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Abstract— For α ∈ (0, π/2), let (Σ)α be the control system
ẋ = (F + uG)x, where x belongs to the two-dimensional unit
sphere S2, u ∈ [−1, 1] and F, G are 3 × 3 skew-symmetric
matrices generating rotations with perpendicular axes and of
respective norms cos(α) and sin(α). In this paper, we study

the time optimal synthesis (TOS) from the north pole (0, 0, 1)T

associated to (Σ)α, as the parameter α tends to zero; this
problem is motivated by specific issues in the control of two-
level quantum systems subject to weak external fields. The
TOS is characterized by a “two-snakes” configuration on the
whole S2, except for a neighborhood Uα of the south pole
(0, 0,−1)T of diameter at most O(α). Inside Uα, the TOS
depends on the relationship between r(α) := π/2α−[π/2α] and
α. More precisely, we characterize three main relationships, by
considering sequences (αk)k≥0 satisfying (a) r(αk) = r̄; (b)
r(αk) = Cαk and (c) r(αk) = 0, where r̄ ∈ (0, 1) and C > 0.
In each case we describe the TOS and, in the case (a), we
provide, after a suitable rescaling, the limit behavior of the
corresponding TOS inside Uα, as α tends to zero.

Index Terms— control-affine systems, optimal synthesis, con-
trol of quantum systems, minimum time, asymptotics

I. INTRODUCTION

Let α ∈ (0, π/2). On the unit sphere S2 ⊂ R3, consider

the control system (Σ)α defined by

(Σ)α ẋ = (F +uG)x, x = (x1, x2, x3)
T , ‖x‖2 = 1, (1)

where |u| ≤ 1 and F , G are two 3 × 3 skew-symmetric

matrices representing two orthogonal rotations with axes of

length respectively cos(α) and sin(α), α ∈ (0, π/2). With

no loss of generality, we assume that

F :=




0 − cos(α) 0
cos(α) 0 0

0 0 0


 (2)

G :=




0 0 0
0 0 − sin(α)
0 sin(α) 0


 (3)

In this paper, we aim at describing the time optimal synthesis

(TOS for short) from the north pole N := (0, 0, 1)T for

(Σ)α, i.e. for every x̄ ∈ S2 we want to find the time optimal

trajectory steering N to x̄ in minimum time (see Figure 1).

In particular we are interested in the qualitative shape of

the time optimal synthesis in a neighborhood of the south

pole S = (0, 0,−1)T , in the limit α→ 0. The interest for that
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Fig. 1. Geometric interpretation of the system (Σ)α. The vector fields
X+ := F + G and X− := F − G are two rotations of norm one making
an angle α with the axis x3.

problem stems in quantum control issues. Indeed consider the

population transfer problem for a two level quantum system

driven by a single external field. This model describes the

evolution of the z-component of the spin of a (spin 1/2)

particle driven by a magnetic field, that is constant along

the z-axis and controlled along the x-axis. Equivalently it

describes the first two levels of a molecule driven by an

external field without the rotating wave approximation [1],

[2]. The dynamics of such a system is governed by the time

dependent Schrödinger equation (in a system of units such

that ~ = 1):

i
dψ(t)

dt
= (H0 + Ω(t)H1)ψ(t). (4)

Here ψ(.) = (ψ1(.), ψ2(.))
T : [0, T ] → C2, denotes the wave

function and verifies
∑2

j=1 |ψj(t)|
2 = 1, i.e. ψ(t) belongs

to the sphere S3 ⊂ C2. The free Hamiltonian H0 and the

controlled Hamiltonian H1 are given by:

H0 =

(
−E 0
0 E

)
, H1 =

(
0 1
1 0

)
, (5)

where −E, E, (E > 0) are the two energy levels and the

control Ω(.) is a real function describing the amplitude of

the external field. Here |ψ1(t)|
2 (resp. |ψ2(t)|

2) represents

the probability of measuring at time t the energy E (resp.

−E). The control task consists of inducing a transition from

the first eigenstate of H0 (i.e., |ψ1|
2 = 1) to any other

physical state. We recall that two states ψ,ψ′ are physically

equivalent if they differ by a factor of phase. More precisely

by physical state we mean a point of the two dimensional

sphere (called Bloch sphere in this context) S2 = S3/ ∼
where the equivalence relation ∼ is defined as follows:

ψ ∼ ψ′ (where ψ,ψ′ ∈ S3) if and only if ψ = exp (iΦ)ψ′,

for some Φ ∈ [0, 2π[. The projection Π : S3 → S2 is called
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Hopf projection. A particularly interesting transition is of

course from the first to the second eigenstates of H0 (i.e.,

from |ψ1|
2 = 1 to |ψ2|

2 = 1).

In many applications, the external field should have

bounded amplitude M , (i.e. |Ω(.)| ≤ M ) and, in order to

minimize the unavoidable effects of relaxation and decoher-

ence [3], [4], the transfer should occur as quickly as possible.

Therefore we end up addressing a minimum time control

problem with one bounded control. Sometimes decoherence

is also reduced by taking M small with respect to E: this

guarantees that the energy injected by the control action into

the system is close to the minimal one necessary to induce

the transition.

As it was shown in [2], the projection of the minimum

time control problem for the system (4) on the Bloch Sphere

gives rise, after time renormalization, to the minimum time

control problem for system (1) where i) the first and second

eigenstates of H0 project respectively onto the north pole

N and the south pole S, ii) tan(α) = M/E and u(t) =
Ω(t)/M . iii) H0 projects on F and H1 on G. The case

M << E corresponds now to the limit α→ 0.

Nowadays two-level quantum systems are central in the

implementation of the so-called quantum gates (the basic

blocks of a quantum computer); see for instance [5].

The present paper is actually a continuation of [6], [2] in

the sense that it answers questions raised in these papers.

In [6], the purpose was to provide a lower and an upper

bound for N(α), the maximum number of switchings for

time optimal trajectories for the left invariant control system

(S)α ġ = g(F + uG), g ∈ SO(3), |u| ≤ 1, (6)

where F and G are defined in (2) and (3). Recall that, for

such control systems, it is known (cf. for instance [6], [2])

that every time optimal trajectory is a finite concatenation of

bang arcs (i.e. u ≡ ±1) or singular arcs (u = 0). A bang arc

is an integral trajectory corresponding to the rotations

X+ := F +G, X− := F −G, (7)

and is denoted by etXεx, t ∈ [0, T ], where ε = ±, x is

the starting point of the bang arc and T is its time duration.

Moreover, a switching time – or simply a switching – along

a time optimal trajectory is a time t0 so that the control u is

not constant in any open neighborhood of t0.

To estimate N(α), a suitable Hopf map Π : SO(3) → S2

was introduced to project (S)α onto (Σ)α. In particular,

every time optimal trajectory of (Σ)α is the projection by Π
of a time optimal trajectory of (S)α. It results that, if a time

optimal trajectory on S2 has a certain number of switchings,

then this number is lower than or equal to the maximum

number of switchings for the optimal problem on SO(3).
The construction of time optimal trajectories of (Σ)α was

performed according to the general theory of time optimal

synthesis on 2-D manifolds developed in [7], [8], [9], [10],

[11], [12], [13], [14], and recently gathered in the book [15].

The question of studying N(α) was first addressed in [16]

where, using the index theory developed by Agrachev, the

authors proved that N(α) ≤ [π/α], where [·] stands for the

integer part. That result was not only an indirect indication

that N(α) would tend to infinity as α tends to zero, but it

also provided a hint on the asymptotic of N(α) as α tends

to zero. Notice that for α = 0 the systems (1) and (6) are not

controllable. With the techniques developed in [6], enough

properties for the TOS associated to (Σ)α, α < π/4, were

identified in order to improve the upper bound of [16] and

to actually show that, for α small

N(α) ≤ kM + 5, where kM :=
[ π
2α

]
.

In [6], it is proved that, for α < π/4, the extremals associated

to (Σ)α (i.e. the trajectories candidate for time optimality

obtained after using the Pontryagin Maximum Principle,

PMP for short), starting from the north pole N are bang-

bang trajectories, i.e. finite concatenations of bang arcs of

the type

esf X
−ε′ ev(si)Xε′ . . . ev(si)X−εesiXεN,

where the initial time duration si verifies si ∈ (0, π], all the

time durations of the interior bang arcs are equal to v(si),
where the function v is defined by

v(si) = π + 2 arctan

(
sin(si)

cos(si) + cot2(α)

)
, (8)

and the final time duration sf verifies sf ≤ v(si). Of

particular importance for the construction of the TOS, are

the switching curves, i.e. the curves made by points where

the control switches from +1 to −1 or viceversa and defined

inductively by

Cε
1(s) = eXεv(s)eX−εsN, Cε

k(s) = eXεv(s)C−ε
k−1(s), (9)

where ε = ±1 and k = 2, ...., kM . Since the PMP gives

just a necessary condition for optimality, it is crucial to

determine the time after which an extremal is no more

optimal. In [6], it is shown that the number of bangs must

be lower than or equal to kM + 1 and the extremals cover

the sphere S2 according to the “two-snakes” configuration

as depicted in Figure 2. The two “snakes” correspond to

extremal trajectories starting respectively with control +1
and −1. For more details, see [6].

However, in [6], the construction of the TOS associated to

(Σ)α was not exhaustive. In particular, it was not shown that

all the extremals are optimal up to kM −1 bangs arcs and the

construction of the synthesis was not analytically complete

in a neighborhood of the south pole S. There, the minimum

time front develops singularities due to the compactness of

S2. In [6] only numerical simulations were provided, describ-

ing the evolution of the extremal front in a neighborhood

of the south pole. As α → 0, these numerical simulations

suggested the emergence of an interesting phenomenon (see

Fig. 3): define the remainder

r(α) := π/2α− [π/2α]. (10)

Then, there are three possible patterns of TOS in the

neighborhood of the south pole S, each of them depending
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Fig. 2. The “two-snakes” configuration defined by the extremal flow. Notice
that this set of trajectories covers the whole sphere, but in principle not all
extremals are optimal and a point can be reached by more than one trajectory
at the same or at different times.
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Fig. 3. Conjectured shapes of the synthesis in a neighborhood of the
south pole. Switching curves are C1 curves made by points in which the
control switches from +1 to −1 or viceversa. Overlap curves are C1 curves
made by points reached optimally by more than one trajectory. The curve
γk is a bang arc that is also an overlap curve since trajectories having a
different history travel on it at the same time. The singularity appearing at
the starting point of γk (called (C, K)1 according to the taxonomy of [15])
is a singularity of the synthesis predicted by the general theory [15] and it
is due to a nonlocal phenomenon.

on a relation between r(α) and α.

In [2], the TOS for (Σα) is studied in the context of

quantum control as described previously. In that paper, the

TOS, for α ≥ π/4 is completed and, in the case α < π/4,

further information are obtained for what concerns time

optimal trajectories steering the north to the south pole

(in fact the most interesting trajectories for the quantum

mechanical problem). Such optimal trajectories belong to a

set Ξ containing at most 8 trajectories, half of them starting

with control +1 and the other half starting with control −1,

and switching exactly at the same times. It is also proved that

the cardinality of Ξ depends on the remainder r(α) defined

in Eq. (10). For instance, for α and r(α) small enough, then

Ξ contains exactly 8 trajectories (four of them are optimal)

while if r(α) is close to 1, then Ξ contains only 4 trajectories

(two of them are optimal).

In the next section we study the TOS associated to (Σ)α

as α tends to zero, focusing in particular on its behavior

inside a neighborhood of the south pole. In this way we will

be able to give a complete description of the TOS when α
is small and therefore to answer the questions raised in [6],

[2].

II. LIMIT TIME OPTIMAL SYNTHESIS

In this section we want to determine, roughly speaking,

what could be a possible limit for the TOS associated to (Σ)α

as α tends to zero and then to state a convergence result (in

some suitable sense) of the TOS associated to (Σ)α to that

limit. Note that we will just state the main results; details

are given in [17]. To proceed, we embark on the study of a

geometric object F(α, T ) called the extremal front at time T
along (Σ)α and defined as the set of points reached at time

T by extremal trajectories starting from N . The PMP says

that the extremal front F(α, T ) contains the minimum time

front OF (α, T ), i.e. the set of points reached at time T by

time optimal trajectories starting from N . When F(α, T ) =
OF (α, T ), we say that F(α, T ) is optimal.

First it is possible to see that, in the case in which kM

is odd (being the other case analogous), the extremal front

F(α, kMπ) is made up of the union of two curves Eε(α, ·) :
(0, π] → S2, ε = ±, with Eε(α, ·) = Πx3

E−ε(α, ·), where

Πx3
is the orthogonal symmetry with respect to the x3-axis.

Moreover, for α small enough, Eε(α, ·) admits a convergent

power series of the type
∑

l≥0 f
ε
l (s, r(α))αl, where the

fε
l (s, r) are real-analytic functions of (s, r) ∈ R2, 2π-

periodic in s with

f+
0 (s, r) =




0
0
−1


 , f+

1 (s, r) =



−2rcs

2rss

0


 ,

f+
2 (s, r) =




π
2 (4r + cs)s

2
s

π
4 (3 + 8rcs + c2s)ss

2r2




f−l (s, r) = Πx3
f+

l (s, r) , (11)

where cs, ss stand for cos s, sin s, respectively.
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As a trivial consequence, we deduce that for r ∈ [0, 1],
s ∈ R and α small enough, we have

E
ε(α, s) = fε

0 (s, r(α)) + fε
1 (s, r(α))α + fε

2 (s, r(α))α2 + O(α3) (12)

and

∂

∂s
E

ε(α, s) =
∂

∂s
fε
1 (s, r(α))α +

∂

∂s
fε
2 (s, r(α))α2 + O(α3), (13)

where |O(α3)| ≤ C̄|α|3 with C̄ > 0 constant independent

of (r, s, α).
The first crucial result is the following.

Proposition 1: F(α, T ) is optimal for T ≤ (kM − 1)π
and α small enough. Moreover F(α, (kM − 1)π) is a circle

of radius 2(1 + r(α))α up to order α2.

As a consequence of the optimality of F(α, (kM − 1)π),
we get that all the extremals of the “two-snakes” configu-

ration depicted in Figure 2 are optimal up to time (kM −
1)π. In other words, if Uα is the connected component

of S2 \ F(α, (kM − 1)π) containing the south pole, we

obtain the optimal synthesis on S2 \ Uα. Notice that Uα

is a neighborhood of the south pole of size proportional to

α.

In that way we answer the question stated in [6] about

optimality of extremals of the two snake configuration in the

case α small and it is, of course, of interest for applications

to the two-level quantum system.

The expressions (12)–(13) are central tools to understand

the possible asymptotic behaviors of the TOS associated to

(Σ)α, as α tends to zero.

For this purpose we observe that the expressions of f+
1 and

f+
2 in (11) depend explicitly on the remainder r(α). This fact

suggests the need to impose particular relationships between

α and r(α) in order to define any asymptotic behavior. In

other words we must let α goes to zero only along certain

subsequences (αk)k≥0 where a specific relationship holds

between αk and r(αk). By analyzing Eq. (11) it is possible to

determine such relationships and to prove that the conjectures

made in [6] about the qualitative shape of the synthesis near

the south pole were true (see Figure 3). In particular there are

exactly three qualitatively different asymptotic behaviours of

the synthesis as α goes to zero, described by the following

cases.

First, we consider the case in which α is arbitrarily

small, with r(α) ∈ (0, 1) uniformly far from 0 and 1. To

simplify further the discussion, it is reasonable to consider

the following.

(C1) For r̄ ∈ (0, 1), let α tend to zero along the

subsequence αk := π
2(k+r̄) , so that r(αk) = r̄.

In this case Eε(α, ·) is approximated, up to order α2, by

the expression S + fε
1 (·, r̄). As a consequence F(α, kMπ)

is approximately a circle of radius 2r̄α centered at the south

pole. We are then able to give a qualitative description of

the optimal synthesis, as stated below in Theorem 1. We then

deduce that, if α is small enough and r(α) is far enough from

0 and 1, the synthesis in a neighborhood of the south pole is

topologically equivalent to the limit synthesis obtained, as k

tends to infinity, along the sequence αk above. That synthesis

turns out to be exactly the one described in Figure 3 (case

B), as predicted in [6].

It remains then to consider the cases in which r(α) can be

arbitrarily close to 0 or 1. For this purpose we first consider

the case in which r(α)/α remains bounded above and below

by positive constants as α tends to zero. From Eq. (11) it is

clear that this is equivalent to say that fε
1 (·, r)α is comparable

to fε
2 (·, r)α2. For simplicity we consider the following.

(C2) For C > 0, let α tend to zero along a subsequence

(αk)k≥0 such that r(αk) = Cαk.

In this case Eε(α, ·) is well approximated by S+(fε
1 (·, C)+

fε
2 (·, 0))α2. If C > π/4, the synthesis is equivalent to that

of the previous case. On the other hand if C < π/4 the

synthesis is more complicated and it turns out to be exactly

the one described in Figure 3 (case C), as predicted in [6].

If α and r(α) tend to zero with r(α)/α tending to infinity

(resp. to zero) it is possible to see that the synthesis is

qualitatively equivalent to the one of case (C1) (resp. (C2)).

The third interesting case is the following.

(C3) Let α tend to zero along the subsequence αk := π
2k

,

so that r(αk) = 0.

In this case the extremal front at time kMπ contains the

south pole and the corresponding optimal front reduces to

that point. The optimal synthesis is then described starting

from the extremal front F(α, (kM − 1)π) = OF (α, (kM −
1)π), and it corresponds to the one described in Figure 3

(case A), as predicted in [6].

Similarly, one can see that in the case in which α is small

and r(α) is close to 1, the optimal synthesis is qualitatively

equivalent either to that of Case (C1) or to that of Case (C3),

and this concludes the description of the possible asymptotic

behaviors as α tends to 0.

Remark 2.1: It is interesting to notice that numerical

simulations show that for α decreasing to zero continuously,

the qualitative shape of the optimal synthesis described in

Figure 3 alternates cyclically in the order BCABCA....

Let us describe the case (C1) in more details. Since

F(α, kMπ) is approximated, up to O(α2), by a circle of

center S and radius 2r̄α, we are able to show that it

is optimal, so that all the extremals of the “two-snakes”

configuration depicted in Figure 2 are optimal up to time

kMπ. In other words, if Vα is the connected component of

S2 \ F(α, kMπ) containing the south pole, we obtain the

optimal synthesis on S2 \ Vα.

As α tends to zero, Vα collapses on S. Hence one must

rescale the problem by a factor 1/α, in order to describe

the TOS inside Vα. Also notice that since we are in a

neighborhood of the south pole we can project the problem

on the plane (x1, x2). We are now in a position to define a

possible limit behavior for the TOS inside Vα. Let Mα be the

linear mapping from R3 onto R2 defined as the composition

of the projection (x1, x2, x3) 7→ (x1, x2) followed by the

dilation by 1/α. Denote by (Σ̃)α (resp. ÕF (α, kMπ)) the
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image by Mα of (Σ)α (resp. OF (α, kMπ)). Then, (Σ̃)α is

a perturbation by O(α2) of the forced linear pendulum

(Pen) :

{
ż1 = −z2,
ż2 = z1 + u, (z1, z2) ∈ R2, |u| ≤ 1

(14)

while ÕF (α, kMπ) is a perturbation by O(α2) of C(0, 2r̄),
the planar circle of center (0, 0) and radius 2r̄. As a

consequence, the candidate limit TOS inside Vα is the one

associated to the problem of reaching in minimum time every

point of the ball B(0, 2r̄) starting from C(0, 2r̄), along the

dynamics of the standard linearized pendulum. To prove

such a result, we first study the above mentioned optimal

control problem and show that the corresponding TOS is

characterized by an overlap curve γo
pen, which is the set of

points z ∈ R2 with z1z2 ≥ 0 and belonging to the locus.

z4
1 + z4

2 + 2z2
1z

2
2 − 4r̄2z2

1 + (4 − 4r̄2)z2
2 = 0 .

The optimal synthesis inside C(0, 2r̄) is then described by

the following feedback, defined on B(0, 2r̄) \ γo
pen: “above”

γo
pen, the control u is constantly equal to −1 and “below”

γo
pen, it is constantly equal to 1 (see Fig. 4). Finally, the

asymptotic result we have in this case is:

Theorem 1: For r̄ ∈ (0, 1), let (αk)k≥1 be the sequence

defined by αk := π
2(k+r̄) for k ≥ 1. Consider γo

pen, the

overlap curve of the TOS for the optimal control problem

consisting of starting from C(0, 2r̄), the planar circle of

center (0, 0) and radius 2r̄, and reaching in minimum time

every point of B(0, 2r̄) along the control system (14). Then,

for k large enough, the TOS associated to (Σ̃)αk
inside

ÕF (αk, kMπ) is characterized by an overlap curve γo
αk

so

that the optimal feedback takes the value −1 “above” γo
αk

,

and the value 1 “below” γo
αk

. Moreover, γo
αk

converges to

γo
pen in the C0 topology, uniformly with respect to r̄ in any

compact interval of (0, 1), as k goes to infinity.

Remark 2.2: Notice that the sequence (αk)k≥1 defined

above has been chosen in order to simplify the previous

B   ( )ξ+
kα

B   ( )ξ−

z2

z1

Vαk

γ o
k

−

−,k

α

α kP+

u=+1

u=−1

γ oγ o

γ o
+,k

k

kαP

Fig. 5. Propositions 2 and 3

statement. Indeed the same result could be restated in a

more general way by taking an arbitrary sequence (α̃k)k≥1

converging to zero and such that r(α̃k) converges to r̄, or

letting the remainder vary on a compact subinterval of (0, 1).

The complete proof of Theorem 1 is given in [17]. Here

we just outline its main steps.

We start by defining Vα as the image with respect to

Mα of the neighborhood of the south pole enclosed by

OF (α, kMπ). First of all, by studying its asymptotic expres-

sion, it is possible to prove that the switching curve Cε
kM

is

nowhere locally optimal, provided that α is small enough and

r(α) ≥ r̄ > 0. This means that the shape of the synthesis

inside Vα is completely determined if we identify the cut

locus.

Let now Pα
ε := Mα(Cε

kM
(0)) for ε = ± and let Bα

ε (ξ) be

the ball of center Pα
ε and radius ξ. We look separately at the

shape of the synthesis far from Pα
ε and inside neighborhoods

Bα
ε (ξ) of Pα

ε , ε = ± (see Figure 5). Then Theorem 1 is

obtained as a consequence of the following results:

Proposition 2: Let r̄ ∈ (0, 1) and αk := π
2(k+r̄) . Then for

any ξ > 0 there exist a positive integer k̄ and a compact

interval I ⊂ (0, π) such that it is possible to find a curve γo
k ,

defined on I for k ≥ k̄, verifying the following: γo
k divides

Vαk
\ (Bαk

+ (ξ) ∪ Bαk

− (ξ)) in two connected components,

such that above γo
k the optimal feedback associated to the

synthesis for α = αk takes the value −1, and below γo
k it

is equal to 1, and in particular γo
k is an overlap curve for

α = αk. Moreover, γo
k converges to γo

pen in the C0 topology

of I .

Proposition 3: Consider the notations defined above.

Then there exist ξ > 0, τε, ε = ±, with 0 < τ− < τ+ <
π and a positive integer k̄ such that, for every k ≥ k̄,

it is possible to find two curves γo
−,k and γo

+,k, defined

respectively on [0, τ−] and [τ+, π], verifying the following:

γo
ε,k divides Vαk

∩ Bαk
ε (ξ) in two connected components,

such that above γo
ε,k the optimal feedback associated to the
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synthesis for α = αk takes the value −1, and below γo
ε,k it

is equal to 1, and in particular the γo
ε,k are overlap curves

for α = αk. Moreover, γo
−,k and γo

+,k converge to γo
pen in

the C0 topology, respectively, of [0, τ−] and [τ+, π].
The proofs of the previous results rely on different implicit

function arguments that, for reasons of space, we will not

specify here.

Results analogous to Theorem 1 can be proved in the cases

(C2) and (C3). Details are given in [17].

III. CONCLUSION

In this paper, we built the time optimal synthesis for a two-

level quantum system driven by an external field, in the case

M << E, where M is the bound on the fields and −E and

E are the two energy levels. We answered several questions

stated in [6], [2], regarding the locus where extremals lose

optimality and the shape of the synthesis at the south pole

and in particular we showed that there are three main patterns

which cyclically alternate as M/E → 0. For these three

cases it is possible to characterize a concept of “asymptotic”

optimal synthesis in the “noncontrollability” limit M/E → 0
(see in particular Theorem 1).
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