
A nonlinear dynamic inversion computational approach applied to the exact

tracking problem for the spherical pendulum

Luca Consolini and Mario Tosques

Abstract— In this paper we present a new computational
approach for nonlinear dynamic inversion based on an “ho-
motopy technique” applied to the exact tracking problem for
the spherical inverted pendulum on a periodic curve in R

3, non
necessarily planar.

INTRODUCTION

In this paper we present a new computational approach

for nonlinear dynamic inversion based on an “homotopy

technique” applied to the exact tracking problem for a
spherical inverted pendulum on a periodic curve in R

3, non

necessarily planar.

In recent literature there has been considerable interest in

the control of the spherical pendulum with particular em-

phasis on the stabilization problem, see for instance [1], [2]
and [3] for a more general system, called 3d pendulum.

However fewer results are related to the tracking problem.

An approximate tracking problem in considered in [4] where
it is presented a way-point approach that allows the inverted

pendulum base to remain in a neighborhood of a path defined
by line segments, avoiding pendulum overturns. A recent

result regarding the exact tracking problem is presented

in [5], where an interesting application of the nonlinear stable
inversion technique proposed in [6] is used to find a reference

trajectory for system dynamics when the pendulum base

follows a planar curve.

The basic idea of the proposed nonlinear inversion method

is the following. We assume that at the initial time the base
is at a given point of a periodic reference trajectory γ and

we determine the force applied to the base that drives the

base all along the given reference trajectory. The resulting
unstable motion of the mass with respect to the base is

governed by the system internal dynamics for the time-
dependent orientation vector ζ (see figure 1). We show that,

under suitable hypotheses, there exists a particular initial

state ζ0 such that the internal dynamics have a periodic
solution in which ζ remains close to the vertical axis, that

is the pendulum does not overturn (see figure 4). This initial

state is found through an homotopy method.

Homotopy methods have received considerable attention

also in nonlinear control theory: see for instance [7] for the
feedback stabilization of linear systems, [8] for least squares

estimation, [9] for boundary value problems in optimal
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control and [10] for an a method for finding an input signal

that drives a nonlinear system to a given state.

The idea of our approach is the following: we see the

reference trajectory γ as the value that the family of periodic

curves {sγ} assumes at s = 1 and we write the internal
dynamics for the general curve sγ. In this way we obtain

a family of differential systems dependent on s, which

gives exactly the spherical pendulum internal dynamics when
s = 1. For s = 0 the system has the trivial identically null

periodic solution which corresponds to the unstable vertical
equilibrium of the spherical pendulum when the base is fixed

at the origin of R
3 (in fact for s = 0 the curve sγ collapses

to the origin).

With a technique based on a fixed point problem of a

Poincaré map, if some hypotheses are verified, by the use

of the Implicit Function Theorem, we find that there exists
an s̄ such that the null solution may be morphed to a family

of periodic solutions for the internal dynamics for the curve

sγ, for every s : 0 ≤ s < s̄ . Therefore we find a periodic
solution of our system if we can show that s̄ > 1. Remark

that s̄ is found by determining the maximal interval of

existence (see (11)) of a suitable differential system whose
solution is exactly the curve of initial data of the periodic

solutions.

We have used this method to face the exact tracking

problem for some well-known two dimensional nonminimum

phase systems such as the VTOL (see [11]), the planar
inverted pendulum (see [12]), the motorcycle and the CTOL

aircraft (see [13]) and this method has allowed us to find

sufficient conditions for the feasibility of a trajectory.

This paper is a first step for extending this method to non-

minimum phase systems with general n-dimensional internal
dynamics and we are working on finding results analogous

to the 2-dimensional case.

The numerical implementation of the method presented
in section II is challenging because it requires solving a

time-varying linear system with both positive and negative

eigenvalues, which is often ill-conditioned. The integration
method proposed is section IV faces this problem and has

given good results in simulation.

The following notations will be used: ∀a, b ∈ R, a ∧ b =
min{a, b}, a ∨ b = max{a, b} and [a, b] = {x ∈ R|a ≤
x ≤ b}, ]a, b[= {x ∈ R|a < x < b}; ∀θ ∈ [0, 2π[, τ(θ) =
(cos θ, sin θ)T ; ∀x ∈ R

2, arg x = θ, where θ ∈ [0, 2π[ is

such that x = ‖x‖τ(θ); ∀x, y ∈ R
3, x×y denotes the vector

cross product; ∀x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈
R

n, 〈x , y〉 =
∑n

i=1
xiyi, ‖x‖ =

√

〈x , x〉; if I is a real

interval, ∀f : I → R
n, ‖f‖∞ = supx∈I{‖f(x)‖}.
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Fig. 1. Spherical pendulum constrained to follow a given periodic γ in
the space.

I. PROBLEM FORMULATION

Consider a spherical inverted pendulum of mass m linked
to a moving base of mass M through a massless rod of length

l , in Figure 1 the pendulum is represented as the smaller

sphere and the base as the bigger one. It is supposed that
during the motion the force f ∈ R

3 is applied on the center

of mass x of M .

The problem we want to solve is the following: given

an arbitrary (not necessarily plane) T -periodic curve γ ∈
C3(R, R3), we want to find a control force f ∈ C(R, R3),
applied to the point x, such that if x(0) = γ(0), then x(t) =
γ(t), ∀t ≥ 0 and ‖ζ − e3‖ is sufficiently small, where e3 =
(0, 0, 1)T . In other words, if at the initial time x(0) = γ(0),
then x follows all the curve γ and the rod remains close to

the vertical without overturning.

To this goal, let q = (x, ζ) ∈ R
3 × S2 (where S2 = {ζ ∈

R
3 : ‖ζ‖ = 1}, be the vector of generalized coordinates,

where x is the position of the center of mass of the moving

base M and ζ the orientation versor of the rod. Let L =
T −U be the Lagrangian, where the kinetic energy is given
by

T = 1/2(m + M)‖ẋ‖2 + 1/2ml2‖ζ̇‖ + ml〈ζ̇ , ẋ〉

and the potential energy by

U = g〈(M + m)x + lmζ , e3〉 .

The dynamic equations are derived through the Euler-

Lagrange equation

d

dt

∂L

∂ẋ
− ∂L

∂x
= f

d

dt

∂L

∂ζ̇
− ∂L

∂ζ
= 0 .

Since ζ ∈ S2, ζ̇ is orthogonal to ζ, that is ζ̇ ∈ Tζ(S
2)

the tangent space to S2 at ζ, therefore we can suppose that

ζ̇ = ζ × ω, with ω ∈ R
3 and 〈ζ , ω〉 = 0.

The resulting dynamical system is

{

(m + M)ẍ + mlζ̈ − (m + M)ge3 = f
lω̇ = ζ × ẍ + g(ζ × e3)

(1)

Set S2
+ = {ζ = (ζ1, ζ2, ζ3) ∈ S2|ζ3 > 0} and suppose that

the following problem is solvable:

Problem: There exists a ζ0 ∈ S2
+ and ω0 ∈ R

3 such that

〈ζ0 , ω0〉 = 0 and the following system















ζ̇ = ζ × ω
lω̇ = ζ × γ̈ + g(ζ × e3)
ω(0) = ω0

ζ(0) = ζ0 .

(2)

has a T -periodic solution, with the property

ζ(t) ∈ S2
+, ∀t ∈ R ,

Remark that if (ζ, ω) is a solution of (2), then 〈ζ(t) , ω(t)〉 =
0, ∀t ≥ 0 since d

dt
〈ζ(t) , ω(t)〉 = 0, ∀t ≥ 0. Now if (ζ, ω)

is a solution of (2), the control force given by

f = (m + M)γ̈ + mlζ̈ − (m + M)ge3 ,

drives point x along all the curve γ, that is the solution of
system































(m + M)ẍ + mlζ̈ − (m + M)ge3 = f
lω̇ = ζ × ẍ + g(ζ × e3)

ζ̇ = ζ × ω
x(0) = γ(0),
ẋ(0) = γ̇(0),
〈ζ(0) , ω(0)〉 = 0 ,

(3)

is such that x(t) = γ(t), ∀t ∈ [0, T ] and the pendulum
does not overturn since ζ(t) ∈ S2

+, ∀t ≥ 0.

Let (ζ, ω) be a solution of our Problem. Differentiating

the first equation of (2), we get

ζ̈ = ζ̇ × ω + ζ × ω̇ = (ζ × ω) × ω + l−1ζ × (ζ × (γ̈ + ge3)) .

By the following identity valid for any a, b, c ∈ R
3 a×(b×

c) = b〈a , c〉−c〈a , b〉 , we get, since 〈ζ , ω〉 = 0 and ‖ζ‖ =
1, that ζ̈ = −ζ‖ω‖2 + l−1ζ〈ζ , γ̈ + ge3〉 − l−1(γ̈ + ge3) .

Being ‖ω‖ = ‖ζ̇‖, our Problem reduces to the following

one:

Find ζ0 ∈ S2
+ such that the following system







ζ̈ = −ζ‖ζ̇‖2 + l−1ζ〈ζ , γ̈ + ge3〉 − l−1(γ̈ + ge3)
ζ(0) = ζ0

ζ̇(0) = ζ0 × ω0

(4)

has a T -periodic solution ζ ∈ C2(R, S2
+).

Set B = {(z, w) ∈ R
2|‖(z, w)‖ < 1}, then the map

B −→ S2
+

(z, w)  (z, w,
√

1 − z2 − w2)

is a diffeomorphism, therefore our problem can be rewritten

on B, in terms of the variable (z, w), in the following way:
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Find (z0, w0, ż0, ẇ0) ∈ B × R
2 such that the system



















































(

z̈
ẅ

)

= −
(

z
w

)

(ż2 + ẇ2 + (żz+ẇw)2

1−z
2
−w

2 )+

+l−1

(

z
w

)

〈
(

z
w√

1 − z2 − w2

)

, γ̈ +

(

0
0
g

)

〉+

−l−1

(

γ̈1

γ̈2

)

z(0) = z0, w(0) = w0

ż(0) = ż0, ẇ(0) = ẇ0 ,

(5)

has a T -periodic solution.
Now our purpose is to solve this problem applying the

homotopy method presented in section II. To this end,
let us consider the family of ordinary differential systems
depending on the parameter s ∈ R

(

z̈
ẅ

)

= −
(

z
w

)

(ż2 + ẇ2 + (żz+ẇw)2

1−z
2
−w

2 )+

+l−1

(

z
w

)

〈
(

z
w√

1 − z2 − w2

)

, sγ̈ +

(

0
0
g

)

〉+

−sl−1

(

γ̈1

γ̈2

)

.

(6)

Remark that for s = 1, system (6) becomes system (5) and

for s = 0, system (6) has an obvious T -periodic solution:

the one identically zero, that is the pendulum is kept in the
vertical unstable equilibrium in the point (0, 0). Therefore

setting x = (z, w, ż, ẇ), system (6) falls into the class of

systems ẋ = F (t, s, x) considered in theorem 1. Therefore
it is easy to see that all hypotheses of theorem 1 are verified,

taking n = 4, I = R, Ω = B × R
2 and the solution

identically zero as x̃ . Therefore we can apply theorem 1
and our problem will be solved if we can show that s̄ > 1
and the requested T -periodic solution will be x(t, 1, φ(1)), as
stated in the theorem. In this paper this condition is checked

by numerical computation for a given curve γ, as shown in

the simulations section of this paper. In paper [12] we have
proved for the planar vertical pendulum that the problem can

always be solved if the second derivative of γ is sufficiently

small. A similar result holds for the spherical pendulum,
however the proof is more involved and will be presented

in future papers.

II. THE HOMOTOPY METHOD

In this section we state and prove the main result of
this paper: an existence theorem of periodic solutions for

a family of ordinary differential systems ẋ = F (t, s, x)
depending on a parameter s. The procedure is the following.
We suppose that for s = 0 the problem ẋ = F (t, s, x) has

a periodic solution x̃, then we find a family {xs}0≤s≤s̄ of

solutions, which is a deformation of x̃ obtained by means of
the Implicit Function Theorem applied to the Poincarè map

related to the family ẋ = F (t, s, x). In such way we find that

there exists a periodic solution xs for every s belonging to
[0, s̄[ which is the maximal interval of existence of a suitable

differential system (11).

Theorem 1 (Main theorem): Let I be an open interval
containing 0, Ω an open subset of R

n,

F : R × I × Ω −→ R
n

(t, s, x)  F (t, s, x)

be a C2 map and let ∀(s, y) ∈ I×Ω, Φ(t, s, y) be the solution
of

{

Φ̇ = ∂xF (t, s, x(t, s, y))Φ,
Φ(0) = I

(7)

where x(t, s, y) is the solution of
{

ẋ = F (t, s, x) ,
x(0) = y .

(8)

defined on its maximal interval of existence.

Suppose that the following hypotheses are verified:

a) ∀(s, x) ∈ I × Ω the map t F (t, s, x) is T -periodic;

b) there exists a x̃ ∈ C1(R, Ω), T -periodic solution of

˙̃x(t) = F (t, 0, x̃(t)), ∀t ∈ R ; (9)

c) it is

det(I − Φ(T, 0, x̃(0))) 6= 0 . (10)

Let s̄ be the supremum of ŝ ≥ 0 such that there exists
φ ∈ C1([0, ŝ], Rn) with the following properties:

1) ∀s ∈ [0, ŝ] the solution t  x(t, s, φ(s)) is defined on

[0, T ],
2) ∀s ∈ [0, ŝ], det (I − Φ(T, s, φ(s))) 6= 0,

3) φ verifies the following differential system on [0, ŝ]:















φ̇(s) = (I − Φ(T, s, φ(s)))−1Φ(T, s, φ(s))·

·
∫ T

0

Φ−1(p, s, φ(s))∂sF (p, s, x(p, s, φ(s)))dp

φ(0) = x̃(0) .

(11)

Then s̄ > 0 and there exists a unique function

φ ∈ C1([0, s̄[, Rn) solution of (11) on [0, s̄[, such that
{x(t, s, φ(s))}0≤s<s̄ is a family of T -periodic solutions of

{

ẋ(t) = F (t, s, x(t)), ∀t ∈ R,
x(0) = φ(s) ,

(12)

∀s ∈ [0, s̄[ , this implies in particular that

x(t, 0, φ(0)) = x̃(t), ∀t ∈ R . (13)

and

x(T, s, φ(s)) = φ(s), ∀s ∈ [0, s̄[ . (14)

III. PROOF OF THE MAIN THEOREM

Remark that, in any case (13) is verified by uniqueness of
the solution of system (11) and the definition of x(t, s, y),
in fact, being φ(0) = x̃(0), ∀t ∈ R,

x(t, 0, φ(0)) = x(t, 0, x̃(0)) = x̃(t) . (15)

First of all we want to show that there exists ŝ > 0 and

a function φ ∈ C1([0, ŝ], Rn) such that properties 1), 2), 3)

are verified. This will imply that s̄ > 0, by definition of s̄.

In fact, since F is a C2 map, ∀(y, s) ∈ I ×Ω there exists

and is unique the solution x(t, s, y) of system (8) defined (as
function of t) on its maximal interval of existence. For all ǫ >
0, let Ωǫ = {x ∈ Ω|d(x, x̃(0)) < ǫ} be the ǫ-neighborhood of

x̃(0) in Ω. Then by the theorems of continuous dependence
of the solutions of differential systems, there exists an ǫ > 0,

σ > 0 such that ∀s ∈ [0, σ[, ∀y ∈ Ωǫ the maximal interval

of existence of the solution x(t, s, y) contains [0, T ].
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By the previous considerations, it is well defined the
Poincaré map:

P : [0, σ[×Ωǫ → R
n

(s, y)  x(T, s, y)
(16)

which is C2, since F is a C2 map. Let P : [0, σ[×Ωǫ → R
n

be the map defined by

P(s, y) = P (s, y) − y = x(T, s, y) − y . (17)

By the T -periodicity of x̃ and (15), it is

P(0, x̃(0)) = x(T, 0, x̃(0)) − x̃(0) = 0 . (18)

Moreover we want to show that

det(∂yP(0, x̃(0))) = det(∂yP (0, x̃(0)) − I) 6= 0 , (19)

where I is the identity matrix. In fact ∀i = 1, . . . , n

∂yi
P (s, y) = ∂yi

x(T, s, y), ∀(s, y) ∈ [0, σ[×Ωǫ .

By (8) and the regularity of F , ∂yi
x(T, s, y) is the solution

of the following system

{

φ̇i = ∂xF (t, s, x(t, s, y))φi ,
φi(0) = ei ,

(20)

where ei, i = 1, . . . , n is the i-th element of the canonical
basis of R

n (that is the i-th column of the n-dimensional

identity matrix). Therefore ∀(s, y) ∈ [0, σ[×Ωǫ, ∂yP (s, y) =
Φ(T, s, y), where Φ(t, s, y) is the matrix solution of system

{

Φ̇ = ∂xF (t, s, x(t, s, y))Φ,
Φ(0) = I .

(21)

Then ∂yP(0, x̃(0)) = Φ(T, 0, x̃(0)), which implies (19) by

hypothesis (10).

Therefore, by the Implicit Function Theorem, there exists
ŝ, ω0 > 0 and a unique map y ∈ C1([0, ŝ], B(x̃(0), ω0)) such

that
{

y(0) = x̃(0),
P(s, y(s)) = 0, ∀s ∈ [0, ŝ] ,

(22)

in other words it is

{(s, y(s))
∣

∣ 0 ≤ s ≤ ŝ} =

= {(s, y) ∈ [0, s0[×B(x̃(0), ω0)
∣

∣ P(s, y) = 0}

and

det ∂yP(s, y(s)) 6= 0, ∀s ∈ [0, ŝ] . (23)

Differentiating (22) on [0, ŝ] we get that y(s) verifies the

following differential system:
{

ẏ(s) = (I − ∂yP(s, y(s))−1∂sP(s, y(s)), ∀s ∈ [0, ŝ]
y(0) = x̃(0) .

(24)

Remark that ∂sP(s, y) = ∂sP (s, y) = ∂sx(T, s, y) and

by the regularity of F , ∂sx(T, s, y) = Z(T, s, y) where

Z(t, s, y) is the solution of the following system:
{

Ż = ∂xF (t, s, x(t, s, y))Z + ∂sF (t, s, x(t, s, y))
Z(0) = 0 ,

that is

∂sP (s, y(s)) = Φ(T, s, y(s))·

·
∫ T

0

Φ−1(p, s, y(s))∂sF (p, s, x(p, s, y(s)))dp .

In other words y(s) is the solution of







ẏ(s) = (I − Φ(T, s, y(s))−1Φ(T, s, y(s))·
·
∫ T

0
Φ−1(p, s, y(s))∂sF (p, s, x(p, s, y(s)))dp ,

y(0) = x̃(0) , ∀s ∈ [0, ŝ],

which is the same Cauchy problem as (11), then setting

φ(s) = y(s), ∀s ∈ [0, ŝ] , (25)

we have shown that there exists ŝ > 0 and a function φ ∈
C1([0, ŝ], Rn) such that properties 1), 2) and 3) are verified.

Therefore s̄ > 0 and by uniqueness of solution of

system (11) (remark that F is C2) there exists a unique

φ ∈ C1([0, s̄[, Rn) such that (11) is verified on [0, s̄[,

the solution t x(t, s, φ(s)) is defined on [0, T ] and

det (I − Φ(T, s, φ(s))) 6= 0, ∀s ∈ [0, s̄[ . (26)

Moreover we have also shown that there exists ŝ ≤ s̄ such
that

P(s, φ(s)) = 0, ∀s ∈ [0, ŝ] ,

that is

x(T, s, φ(s)) = φ(s), ∀s ∈ [0, ŝ] , (27)

in other words {x(t, s, φ(s))}0≤s≤ŝ is a family of T -
periodic solutions. Let sM be the supremum of ŝ such

that property (27) is verified. By definition, sM ≤ ŝ.
The theorem will be proved if we show that sM = s̄.

By contradiction suppose that sM < s̄. Let {sn}n∈N ⊂
[0, sM [ such that limn→+∞ sn = sM , by definition of
sM , {x(t, sn, φ(sn))}n∈N is a sequence of T -periodic so-

lution of system (12). This sequence converges uniformly to

x(t, sM , φ(sM )) on [0, T ] by the theorems on the continuous
dependence of the solution on the initial data and the

parameter s. Moreover x(t, sM , φ(sM )) is T -periodic since

φ(sM ) = lim
n→+∞

φ(sn) =

= lim
n→+∞

x(T, sn, φ(sn)) = x(T, sM , φ((sM ))) ,

and det(I−Φ(T, sM , φ(sM ))) 6= 0 by (26), then applying
the same reasoning as before with φ(sM ) instead of x̃(0) and

with x(t, sM , φ(sM )) instead of x̃(t), there exists an ǫ > 0
such that

x(t, s, φ(s)) = φ(s), ∀s ∈ [sM , sM + ǫ] ,

which contradicts the definition of sM . �
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IV. ON THE COMPUTATION OF φ(s)

This section discusses some numerical issues related to
the dynamic inversion method presented in this paper. From

the proof of the main theorem, we can deduce that φ(s) is
computed by

{

φ̇(s) = (I − Φ(T, s, φ(s)))−1w(T, s, φ(s))
φ(0) = x̃(0)

(28)

where w(t, s, y) and Φ(t, s, y) are the solutions of the

following system















ẇ(t) = ∂xF (p, s, x(p, s, y))w(t) + ∂sF (p, s, x(p, s, y))

Φ̇ = ∂xF (t, s, x(t, s, y))Φ,
ẋ = F (t, s, x) ,
w(0) = 0, Φ(0) = I, x(0) = y .

(29)

Each evaluation of φ̇(s) requires the numerical compu-

tation of (29). The method is therefore computationally
intensive because involves the solution of a large number

of differential equations.

There are two main numerical problems related to the

solution of (28) in systems in which the internal dynamics
are hyperbolic, such as the spherical pendulum. First, com-

putation of φ̇(s) needs inverting matrix (I − Φ(T, s, φ(s))),
which is ill-conditioned because Φ(T, s, φ(s)) has stable

and unstable eigenvalues which decrease and respectively

grow exponentially with respect to period time T , (the ill-
conditioning becomes more relevant for larger values of T ).

Second, the solution of (28) is very sensitive to numerical
errors and a very small error in computation of function φ can

produce strong deviations in the resulting internal dynamics.

We present here a computational method that helps facing

the two problems outlined above. Roughly speaking the first
problem is addressed by avoiding the direct computation of

the inverse of (I − Φ(T, s, φ(s))), the second problem is

taken into account by adding an error feedback term to (28)
that keeps the numerical error small.

I) Set t0 : 0 < t0 < T and define χ(t, s, y) =
(I − Φ(t, s, y))−1, ∀t ∈ [t0, +∞[, remark that t0 > 0
because χ(0, s, y) is not defined, being Φ(0, s, y) = I .

Differentiating χ(t, s, y) with respect to t and using the

fact that for an invertible matrix function A(t), dA−1

dt
(t) =

−A−1(t)dA
dt

(t)A−1(t) we obtain

χ̇(t, s, y) = −χ(t, s, y)
(

− ∂xF (t, s, x(t, s, y))·
·Φ(t, s, y)

)

χ(t, s, y) =

= −χ(t, s, y)
(

∂xF (t, s, x(t, s, y))·
·(−I + (I − Φ(t, s, y))

)

χ(t, s, y) =

= χ(t, s, y)∂xF (t, s, x(t, s, y))(χ(t, s, y) − I) .

Set ∀t ∈ [t0, +∞[, z(t, s, y) = (I−Φ(t, s, y))−1w(t, s, y) =
χ(t, s, y)w(t, s, y), differentiating with respect to t , by (30),

we get:

ż(t, s, y)(t) = χ̇(t, s, y)w(t, s, y)+

+χ(t, s, y)
(

∂xF (t, s, x(t, s, y))w(t, s, y)+

+∂sF (t, s, x(t, s, y))
)

= χ(t, s, y)
(

∂xF (t, s, x(t, s, y))·
·z(t, s, y) + ∂sF (t, s, x(t, s, y))

)

.

By the previous considerations we deduce that:
φ̇(s) = z(T ), where z(t) is the first component of

the solution (z, χ, x) of the following system






































ż(t) = χ(t)(∂xF (t, s, ξ(t))z(t)+

+∂sF (t, s, ξ(t)) on [t0, T ] ,
χ̇(t) = χ(t)∂xF (t, s, ξ(t))(χ(t) − I) on [t0, T ] ,

ξ̇(t) = F (t, s, ξ(t)) ,
z(t0) = (I − Φ(t0, s, φ(s)))−1w(t0),
χ(t0) = (I − Φ(t0, s, φ(s)))−1,
ξ(t0) = x(t0, s, φ(s)) .

(30)

To determine Φ(t0, s, φ(s)))−1, w(t0) and x(t0, s, φ(s)),
we integrate system (29) in the interval [0, t0], with t0
sufficiently small such that matrix (I − Φ(t0, s, φ(s))) is
still well-conditioned and, for larger values of t (that is on

[t0, T ]), the integration is continued using (30) where matrix

(I − Φ(t, s, φ(s))) is ill-conditioned.
II) As stated in (14), the property φ(s) = x(T, s, φ(s))

holds, ∀s ∈ [0, s̄[ but, the error function e(s) = φ(s) −
x(T, s, φ(s)) can become significant because the numerical
error in the computation of φ(s) induces a large error on

the final state x(T, s, φ(s)) because of the instability of the

system internal dynamics.
This problem can be taken into account by substituting

system (28) with the following one
{

φ̇(s) = z̃(T ) − χ(T )Ke(s)
φ(0) = x̃0 ,

(31)

where z̃(T ) is the result of the numerical computation of
z(T ) obtained with the method presented in I) and K is a

positive definite gain matrix.
Let us define η(s) = z̃(T ) − z(T ) the numerical error

term, then differentiating e(s) with respect to s, by (31), we

get

ė =
(

I − Φ(T, s, φ(s))
)(

η(s) − χ(T )Ke(s)
)

that is e verifies the following system
{

ė = −Ke(s) + (I − Φ(T, s, φ(s)))η(s)
e(0) = 0 ,

therefore for a given T , the numerical error can be made
arbitrarily small by taking the gain matrix K with the

minimum eigenvalue sufficiently large.

V. SIMULATION RESULTS

We set the length of the pendulum rod l = 1 and consider

the following eight-shaped 2π-periodic trajectory in R
3 (see

Figure 2)

γ(t) =





4 sin t
sin(2t)
sin t



 .

We found a 2π-periodic solution of the internal dynam-

ics (5) using the homotopy method outlined in section II.
The initial state (z(0), w(0), ż(0), ż(0)) is given by φ(1)
and has been computed numerically solving differential

equation (11), since s̄ > 1 as found in the computation. Note
that the right term of this equation is computed by solving

differential equation (7), therefore this approach is based on

the solution of two “nested” differential equations.
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Fig. 2. Eight-shaped curve in R
3.
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Fig. 3. Internal dynamics projected on plane (z, w).

The resulting 2π-periodic trajectories for internal dynam-

ics projected on plane (z, w) are shown in Figure 3. Figure 4

represents the attitude versor ζ and Figure 5 represents the
pendulum motion along the curve.

VI. CONCLUSIONS

We have presented a method for non causal dynamic

inversion for nonminimum phase nonlinear systems and
discussed a numerical implementation. The approach has

been applied for solving the exact output tracking problem

for the spherical pendulum. In paper [12] we have proved for
the planar vertical pendulum that the problem can always be

solved if the second derivative of γ is sufficiently small. A

similar result holds for the spherical pendulum, however the
proof is more involved and will be presented in future papers.
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