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Abstract— The study of the scattering data for a star-shape
network of LC-transmission lines is transformed into the
scattering analysis of a Schrödinger operator on the same
graph. The boundary conditions coming from the Kirchhoff
rules ensure the existence of a unique self-adjoint extension of
the mentioned Schrödinger operator. While the graph consists
of a number of infinite branches and a number finite ones,
all joining at a central node, we provide a construction of
the scattering solutions. Under non-degenerate circumstances
(different wave travelling times for finite branches), we show
that the study of the reflection coefficient in the high-frequency
regime must provide us with the number of the infinite
branches as well as the the wave travelling times for finite
ones.

I. INTRODUCTION

The number of electronic equipments is increasing

rapidly in automotive vehicles, aircrafts, and many other

safety critical systems. Consequently, the reliability of wired

networks and electric connections is becoming more and

more important. For example, in automotive industry, a

goal is to develop compact and easy to use devices for

the diagnosis of electric connection failures in garage or at

the end of the production chain. These devices should be

capable of detecting and locating failures in cables and in

connectors. Another goal is on-board diagnosis: the diagno-

sis device will be integrated to the vehicle in order to detect

failures under normal working conditions of the vehicle.

To find faulty wiring in such networks, it is not always

possible to measure end-to-end cable impedances, because

the number of available diagnostic port plugs is limited,

and furthermore, for diagnosis purpose, it is not sufficient

to detect a high end-to-end impedance as it is also necessary

to locate the fault within the cable. In such situations Time

or Frequency Domain Reflectometry (TDR, FDR) are the

most commonly used methods: a high frequency signal (a

short travelling pulse for TDR, a standing wave for FDR) is

sent down a wire at some point and the signal reflected by

the network is measured at the same point and analyzed for

fault detection and location [11], [16], [5], [2]. Automatic

fault detection and diagnosis using reflectometry methods
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is the subject of intense research, both on the technologies

of ”smart wiring systems” and reflectometers [15] and on

the foundations of the TDR/FDR methods. Most studies are

concerned with various aspects of mathematical modeling

and simulation of microwave propagation in networks, from

network complexity [12] to reduced order modeling of

high frequency phenomena like skin effect [1]. The inverse

problem of fault detection and localization for a network

is in general studied in simulation or experimentally. For

this problem, the available theory is developed mainly in

the framework of Inverse Scattering Theory limited to very

simple networks (segment, half-line, line) (see e.g. [3],

[13]).

In this paper, we consider the inverse scattering problem

(ISP) for a star-shape network Γ of transmission lines. Some

of the branches of the network are extended in a direction z

to +∞ and the others admit a finite length. The network is

assumed to be non-dissipative; i.e. the series resistance R(z)
and the shunt conductance G(z) per unit length are assumed

to vanish and therefore, we are dealing with LC-wires.

The main concern here is to derive some information

concerning the topology and the geometry of the network,

applying a very few scattering information. Indeed, fixing

an infinite branch e1 (see Figure 1), we generate a high-

frequency time varying voltage at its infinite end and

measuring the intensity at the same end, we would like to

derive information such as the number of infinite branches

m and the wave travelling time τm+ j of the finite segments

em+ j.
Here, in order to model our network, each branch is

parameterized through its own length. The central node is
assumed to be the zero (origin) of all the branches. While
the position coordinate z j takes values inside the interval
[0, l j], l j being the length of the branch e j and therefore

l j = ∞ ∀ j ∈ {1, · · · ,m} and l j < ∞ ∀ j ∈ {m+1, · · · ,m+n}.

Moreover, on each branch, of finite or infinite length, we

suppose that

A1 L(z) the inductance and C(z) the capacitance are

sufficiently regular (twice differentiable);

A2 L(z) > 0 and C(z) > 0.

A3 On infinite branches, L(z) and C(z) have strictly

positive finite limits L(∞) and C(∞) as z → ∞.

In the next section, we provide the mathematical model

consisting of the transmission line equations on each one of

the network branches and the boundary conditions (Kirch-

hoff rules) coupling these equations together. Next, for the
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Fig. 1. The LC-network Γ consisting of m infinite branches extended to
z = ∞ and n finite branches of various lengthes.

case of a simple transmission line, we provide a brief

review of an old result by I. Kay [9], transforming the

inverse scattering problem for one-dimensional nonuniform

non dissipative transmission lines to the inverse scattering

problem for a Schrödinger operator. We extend this result

to the case of our network by defining relevant boundary

conditions. Finally, we provide a result ensuring the es-

sential self-adjointness of the Schrödinger operator on the

graph with the aforementioned boundary conditions. The

existence of a unique self-adjoint extension allows us to

start the study of the scattering theory and the scattering

solutions.

Next, in Section III, we solve the scattering problem by

providing the scattering solutions. In this aim, we apply

the Jost solutions on semi-infinite branches [7], [6] and the

fundamental solutions on the finite segments [10].

Finally, in section IV, we study the asymptotic behavior

of the reflection coefficient in the limit of high-frequency

waves and we prove how this limit provides us the needed

information on the topology and the geometry of the graph.

II. MATHEMATICAL MODEL

A. Transmission line equations

In the absence of dissipation, the transmission line equa-

tions writes
{

∂ I
∂ z

+C(z) ∂U
∂ t

= 0
∂U
∂ z

+ L(z) ∂ I
∂ t

= 0
(1)

where I(z,t) and U(z,t), respectively denote the intensity

of the current and the voltage at time t and position z of

a finite or infinite branch. Let us index these functions as

{L j}
n+m
j=1 , {C j}

n+m
j=1 , {I j}

n+m
j=1 and {U j}

n+m
j=1 , defined on the

branches {e j}
n+m
j=1 .

At the central node, the Kirchhoff rules imply

Ui(0) = U j(0), i, j ∈ {1, · · · ,m+ n}
m+n

∑
j=1

I j(0) = 0. (2)

At the terminal nodes lm+ j of the finite branch em+ j, we

assume the boundary condition

Im+ j(lm+ j) = 0 j ∈ {1, · · · ,n}. (3)

B. Liouville transformation

Here, we follow an old result by I. Kay [9] and extended

by M. Jaulent to the dissipative case [8].

For a wave of frequency k, i.e. for

I(z,t) = I(k,z)e−ıkt

U(z,t) = U(k,z)e−ıkt ,

the equation (1) becomes

d

dz

(

1

L(z)

dU

dz

)

+ k2C(z)U = 0 (4)

Applying the Liouville transforation

x(z) =
∫ z

0
(L(u)C(u))

1
2 du

and the conventions I(k,z(x)) = I(k,x), U(k,z(x)) =U(k,x),
etc, and setting

y(k,x) =

[

C(x)

L(x)

]
1
4

U(k,x) (5)

the equation (4) writes

d2y

dx2
+(k2 −V(x))y = 0.

Here, the potential V (x) is defined as follows:

V (x) =

[

C(x)

L(x)

]− 1
4 d2

dx2

[

C(x)

L(x)

] 1
4

. (6)

Note that, the new coordinate x here has the dimension

of time. It actually parameterizes the travelling time of

the wave through the transmission line. In particular the

length l of a finite transmission line is transformed into the

correspoindg wave travelling time:

τ =

∫ l

0
(L(z)C(z))1/2dz.

C. Extension to the network

The LC-transmission line equations defined on each edge

for j ∈ {1, . . . ,n + m} are equivalent to the Schrödinger

equations
d2y j

dx2
+(k2 −V j(x))y j = 0. (7)

In this new formalism, the boundary condition (2) writes

A−1
j y j

∣

∣

∣

x=0
= A−1

i yi

∣

∣

∣

x=0
= ȳ i, j ∈ {1, · · · ,m+ n},

m+n

∑
j=1

A jy
′
j

∣

∣

∣

x=0
=

m+n

∑
j=1

A′
jy j

∣

∣

∣

x=0
. (8)

Here, applying the assumptions of the Section I, the func-

tions

A j(x j) =

[

C j(x j)

L j(x j)

]
1
4

, j ∈ {1, · · · ,n + m}

are well defined, strictly positive and regular.
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Furthermore, the boundary conditions (3) write

y′m+ j(τm+ j) =
A′

m+ j

Am+ j

∣

∣

∣

x=τm+ j

ym+ j(τm+ j) j ∈ {1, · · · ,n}, (9)

where {τm+ j}
n
j=1 denote the wave travelling time corre-

sponding the finite transmission lines.

In this paper, we denote

hm+ j :=
A′

m+ j

Am+ j

∣

∣

∣

x=τm+ j

j = 1, · · · ,n. (10)

In conclusion, in order to study the LC-transmission line

equations on the graph Γ with boundary conditions (2)

and (3), we can study the Schrödinger equation (7) with

boundary conditions (8) and (9).

D. Self-adjointness

We are dealing here with a symmetric operator L defined
on L2(Γ):

L = ⊕L j, L j = −
d2

dx2
j

+V (x j) on e j, j = 1, · · · ,m+n,

with

D(L ) = closure of C∞
b.c. in H2(Γ).

Here, C∞
b.c. denotes the space of infinitely differentiable

functions satisfying the boundary conditions (8) and (9).

In order to start the study of the scattering theory for

this operator, we need first to prove that it admits a self-

adjoint extension. In this aim, we assume an appropriate

decay assumption on V (x j) ensuring that the operator L

is a compact perturbation of the operator ⊕m+n
j=1

(

− d2

dx2
j

)

.

Indeed, one also need to add a new assumption A4 to the

three assumption A1 through A3 of the introduction:

A4 On each branch e j, j = 1, · · · ,m+ n, we have

∫ τ j

0
(1 + x j)

∣

∣

∣

[

C j(x j)

L j(x j)

]
1
4 d2

dx2
j

[

C j(x j)

L j(x j)

]− 1
4 ∣

∣

∣
< ∞.

Now, we apply a general result by Carlson [4] on the self-

adjointness of differential operators on graphs.

Indeed, following the Theorem 3.4 of [4], we only need to

show that at a node connecting N edges, we have N linearly

independent linear boundary conditions. At the terminal

edges of {e j}
m+n
j=m+1 this is trivially the case as there is one

branch and one boundary condition. At the central edge it

is not hard to verify that (8) and (9) define such boundary

conditions as well. This implies that the operator L is

essentially self-adjoint and therefore that it admits a unique

self-adjoint extension. We are now ready to start the study

of the scattering solutions.

III. SCATTERING SOLUTIONS

We are interested in the scattering solution where a signal

of frequency k is applied at one end of one of the infinite

branches. In fact, in general, one might be interested in a

experiment where signals of different amplitudes {α j}
m
j=1

are applied at all ends of the infinite branches. In such a

case, we will be seeking a scattering solution satisfying the

asymptotic behavior at k → ∞

y j(x j,k) ∼ α je
−ıkx j + R j(k)e

ıkx j , j = 1, · · · ,m.

However, the experiment we consider here corresponds to

the simple case

α1 = 1 and α j = 0, j = 2, · · · ,m.

The main result of this section, may be expressed as follows:

Theorem 1: There exists a unique solution

Ψ(x,k) = (y j(x j,k))
m+n
j=1

,

of the scattering problem, satisfying

• L jy j(x j,k) = k2y j(x j,k);
• (y j(x j,k))

m+n
j=1

satisfy the boundary conditions (8)

and (9);

• For each k ∈ R, there exist R1(k) and {Tj(k)}
k
j=2 such

that

y1(x1,k) ∼ e−ıkx1 + R1(k)e
ıkx1 , x1 → ∞, (11)

y j(x j,k) ∼ Tj(k)e
ıkx j , x j → ∞, j = 2, · · · ,m. (12)

The coefficients, R1(k) and {Tj}
m
j=2, in (11) and (12) appear

to be unique. They are called respectively the reflection and

the transmission coefficients.

We proceed the proof of the Theorem 1 by constructing

such a solution and by showing that such a construction is

unique.

In this aim, we apply two different types of solutions:

1- the so-called Jost solutions on half-lines [7], [6] and 2-

the fundamental solution of the one-end Sturm-Liouville

equation [10].

A. Jost solutions

The Jost solutions f (x,k;V ) and f̃ (x,k;V ) on the half

line [0,∞), where V is a potential defined on [0,∞), are the

solutions of the Schrödinger integral equations

f (x,k;V ) = eıkx −

∫ ∞

x

sink(x− y)

k
V (y) f (y,k;V )dy,

f̃ (x,k;V ) = e−ıkx +

∫ x

0

sink(x− y)

k
V (y) f̃ (y,k;V )dy. (13)

Under the decay assumption A4 on V , these Volterra type

integral equations admit unique solutions. In fact, one only

needs to apply the standard iterative methods for the proof

of existence and uniqueness of solutions to Volterra type

integral equations (see e.g. [14], pages 138-139, for a proof).

The functions f (x,k;V ) and f̃ (x,k;V ) satisfy the the

Schrödinger equation

−
d2

dx2
f +V(x) f = k2 f , −

d2

dx2
f̃ +V(x) f̃ = k2 f̃
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and admit the asymptotic behaviors (at x → ∞)

f (x,k;V ) = eıkx + o(1),

f̃ (x,k;V ) = a(k;V )e−ıkx + b(k;V)eıkx + o(1), (14)

where

a(k;V ) = 1−
1

2ık

∫ ∞

0
eıkxV (x) f̃ (x,k;V )dx,

b(k;V ) =
1

2ık

∫ ∞

0
e−ıkxV (x) f̃ (x,k;V )dx.

Moreover, one can show that ([14], pages 138-139)

|
d

dx
f (x,k;V )− ıkeıkx| ≤ |k|

∣

∣

∣
exp(

1

k

∫ ∞

x
|V (y)|dy)−1

∣

∣

∣
. (15)

B. Fundamental solution

The fundamental solution, ω(x,k;h,V ), is a solution of

the Schrödinger equation,

−
d2

dx2
ω +V(x)ω = k2ω , x ∈ (0,∞),

ω(0,k;h,V ) = 1 , ω ′(0,k;h,V ) = h, (16)

where ω ′ denotes the derivative with respect to x.

This solution may be expressed through the following

integral representation [10],

ω(x,k;h,V ) = cos(kx)+ h
sin(kx)

k

+

∫ x

−x
K(x,t;V ){cos(kt)+ h

sin(kt)

k
}dt. (17)

Here the kernel K(x,t;V ) is a solution of the following

integral equation

K(x,t;V ) =
1

2

∫ x+t
2

0
V (u)du

+
1

2

∫ x+t
2

0
dα

∫ x−t
2

0
V (α + β )K(α + β ,α −β )dβ , (18)

where we have extended the potential V to be zero outside

the interval of its definition.

The integral equation (18) admits a unique solution

(cf. [10], Theorem 1.2.2). Applying the same result, for a

potential V in L1(R), this solution satisfies

|K(x,t;V )| ≤
1

2
‖V‖L1 exp(x‖V‖L1), for x ≥ 0 and |t| ≤ x.

(19)
Furthermore, simple computations imply

Kx(x,t;V ) =
1

4
V (

x+ t

2
)

+
1

4

∫ x−t
2

0
dβ V (β +

x+ t

2
)K(

x+ t

2
+β ,

x+ t

2
−β )

+
1

4

∫ x+t
2

0
dα V (α +

x− t

2
)K(α +

x− t

2
,α −

x− t

2
),

and

Kt(x,t;V ) =
1

4
V (

x+ t

2
)

+
1

4

∫ x−t
2

0
dβ V (β +

x+ t

2
)K(

x+ t

2
+β ,

x+ t

2
−β )

−
1

4

∫ x+t
2

0
dα V (α +

x− t

2
)K(α +

x− t

2
,α −

x− t

2
),

where Kx and Kt denote respectively the derivatives with

respect to the first and the second coordinates x and t. For

a potential V ∈ L1(R), this together with (19) implies

|Kx(x,t;V )|, |Kt(x,t;V )| ≤
1

4
|V (

x + t

2
)|

+
1

2
‖V‖2

L1 exp(x‖V‖L1), for x ≥ 0 and |t| ≤ x. (20)

C. Proof of Theorem 1: constructing the scattering solution

For this construction, we distinguish between three types

of edges.

1) Edge e1: Define

ζ (x1,k) = y1(x1,k)−
1

a(k;V1)
f̃ (x1,k;V1).

Note that

a(k;V ) = 1 +
1

2ık

∫ ∞

0
V (x)dx + o(1/|k|), (21)

and therefore, at least for k large enough, a(k,V1) is non-

zero and ζ (x1,k) is well-defined. Furthermore, note that

ζ (x1,k) satisfies the Schrödinger equation

−
d2

dx2
1

ζ +V1(x1)ζ = k2ζ ,

and through the requirement (11) and by (14), at x1 → ∞

ζ (x1,k) ∼

(

R1(k)t −
b(k;V1)

a(k;V1)

)

eıkx1 . (22)

Consider now the Wronskian

W (ζ (.,k), f̃ (.,k;V1))(x1) =

ζ (x1,k) f̃ ′(x1,k;V1)− ζ ′(x1,k) f̃ (x1,k;V1),

where the derivatives are taken with respect to the position

x1. It is not a hard task to verify that the above Wronskian

is a constant function of x1. In fact, as the both functions

ζ (.,k) and f̃ (.,k;V1) verify the same Schrödinger equation

with the same potential V1, one can easily check that

d

dx1

W (ζ (.,k), f̃ (.,k;V1))(x1) = 0.

Applying (22) and (15), we have

lim
x1→∞

W (ζ (.,k), f̃ (.,k;V1))(x1) = 0

and therefore

W (ζ (.,k), f̃ (.,k;V1))(x1) = 0 for x1 ∈ [0,∞).
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This implies that ζ (.,k) and f (.,k;V1) are co-linear and thus

for some R1(k)

y1(x1,k) =
1

a(k;V1)
f̃ (x1,k;V1)

+ (R1(k)−
b(k;V1)

a(k;V1)
) f (x1,k;V1). (23)

2) Edges e j, j = 2, · · · ,m: We consider the Wronskian

W (y j(.,k), f (.,k;V j))(x j). Just as in above, this Wronskian

is a constant of x j and applying (12) together with (15),

lim
x j→∞

W (y j(.,k), f̃ (.,k;V j))(x j) = 0

and thus for some Tj(k)

y j(x j,k) = Tj(k) f (x j ,k;V j), j = 2, · · · ,m. (24)

3) Edges e j, j = m + 1, · · · ,m + n: We consider the

Wronskian

W (y j(τ j − .,k),ω(τ j − .,k;h j,V j(τ j − .)))(x j),

where h j is defined in (10). On the segment [0,τ j], the

functions y j(τ j − .,k) and ω(τ j − .,k;h j,V j(τ j − .)) satisfy

the same Schrödinger equation with the same potential

V j(τ j − .), and therefore the Wronskian is a constant.

Applying (9) together with the definition of the funda-

mental solution (16), we have

W (y j(.,k),ω(τ j − .,k;h j,V j(τ j − .)))
∣

∣

∣

x j=τ j

= 0,

and therefore, just as in above there exists a constant α j(k)
such that

y j(x j,k) = α j(k)ω(τ j − x j,k;h j,V j(τ j − .)),

j = m+ 1, · · · ,m+ n. (25)

At this point, we can apply the boundary conditions at the

centeral node (8), in order to find the m+n constants R1(k),
{Tj(k)}

m
j=2 and {α j(k)}

m+n
j=m+1. In fact, we have

ȳ = A−1
1 (0)

(

1

a(k;V1)
+ (R1(k)−

b(k;V1)

a(k;V1)
) f (0,k;V1)

)

= A−1
j1

(0)Tj1(k) f (0,k;V j1 )

= A−1
j2

(0)α j2(k)ω(τ j ,k;h j,V j2(τ j − .)), (26)

for j1 = 2, · · · ,m and j2 = m + 1, · · · ,m + n. Here, for the
first equality, we have applied f̃ (0,k;V1) = 1. Moreover, we
have

A1(0)(
−ık

a(k;V1)
+(R1(k)−

b(k;V1)

a(k;V1)
) f ′(0,k;V1))

+
m

∑
j=2

A j(0)Tj(k) f ′(0,k;V j)

+
m+n

∑
j=m+1

A j(0)α j(k)ω
′(τ j,k;h j ,V j(τ j − .)) = ȳ

m+n

∑
j=1

A j(0)A′
j(0).

(27)

Here, for the first line we have applied f̃ ′(0,k;V ) = ık.

One can easily check that, (26) and (27) provide m + n

linearly independent linear equations for the m+n unknown

constants R1(k), {Tj(k)}
m
k=2 and {α j}

n
k=m+1. One can there-

fore find these coefficients uniquely and solve the scattering

problem. �

Here, we are only interested in the high frequency (k →
∞) behavior of the reflection coefficient R1(k) and we do

not need to compute all the coefficients explicitly.

IV. HIGH-FREQUENCY ASYMPTOTIC BEHAVIOR OF

REFLECTION COEFFICIENT

In this Section, we announce and prove the main result

of this paper:

Theorem 2: Consider the assumptions A1 through A4,

together with the new one,

A5 The function L/C is continous at the central node

od Γ; i.e.

L j1(0)

C j1(0)
=

L j2(0)

C j2(0)
, j1, j2 = 1, · · · ,m+ n.

Then, in the high-frequency regime (k → ∞) the reflection

coefficient R1(k) satisfy:

R1(k) ∼−
(m−2)ı−∑m+n

j=m+1 tan(kτ j)

mı−∑m+n
j=m+1 tan(kτ j)

+ o(1). (28)

Note that, applying this result one can easily identify m

the number of the infinite branches, as well as {τ j}
m+n
j=m+1

the wave travelling times of the finite ones (when they

are all different) through the reflection coefficient R1(k).
Indeed, through simple computations, we have the main

result of this paper:

Corollary 1: Under the assumptions A1 through A5, and

in the high frequency regime k → ∞, we have

m = 2ℜ(
1

1 + R1(k)
)+ o(1), (29)

m+n

∑
j=m+1

tan(kτ j) = 2ℑ(
1

1 + R1(k)
)+ o(1), (30)

where ℜ and ℑ denote respectively the real and imaginary

parts of a complex number. In particular, scanning a certain

interval of frequencies k for k > k∗ large enough, and

through the study of the poles of ℑ( 1
1+R(k)

), we can identify

the wave travelling times τ j .

Before starting the proof of the Theorem 2, we need to

prove two lemmas.

Lemma 1: Under the assumption A4 on V (x), we have

f ′(0,k;V )

f (0,k;V )
∼ ık + O(1) as k → ∞. (31)

Proof of Lemma 1: Here, we just need to apply the
the following approximations on f (x,k;V ) and f ′(x,k;V )
(cf. [14], pages 138-139, for a proof):

| f (x,k;V )−eıkx| ≤
∣

∣

∣
exp(

1

|k|

∫ ∞

x
|V (s)|ds)−1

∣

∣

∣
,

|
d f (x,k;V )

dx
− ıkeıkx| ≤ |k|

∣

∣

∣
exp(

1

|k|

∫ ∞

x
|V (s)|ds)−1

∣

∣

∣
. (32)
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Applying the integrability of V (x), the relation (31) can be

obtained very easily. �

Lemma 2: Under the assumption A4 on V (x) and for a

fixed position x = τ , we have

ω ′(τ,k;h,V )

ω(τ,k;h,V )
∼−k tan(kτ)+ o(1) as k → ∞. (33)

Proof of Lemma 2: We apply here the expression (17) of

ω(x,k;h,V ). Through the inequality (19), we now that for

a fixed τ , the kernel K(τ,t;V ) is bounded and therefore we

easily have

ω(τ,k;h,V ) = cos(kτ)+

∫ τ

−τ
K(τ,t;V )cos(kt)dt + O(1/k).

developing the integral by parts, we have

∫ τ

−τ
K(τ,t;V )cos(kt)dt =

1

k
sin(kt)K(τ,t;V )

∣

∣

∣

t=τ

t=−τ

−
1

k

∫ τ

−τ
sin(kt)Kt(τ,t;V )dt

Now, applying the inequality (20), we have

∫ τ

−τ
K(τ,t;V )cos(kt)dt ≤

1

k
sin(kt)K(τ,t;V )

∣

∣

∣

t=τ

t=−τ

−
1

4k

∫ τ

−τ
|V (

x + t

2
)|dt +

c

k

∫ τ

−τ
|sin(kt)|dt ≤ O(

1

k
),

where we have applied the boundedness of K(τ,t;V ) for

|t| ≤ τ and the integrability of V . This implies

ω(τ,k;h,V ) = cos(kτ)+ O(1/k), as k → ∞. (34)

Furthermore, we have

ωx(τ,k;h,V ) = −k sin(kτ)+hcos(kτ)

+(K(τ,τ)+K(τ,−τ))cos(kτ)+h(K(τ,τ)−K(τ,−τ))
sin(kt)

k

+
∫ τ

−τ
Kx(τ,t;V ){cos(kt)+h

sin(kt)

k
}dt.

Similar computations as in above, together with the inequal-

ity (20), imply

ωx(τ,k;h,V ) = −k sin(kτ)+ O(1), as k → ∞. (35)

The two relations (34) and (35) finish the proof of Lemma 2

and we have (33). �

We are now ready to prove the Theorem 2.

Proof of Theorem 2:

The assumption A5 implies the existence of a constant

Ā, such that

A j(0) = Ā, ∀ j = 1, · · · ,m+ n.

Dividing (27) by ȳ and applying (26), we have

n+m

∑
j=1

A′
j(0)/Ā =

−ık +(a(k;V1)R1(k)−b(k;V1)) f ′(0,k;V1)

1+(a(k;V1)R1(k)−b(k;V1)) f (0,k;V1)

+
m

∑
j=2

f ′(0,k;V j)

f (0,k;V j)
+

m+n

∑
j=m+1

ω ′(τ j,k;h j,V j(τ j − .))

ω(τ j,k;h j,V j(τ j − .))
.

Through this relation we can derive the value of the reflec-

tion coefficient R1(k). The high-frequency behavior of this

reflection coefficient may be derived through the Lemmas 1

and 2 and the relations (21) and

b(k;V ) ≤ ‖V‖L1O(1/k) as k → ∞. (36)

Some simple computations, then imply the relation (28) and

finish the proof of the Theorem 2. �

V. CONCLUSION

In this paper, we have studied an identification problem

corresponding to a system composed of LC transmission-

line equations defined on a star-shape network. The un-

known parameters are the number of semi-infinite edges

and the lengthes of the finite ones. We have proposed, here,

a constructive method to prove the identifiability of the

system. Indeed, the high-frequency asymptotic behavior of

the reflection coefficient, over a fixed semi-infinite edge,

provides enough information to recover these unknown

parameters.

Two main directions may be considered for further ex-

tension of this result. The first one deals with the general

case of trees instead of star-shape graphs. The second

one corresponds to the case of LCRG transmission lines

where one needs to study the associated Zakharov-Shabat

operator [8].
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