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Abstract— Iterative Feedback Tuning constitutes an attrac-
tive control loop tuning method for processes in the absence of
sufficient process insight. It is a purely data driven approach
to optimization of the loop performance. The standard formu-
lation ensures an unbiased estimate of the loop performance
cost function gradient, which is used in a search algorithm.

A slow rate of convergence of the tuning method is often
experienced when tuning for disturbance rejection. This is due
to a poor signal to noise ratio in the process data. A method
is proposed for increasing the information content in data
by introducing an optimal perturbation signal in the tuning
algorithm. For minimum variance control design the optimal

design of an external perturbation signal is derived in terms
of the asymptotic accuracy of the Iterative Feedback Tuning
method.

I. INTRODUCTION

Control design and tuning for disturbance rejection is

one of the classic disciplines in control theory and control

engineering science. Design of compensators for disturbance

rejections is well documented e.g. [1], [2]. Given a particular

control design, the tuning of the parameters in the controller

can be conducted based on tuning rules or by minimization of

some loop performance criterion. The performance criterion

is typically a quadratic cost function with penalty on the

process output and the control signals. Given a model of the

system, the set of optimal control parameters which minimize

the performance cost can be determined. In the absence of

a sufficiently reliable model, the tuning can be performed

based on data obtained from the loop, by a data driven

optimization. Iterative Feedback Tuning is a method for

optimizing controller parameters using closed loop data and

this algorithm will form the basis for the results presented

here. The basic algorithm was first presented in [3] and have

been analyzed, extended and tested in a number of papers. [4]

and [5] provide an extensive overview of the development of

the method. This paper will propose a method for designing

an optimal external pertubation signal which will inprove

convergence of the tuning method.

The performance criterion used in the controller tuning is

a function of the true system, the controller and external

signals acting on the loop. The stochastic nature of the

external signals implies that the performance cost is itself
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a random variable. For a linear system the minimum of the

performance cost is explicitly defined when the number of

data samples approach infinity.

Any change in the spectrum from an external signal to the

process, Φr, will affect the spectrum of the process output

Φy as well, hence also the minimum and the shape of the

performance cost surface. By designing the spectrum of an

external reference it is consequently possible to shape the

performance cost function in order to improve the conver-

gence properties of the search algorithm in the tuning method

for the controller parameters. One has to be aware of, that

shaping the cost function will also influence the location of

the minimum in the controller parameter space. The cost

function evaluated with external perturbation will be different

from that of the original design problem. This is illustrated

in figure 1 where two examples of a quadratic cost function

are shown as function of two control parameters. Let the
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Fig. 1. Contours and minima for two cost functions with equal levels for
the contour lines. ρ1 and ρ2 are parameter in the controller. The full lines
and the cross refer to the original design criterion, J0. The dotted lines
and the dot in the center is the cost function when affected by an external
perturbation, J1.

original design J0 refer to the disturbance rejection case

where the reference signal to the loop is zero. J1 is then

the cost function for the case with external perturbation.

Since the contour lines of J1 are closer together than for

J0, the optimization with the perturbation is less sensitive to

the stochastic element in the evaluation of the performance

cost. The price is that the method converges towards a differ-

ent minimum. Despite this unfortunate property, successful

simulation studies are reported with respect to convergence

using perturbation in Iterative Feedback Tuning for distur-

bance rejection [6]. The aim of this study is to design the

optimal external perturbation signal spectrum when tuning a

minimum variance controller with Iterative Feedback Tuning

for the disturbance rejection problem.

The paper is organized as follows: Section II presents the

basic Iterative Feedback Tuning algorithm for disturbance

rejection together with an analysis of the accuracy of the
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Fig. 2. A general feedback loop designed for disturbance rejection. The
process, G, and the compensator in the feedback loop, C, is given as scalar
linear transfer functions.

method. In section III the effect of having an external pertur-

bation signal as the reference to the loop in the tuning method

is presented. Section IV states the optimization problem for

the parameterization of the perturbation signal. A simulation

example in section V serves to illustrate the advantages of

introducing an optimal external perturbation signal in the

tuning algorithm for the disturbance rejection case.

II. ITERATIVE FEEDBACK TUNING FOR

DISTURBANCE REJECTION

The algorithm for performing Iterative Feedback Tuning

for disturbance rejection is illustrated in the following. The

feedback loop in figure 2 depicts the signals and transfer

functions which will be used in the algorithm for tuning the

parameters ρ in C. The tuning is performed such that the

effect of the noise, vt, is rejected in an optimal sense. The

objective in this paper is to minimize the minimum variance

cost function:

J(ρi) =
1

2N

N∑

t=1

(yt(ρi) − yd
t )2 (1)

where N number of data points in the discrete time horizon

and yd is the desired output response. For the disturbance

rejection problem rt = 0 and hence yd
t = 0. The sensitivity

of the cost function with respect to the controller parameters

is

∂J(ρi)

∂ρ
=

1

N

N∑

t=1

yt(ρi)
∂yt(ρi)

∂ρ
(2)

where

∂yt

∂ρ
= − ∂C(ρi)

∂ρ
GS2(ρi)vt (3)

when S(ρ) is the sensitivity function. The minimization of

the cost function is realized by iterating in the gradient

scheme

ρi+1 = ρi − γR−1 ∂J(ρi)

∂ρ
(4)

where R is a positive definite matrix. It could be chosen as

the Hessian of the cost function with respect to the controller

parameters, ρ, or the identity matrix to achieve a Newton or

a steepest decent algorithm respectively. If a model for the

system is unknown, the gradient of the output and hence the

cost function gradient can not be evaluated analytically. An

estimate of the performance cost function gradient is

∂̂J(ρi)

∂ρ
=

1

N

N∑

t=1

yt(ρi)
∂̂yt(ρi)

∂ρ
(5)

where
∂̂yt(ρi)

∂ρ
is a estimate of (3). In the traditional Iterative

Feedback Tuning framework the minimization of the cost

function, (1), is based on data from two successive experi-

ments [7].

• Collect data {y1
t (ρi)}t=1,..,N where r1

t = 0
• Collect data {y2

t (ρi)}t=1,..,N where r2
t = −y1

t

This data is used to estimate the gradient of the output.

∂̂yt

∂ρ
=

∂C(ρi)

∂ρ
y2

t (6)

=
∂yt

∂ρ
+

∂C(ρi)

∂ρ
S(ρi)v

2
t (7)

where (6) is the estimator for the gradient. When this

expression is used to form the estimate for the performance

cost function gradient (5), (7) imply that the estimate can

be split into two terms: A analytic term, SN , and a variance

term, EN . The latter term is due to the noise present in the

second experiment.

∂̂J(ρi)

∂ρ
= SN (ρi) + EN (ρi) (8)

where

SN (ρi) =
1

N

N∑

t=1

y1
t (ρi)

∂yt(ρi)

∂ρ
(9)

=
1

N

N∑

t=1

(S(ρi)v
1
t )

(
−∂C(ρi)

∂ρ
GS(ρi)

2v1
t

)

EN (ρi) =
1

N

N∑

t=1

y1
t (ρi)

(
∂̂yt(ρi)

∂ρ
− ∂yt(ρi)

∂ρ

)
(10)

=
1

N

N∑

t=1

(S(ρi)v
1
t )

(
∂C(ρi)

∂ρ
S(ρi)v

2
t

)

The expectation of the variance part is zero, since the

noise in the first and second experiment is uncorrelated.

The estimate of the cost function gradient produced by the

Iterative Feedback Tuning method is therefore unbiased.

Given that the noise v is a zero mean, weakly stationary

random signal, the key contribution in Iterative Feedback

Tuning, is that it supplies an unbiased estimate of the cost

function gradient, without requiring a plant model estimate,

Ĝ, [7]. Let the estimate, (5), be an unbiased and monotoni-

cally increasing function of ρ. Using the estimate (5) in the

gradient iteration (4) instead of the analytical expression (2),

as a stochastic approximation method, will still make the

algorithm converge to the expectation of the local minimizer

provided that the sequence of γi in (4) fulfills condition (11)

[8], [9].
∞∑

i=1

γ2
i < ∞,

∞∑

i=1

γi = ∞ (11)
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This condition is fulfilled e.g. by having γi = a/i where a is

some positive constant.

A Gauss-Newton approximation of the Hessian to the

performance cost function with respect to the controller pa-

rameters was suggested in [3]. This first order approximation

can be estimated using the available signals from the tuning

method

Ĥ =
1

N

N∑

t=1

∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

(12)

A. Asymptotic accuracy of the tuning method

The variability of the gradient estimate will affect the

asymptotic convergence rate of the tuning method. A quan-

titative analysis was performed by [10]. The result is as

follows: With n being the iteration number and ρ̄ the

optimal set of parameters, the sequence of random vari-

ables,
√

n(ρn − ρ̄), converge in distribution to a normally

distributed random variable with zero mean and covariance

matrix Σ.

√
n(ρn − ρ̄)

D→ N (0,Σ)

Σ = a2

∫ ∞

0

eAtR−1Cov

[
∂̂J(ρ̄)

∂ρ

]
R−1eAT tdt

(13)

The result in (13) is valid given the following set of condi-

tions hold.

1) The sequence ρn converges to a local isolated mini-

mum ρ̄ of J
2) H(ρ̄) is the true Hessian for J(ρ) at ρ̄.

3) The sequence γ of steps in (4) is given by γn = a/n,

where a is a positive constant.

4) There exists an index n̄ and a matrix R such that

Rn = R for all n > n̄.

5) The matrix A = 1/2I − aR−1H(ρ̄) is stable, i.e. the

real part of all the eigenvalues is negative.

6) The covariance matrix Cov

[
∂̂J(ρ̄)

∂ρ

]
is positive definite.

The result in (13) means that asymptotically the distribution

for the deviation between the n’th iterate of the controller pa-

rameter and the true optimum is known, and that the method

converges to the true local minimizer of the performance cost

function. In [11] it is shown that the covariance expression

for the distribution simplifies if H(ρ̄), i.e. the true Hessian,

is used as the matrix R in (4). Hence for a Newton-Raphson

optimization

Σ =
a2

2a − 1
R−1Cov

[
∂̂J(ρ̄)

∂ρ

]
[R−1]T (14)

As a measure of the quality of the controller for a given iter-

ation, n, in the tuning algorithm [11] suggest the difference

between the expected value of the performance cost with

C(ρn) in the loop minus the theoretical minimum value.

This quantity, ∆Jn, will be referred to as the control quality

index.

∆Jn ≡ E[J(ρn)] − J(ρ̄) (15)

This index is by definition a positive measure. Expanding it

in a Taylor series around the optimum up till second order

gives the approximation:

∆Jn ≈ 1

2
E
[
∆ρ̄T

nH(ρ̄)∆ρ̄n

]
(16)

where ∆ρ̄n = ρn − ρ̄. The following asymptotic expression

when H(ρ̄)R−1 = I is given in [11].

lim
n→∞

nE[∆ρ̄T
n H(ρ̄)∆ρ̄n] =

a2

2a − 1
trace

{
Cov

[
∂̂J(ρ̄)

∂ρ

]
[R−1]T

}
(17)

From this analysis, it is seen that the covariance of the gra-

dient estimate for the performance cost function influences

both the asymptotic covariance of the distribution of ∆ρ̄n

and the quality measure of the controller with parameters

ρn. It is therefore of interest to decompose this covariance

expression. The covariance of the gradient estimate in equa-

tion (8) can be divided into the following contributions.

Cov

[
∂̂J(ρi)

∂ρ

]
= Cov[SN (ρi)] + Cov[EN (ρi)] (18)

due to the independence of the signals v1
t and v2

t . The

asymptotic frequency-domain expressions of the two terms

are [10]:

lim
N→∞

NCov[SN (ρi)] =
2

2π

∫ π

−π

|S(ejω , ρi)|4Φ2
v(ω)×

Re

{
G(ejω , ρi)S(ejω , ρi)

∂C(ejω , ρi)

∂ρ

}
×

Re

{
G(ejω , ρi)S(ejω , ρi)

∂C(ejω , ρi)

∂ρ

}T

dω (19)

lim
N→∞

NCov[EN (ρi)] =
1

2π

∫ π

−π

|S(ejω, ρi)|4×

∂C(ejω , ρi)

∂ρ

∂C∗(ejω, ρi)

∂ρ
Φ2

v(ω)dω (20)

III. INTRODUCING EXTERNAL PERTURBATIONS

IN THE TUNING

It is desired to improve the convergence rate and the

asymptotic accuracy of the Iterative Feedback Tuning

method. To achieve this, the signal to noise ratio in data

used in the tuning method must be increased. An external

perturbation signal will be used as reference in the first

of the two experiments used in the tuning algorithm. The

experiments are then defined as follows:

• Collect data {y1
t (ρi)}t=1,..,N where r1

t = rp
t

• Collect data {y2
t (ρi)}t=1,..,N where r2

t = −y1
t

where the external input rp
t is characterized by the spectrum

Φrp .
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The implication on the gradient estimate of the cost

function from including this extra signal is

SN (ρi) =
1

N

N∑

t=1

(
S(ρi)(Grp

t + v1
t )
)
×

(
−∂C(ρi)

∂ρ
GS(ρi)

2(Grp
t + v1

t )

)
(21)

EN (ρi) =
1

N

N∑

t=1

(
S(ρi)(Grp

t + v1
t )
)(∂C(ρi)

∂ρ
S(ρi)v

2
t

)

(22)

The implications of introducing an external perturbation

signal in the experiments used by the Iterative Feedback

Tuning method has been investigated in [12]. This external

signal will affect both the asymptotic accuracy for the gra-

dient estimate and the Hessian estimate (12). The qualitative

effect from introducing external perturbation on the relevant

functions in relation to the covariance of the cost function

gradient estimate is.

• The asymptotic expressions for SN and EN

are affine functions in the following variables.

SN = f(Φ2
rp , Φ2

v, ΦrpΦv) and EN = f(Φ2
v, ΦrpΦv),

hence the asymptotic covariance estimate is also an

affine function in Φ2
rp , Φ2

v and ΦrpΦv.

• The Hessian estimate is an affine function in Φrp and

Φv only.

A. Unbiased gradient estimation with perturbation

From the general feedback loop, figure 2, it is seen that

the closed loop transfer functions are given by

yt = GS(ρi)r
p
t + S(ρi)vt (23)

It would be interesting to have a design of rp which would

not change the dynamics in the response of y or u with

respect to the inputs, compared to the unperturbed case. If

rp
t =

√
α/Gvt would be realizable, the output in (23) will

simplify to

yt = GS(ρi)

√
α

G
vt + S(ρi)vt = (1 +

√
α)S(ρi)vt

which is only a scaled expression of the output for the unper-

turbed case. This implies that the perturbation signal chosen

here will not render the gradient estimate unbiased. Hence it

is optimal in the sense that this design will contribute to a

better signal to noise ratio without driving the optimization

of the controller parameters to a biased optimum compared

to the unperturbed case. In practical applications the actual

random disturbance signal is unknown but the spectrum of

the disturbance may be known. If the perturbation signal is

generated using a signal with equal spectral properties as

Φv the expected value of the gradient estimates will still be

unbiased. If rp
t and vt are uncorrelated the spectrum of the

output is:

Φy = |G(ejω)|2|S(ejω, ρi)|2Φrp + |S(ejω , ρi)|2Φv (24)

Following the optimal designs which has just be argued

Φrp =
α

|G(ejω)|2 Φv ⇒ Φy = (1 + α)|S(ejω , ρi)|2Φv

From these expressions it is seen that the only requirement

is the noise spectrum and the magnitude function |G(ejω)|2
in order to produce a spectrum of the output which is scaled

with (1 + α), compared to the unperturbed case. Insuring

that the spectrum is scaled, is a less strict requirement

than having the signal y scaled. E.g. let the true system

model contain a time delay such that G(q) = q−kḠ(q). Since

|G(ejω)|2 = |Ḡ(ejω)|2, a perturbation signal generated by

rp
t =

√
α/Ḡvt would only scale up Φy by (1 + α) but

yt = GS(ρi)

√
α

Ḡ
vt + S(ρi)vt = (1 +

√
αq−k)S(ρi)vt

which will change the dynamic response and hence render

the gradient estimate of the cost function, (1), biased. This

result gives some information for generation of the optimal

perturbation signal for disturbance rejection tuning of the

minimum variance controller. It is necessary to have an

input signal with the same spectral properties as the random

disturbance acting on the system. Furthermore this signal

will have to be filtered through the inverse of the true plant

dynamics.

In practice it is not possible to generate an optimal

perturbation signal since the plant dynamics is unknown. On

the other hand, the analysis in this section offers an optimal

design strategy for the perturbation signal in case a plant

estimate and noise model is available.

B. Influence of the perturbation power

If the perturbation signal spectrum is chosen as

Φrp = (α/|G(ejω)|2)Φv then α is the only free parameter, and

it will determine the power of the signal.

Using perturbations in the tuning algorithm will influence

the covariance matrix of the performance cost function

gradient estimate and hence the expected performance of the

n’th iteration. Since the covariance matrix is proportional to

the squared spectrum of the perturbation signal, it will be

proportional to α2. The true Hessian of the performance cost

function, used in evaluation of Σ and ∆Jn, is independent

of the perturbation, since this Hessian is evaluated at the

optimum for the unperturbed problem. In practice the true

Hessian is not known and has to be estimated from the

same perturbed data. The Hessian estimate is proportional

to the perturbation spectrum and hence α. By substitution of

the true Hessian with this perturbed Hessian estimate in the

expressions for Σ and ∆Jn, it will be expected that Σ will

approach a constant value when α → ∞ while the control

quality index will grow linearly.

In case the perturbation signal is kept constant between

iterations, the covariance expression for the performance cost

will change. Since the perturbation signal does not change

between iterations it will be regarded as a deterministic sig-

nal. Hence the multiplication between signals driven by the

perturbation signal rp will not contribute to the covariance.

That implies that terms in SN with the squared spectrum of
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the perturbation signal will be zero, and that the covariance

expression for EN remains unchanged [12]. Having the same

realization for the perturbation signal will give a covariance

expression for the performance cost gradient estimate which

is proportional to the perturbation signal spectrum and not

the spectrum squared. Hence a constant perturbation signal

produces a covariance matrix Σ which approaches zero as

the power of the perturbation signal is increased.

IV. THE OPTIMIZATION PROBLEM

Let ρn(Φrp) be the resulting controller after n iterations

with Iterative Feedback Tuning where external perturbations

with the spectrum Φrp were used in the first experiment

in the tuning algorithm. J(ρn(Φrp), 0) then expresses the

performance of the loop with this controller for the unper-

turbed operation and J(ρn(Φrp), Φrp) is the value when

the operation is perturbed by rp. Let ρ̄(0) be the optimal

set of controller parameters for the original tuning problem

and ρ̄(Φrp) be the optimal set for the perturbed operation.

The design criterion for the perturbation spectrum will then

minimize the control quality index for the perturbed tuning:

∆Jn(Φrp) ≡ E[J(ρn(Φrp), 0)] − J(ρ̄(0), 0) (25)

Let the perturbation spectrum, Φrp , be characterized by the

parameters in a vector η. Demanding a upper bound, σmax,

on the perturbation signal power, r0, leads to the following

formulation of the perturbation signal optimization problem.

min
η

∆Jn(Φrp)

s.t. r0 ≤ σmax

(26)

This optimization aims at minimizing the expected distance

between the performances of the optimal controller and the

controller from the tuning algorithm which is affected by the

perturbation spectrum.

In case the optimal perturbation design from section III-A

can be realized, α, is the only free parameter in η. The covari-

ance expression for Σ has shown that this parameter has to

be as large as possible. Hence the optimization problem with

the input power constraint on the perturbation signal is well

posed. In reality the true model is unknown or only crudely

approximated when Iterative Feedback Tuning is performed.

In such case the optimization problem in equation (26) serves

as a guide for how to choose the parameterization of the

perturbation spectrum. A more general discussion of this

optimization problem is presented in [12].

V. AN EXAMPLE

A simulation study is preformed in order to illustrate the

ideas and advantages of introducing external perturbations

in the Iterative Feedback Tuning method when tuning for

disturbance rejection. For simplicity the control loop used is

a discrete-time linear time-invariant transfer function model,

and the controller has only two adjustable parameters. The

random disturbance acting on the system is Gaussian white
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Fig. 3. Surface plot of the normalized performance cost function on a grid
for the controller parameters. The lower surface is the performance cost
when α = 0 and the upper surface is for α = 1. The same noise realization
vt has been used in each grid point and in the perturbation signal design
in order to have a smooth surface.

noise i.e. et ∈ Niid(0, σ2) where σ = 1. The nomenclature

refers to the block diagram in figure 2 where vt = H(q)et.

Plant model: G(q) =
q−1 − 0.5q−2

1 − 0.3q−1 − 0.28q−2

Noise model: H(q) =
1

1 + 0.9q−1

Controller: C(q) = ρ1 + ρ2q
−1

(27)

The external perturbation signal is given by rp
t =

√
αH/Gǫt

where the plant model G and the noise model H is asumed to

be known and ǫt ∈ Niid(0, 1). An external perturbation will

increase the value of the performance cost when applied.

Figure 3 shows two normalized cost functions as surfaces

on a grid of controller parameter values. These surface plots

are smooth functions since the same noise realization has

been used for each grid. Another constant signal with the

same noise properties has been used for the perturbation

signal design. The cost function is of course only a smooth

function when the number of samples, N → ∞, which is not

practically realizable. In this simulation N = 512. The two

surfaces have the same minimum in figure 3, and for this

idealized case

J(ρ, Φrp) = (
√

α + 1)2J(ρ, 0)

This property means that the perturbation gives the desired

change in the curvature of the performance cost function to

yield a faster convergence. In order to illustrate this result

further a series of Monte Carlo experiments are performed

using the Iterative Feedback Tuning with perturbations. Ini-

tially the controller parameters has the optimal value, but

due to the stochastic nature of the data the tuning will move

the parameters away from this value for repeated iterations.

In 1000 experiments, 10 iterations have been performed

from the same optimal starting point, and the values of the

resulting set of parameters has been saved. N = 1000 data

points has been collected and used in each iteration of the

tuning. For four different values of α in the perturbation

signal, the results are presented in figure 4. The variance and
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(d) α = 10

Fig. 4. The final control parameters from 1000 Monte Carlo experiments
each with 10 iterations in the Iterative Feedback Tuning method. All
iterations are initiated at the optimal value for the controller parameters.
The value of α in scaling the perturbation signal has been changed in four
steps from zero to 10.

the cross-covariance of the resulting controller parameters

are reported in table I. Form the results of the Monte

Carlo simulations in figure 4 and table I it is obvious that

TABLE I

THE VARIANCE AND THE CROSS-COVARIANCE FOR THE RESULTING SET

OF CONTROLLER PARAMETERS FROM THE MONTE CARLO SIMULATIONS

FOR DIFFERENT VALUES OF α IN THE PERTURBATION SIGNAL.

Variance σ2
ρ1

σ2
ρ2

σρ1,ρ2

α = 0 0.00124 0.00103 -0.000817
α = 1 0.00116 0.00102 -0.000820
α = 5 0.000757 0.000743 -0.000623
α = 10 0.000522 0.000531 -0.000451

increasing the value of α in the perturbation signal, produces

an optimization problem with a statistically better defined

optimum.

VI. CONCLUSIONS

A general framework for the use of external perturbation

signals in Iterative Feedback Tuning of minimum variance

control for the disturbance rejection problem has been pre-

sented. The effect on the asymptotic accuracy is disused in

relation to the spectral properties of the external signal. It is

shown that the optimal design of this perturbation depends

on both the true system and the spectrum of the process

noise. For practical applications where the plant model is

unkown this design serves as a gide for designing the

spectrum of an external pertubation in order to improve the

tuning convergence. Through simulations the optimal design

is shown not introduce bias. Increasing the input power in

this signal will lead to a faster convergence of the tuning

method due to a steeper curvature of the performance cost

function.
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