lemma 1 for real

eigenvalues and lemma 2 for complex eigenvalues.

Proof: For each signal with instable open loop, one of

the condition is |λl| < Mi, it is sufficient that ⌈|λl|⌉ < Mi

with R = log2

∏n
i=1 Mi. If we multiply for all the coeffi-

cients, the result becomes

n∏

l=1,|λl|>1

⌈|λl|⌉ < 2R

Using the previous lemmas, we ensure that x̃ is bounded.

xk+1 = (A − BK)xk + Ax̃k

With the following system where A−BK has its eigenvalues

strictly inferior than 1, the authors of [4] have shown that the

cascade system ensures that xk is bounded.

V. DOMAIN OF ATTRACTION, NEW TUNING RULES FOR ∆i

The aim of this section is twofold. Firstly assuming the

use of the tuning rule (13), we provide a less conservative

method to estimate the attraction domain (named B ⊃ Ωext).

Secondly, assuming the same attraction domain Ωext, we

provide a new tuning rule for the ∆i that,compared to

previous rule given in (13), results in smaller values for ∆i.

As a consequence, the system precision can be improved.

A. Characterization of B

Let assume that the ∆i are tuned following the rule in (13),

and denote B the new estimation of the attraction domain

with Ωext ⊂ B ⊂ R
n. Let B be defined as the compositions

of the sub-sets Bλl
,

B = Bλ1
× ... × Bλw

(23)

where the Bλl
describes the attraction domain for the l-th

Jordan’s block, J̌λl
, under consideration,

z̃k+1 = F (|λl|)(z̃k − ˆ̃zk)

This decomposition simplifies the analysis by looking at each

block separately instead of considering the whole system

together. Therefore, we only need to focus on a single block

Bλl
, and repeat the same analysis for other block when

needed.

Inspired by the Jordan block structure, assume in turn

that Bλl
= Hλl,1 × ... × Hλl,µl

where each subset, Hλl,1,

correspond to a domain associated to each of the Jordan block

components. For simplicity reasons, we omit the subindex λl

in the sequel. Hence, we simply note B = H1 × ... ×Hµl
.

Theorem 2: Assume that ˆ̃zk is computed thanks to the

quantization procedure given in section III-A1, and that ∆i

are tuned following the rule in (13), and suppose that

z̃0 ∈ B = {z̃ ∈ R
µ : |z̃i| 6 γi}

with, for 1 6 i 6 µ − 1,

γi = min
(
(M − 1)∆i/2 + εi

max, (|λ||ˆ̃zi
k
| − εi+1

max )/(|λ| − 1)
)

εi+1
max 6 min

(
(M − |λ|)∆i/2, (M − 1 − |λ|)∆i/2 + εi

max

)

Then:

i) B is an invariant set, i.e. z̃k ∈ B ∀k > 0.

ii) ∃k1 > 0, such that, z̃k ∈ Ωint, ∀k > k1. where Ωint is

the same set as defined in Lemma 1-ii).

Details of the proof are given in [5]. Note that this analysis

allows us to obtain a bigger attraction domain than the one

obtained in section IV. To see this, note that εi
max > ∆i/2,

which implies that γi > M∆i/2, and therefore we have that

B ⊃ Ωext

B. Tuning policies for ∆i

Assume now that the attraction domain Ω̄ext, is given by

Ω̄ext = {z̃ ∈ R
µ : |z̃i| 6 δi, 1 6 i 6 µ}

where δi are arbitrary values specified by the user. Note

that the specification above imposes, in the previous tuning
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method, that Mi
∆i

2 = δi, whereas theorem 3 below will show

that the new values ∆̄i < ∆i = 2δi

Mi
leading to a smaller

convergence set Ω̄int ⊂ Ωint, where Ωint is the same set as

defined in Lemma 1-ii).
Theorem 3: Suppose that z̃0 ∈ Ω̄ext, and let the following

rule to be applied to select the coding levels,for 1 6 i 6 µ−1,

∆̄i = 2
|λ| − 1

|λ|(M − 1)
δi + 2

δi+1 − (M − 1)∆̄i+1/2

|λ|(M − 1)

∆̄µ = δµ(2(|λ| − 1))/|λ|

Then:

i) Ω̄ext is an invariant set, and

ii) ∃k1 > 0, such that, z̃k ∈ Ω̄int, ∀k > k1, where Ω̄int ⊂
Ωint is given as:

Ω̄int =

{
z̃ ∈ R

µ :

{
|z̃i| 6 |λ|∆̄i/2 + ∆̄i+1/2 1 6 i 6 µ − 1
|z̃µ| 6 |λ|∆̄µ/2 i = µ

Proof: Property i) can be shown following the same

proof as in part i) of Theorem 2. For the Property ii) the

convergence of z̃k towards the set Ω̄int in finite time also

follows the same lines as the proof of Theorem 2 and is

omitted here.

Finally the fact that Ω̄int ⊂ Ωint follows by first observing

that both sets Ω̄int, and Ωint have the same upper bound

structure, and hence it is sufficient to prove that ∆̄i < ∆i.

This last inequality follows from inspection comparing the

definition of the ∆̄i given in the theorem with the ones

resulting from the imposed constraints to the previous tuning

method, i.e. ∆i = 2δi

Mi
.

VI. SIMULATION RESULTS

The aim of this section, is to compare the precision

improvements that the second tuning method can provide.

For this, we consider a second order system:

A =

(
1.1 1
0 1.1

)
, B =

(
0.2
0.3

)

The controller K is designed to have its closed-loop

eigenvalues located at (0.5, 0.6) with objective to regulate

the output to xref
2 = 1. The desired attraction domain for the

estimation error is specified as (δ1, δ2) = (0.62, 0.52), we

have x0 = (0.6, 0.5), x̂0 = (0, 0). M1 = M2 = 2.

Hence with the two strategies, we obtain ∆1 = 0, 62,

∆2 = 0, 52 and ∆̄1 = 0, 35, ∆̄2 = 0, 057.

Figure 4 shows the time-evolution of the resulting closed-

loop signals. In both runs, the initial condition are the same,

and as it was expected the second method provides smaller

values for the coding gains which implies better signal

reconstruction quality and better regulation precision.

VII. CONCLUSION

In this paper, we have investigated the closed-loop proper-

ties of multivariable (MIMO) linear systems where the sensed

information is centralized and coded on the basis of a ∆-

modulation algorithm intended to be used for minimizing

the number of transmitted bits.
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Fig. 4. Time-evolution of the closed-loop state x2
k

using two different
tuning methods discussed in this paper. The impact on the first state is less
effective than the second state, that is why we only show the second

The key feature allowing this result was based on the

idea of performing the differential coding in a time-varying

rotation coordinates associated to canonical Jordan forms.

We have also shown that this fixed-gain simple and

methodic coding strategy results in a ultimately uniformly

(local) stability. We have also provided an estimation of the

attraction domain, and a new method to tune the coding gains,

resulting in closed-loop precision improvements. Simulation

results validate the proposed approach.
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