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Abstract

An iterative algorithm to solve periodic Riccati differ-

ential equations (PRDE) with an indefinite quadratic term

is proposed. In our algorithm, we replace the problem of

solving a PRDE with an indefinite quadratic term by the

problem of solving a sequence of PRDEs with a negative

semidefinite quadratic term which can be solved by exist-

ing methods. The global convergence is guaranteed and a

proof is given.

1. Introduction

We consider the following PRDE which arises from H∞

control

−Π̇(t) = A(t)T Π(t)+Π(t)A(t)−Π(t)(B2(t)B2(t)
T

−B1(t)B1(t)
T )Π(t)+C(t)TC(t), (1)

where A : R
+ → R

n×n, B1 : R
+ → R

n×p, B2 : R
+ →

R
n×q, C : R

+ → R
r×n are piecewise continuous, locally

integrable, T−periodic functions and Π : R
+ → R

n×n

is the unique bounded symmetric positive semidefinite

T−periodic stabilizing solution we seek. Our interest is

in providing a new type of solution algorithm, built on re-

cent developments for solving algebraic Riccati equations

(AREs) with an indefinite quadratic term (see [1, 2]).

Recall that in [1,2], the problem of solving an ARE with

an indefinite quadratic term is replaced by the problem of

solving a sequence of AREs with a negative semidefinite

quadratic term and each of them can be solved by some

existing algorithms (for example the Kleinman algorithm

in [3]); then the solution of the original ARE can be ap-

proximated by the sum of the solutions of the AREs with
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a negative semidefinite term. Since AREs can be regarded

as a special class of PRDEs, a natural question arising here

is:“can we approximate the solution of an PRDE with a

sign indefinite quadratic term by a sequence of PRDEs with

a negative semidefinite quadratic term?” The answer is

positive and an iterative algorithm to solve PRDE (1) will

be given in this paper.

A key motivation of this paper comes from an increased

interest in addressing periodic control problems for linear

time-varying periodic systems. For linear time-invariant

(LTI) control systems, to obtain an H2 or an H∞ controller,

one needs to solve AREs and many algorithms are avail-

able. For linear time-varying periodic systems, in order

to obtain an H2 or an H∞ controller, one needs to solve

PRDEs which are typically more difficult to solve than

AREs. Algorithms do exist, though their state of matu-

rity is not equivalent to those for AREs. Roughly speaking,

there are three categories of algorithms for solving PRDEs:

• Hamiltonian methods. This type of methods is based

on the transformation from a PRDE into a Hamilto-

nian differential equation which is a linear differential

equation; then the solution of the PRDE can be recov-

ered from the solution of the Hamiltonian differential

equation.

• Structure exploiting methods. In this type of methods,

the linear continuous time-varying periodic system

corresponding to the given PRDE is firstly approxi-

mated by a periodic discrete-time system; then the lift-

ing in [15] is used to build a time-invariant descriptor

system which is equivalent to the periodic discrete-

time system. Finally, the structure of the lifted system

matrix is exploited to obtain solutions of PRDEs.

• Structure preserving methods. Similar to the structure

exploiting methods, a time-invariant descriptor system

is obtained by lifting; then orthogonal matrix transfor-

mations are carried on this descriptor system to obtain

solutions of PRDEs. In this type of methods, the struc-

ture of the lifted system matrix is not only exploited,

but also preserved during computation.

There are certain disadvantages among existing methods to

solve PRDEs. When the Hamiltonian methods are used to
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solve PRDEs, numerical instability may happen due to the

inversion of possibly ill-conditioned matrices (see [16]).

When the one-shot method (which is one of the structure

exploiting methods) in [9] is used to solve a PRDE, two

ODEs with unstable dynamics must be solved, and there-

fore this method is unreliable for systems with large pe-

riods (see [9]). A MATLAB package called PERIODIC

SYSTEMS Toolbox (see [10]) has been developed to solve

PRDEs with some numerically stable structure-exploiting

and structure-preserving algorithms; however, it can only

be used to solve H2−type PRDEs (i.e. PRDEs with a

negative semidefinite quadratic term) (see [10]), not for

H∞−type PRDEs which are of the form (1).

Recently, the multi-shot method (see [8, 12]) has been

developed to solve PRDEs. The multi-shot method is based

on discretization techniques, which turn the continuous-

time problem into an equivalent discrete-time problem for

which satisfactory numerical methods already exist. As

noted in [9], the multi-shot mothod has some important

characteristics: (i) The ODEs with unstable dynamics in

solving PRDEs with the multi-shot method are solved over

small fractions of the period and all these ODEs can be

solved independently. (ii) Only one ODE in the multi-

shot method must be solved in sequence, in contrast to

the one-shot method where two ODEs dependent on each

other must be solved. (iii) The system’s periodicity is ex-

ploited. All these characteristics make it likely that the

multi-shot method can provide more reliable solutions of

PRDEs. However, although the multi-shot method can be

used to solve both H2−type PRDEs and H∞−type PRDEs,

it appears not to be incorporated into standard packages.

In our proposed algorithm, the problem of solving a

PRDE with a sign indefinite quadratic term is equivalently

replaced by the problem of solving a sequence of PRDEs

with a negative semidefinite quadratic term; then the solu-

tion of the original PRDE can be approximated by the solu-

tions of PRDEs with a negative semidefinite quadratic term

which can be obtained by existing methods (for example

use the standard package in [10]). To this end, it is worth

pointing out that one can also use an iterative algorithm to

solve H2−type PRDEs (see [11]). In [11], the solution of

an PRDE can be recursively approximated by the solutions

of a sequence of periodic Lyapunov differential equations

(PLDE). In fact, the iterative algorithm to solve H2−type

PRDEs in [11] is closely linked to the Kleinman algorithm

in [3] since monotonic non-increasing sequences are con-

structed to approximate the solutions of H2−type AREs

(PRDEs) in both of them. Furthermore, a common idea be-

tween the algorithm in [11] and the Kleinman algorithm is

to transform a nonlinear algebraic/differential equation into

a sequence of linear algebraic/differential equations which

are more easily solved.

To this end, it might be interesting to compare the stor-

age and computational complexity between the multi-shot

method and our algorithm. Suppose that we are given an

H∞ periodic Riccati equation and we have replaced the task

of solving this H∞ equation by k H2 periodic Riccati equa-

tions. In such a situation, after some calculations, we obtain

that the total storage in using our algorithm to solve this H∞

Riccati equation is

(k +1)O(Nn2)+O(Nnq)+O(Nnm)+O(Nnr), (2)

where N is the sampling number and n, m, q, r are dimen-

sions of periodic matrices in the H∞ Riccati equation. If

one uses the multi-method in [8] to solve this H∞ equation,

the total storage needed is

2O(N(2n))+O(Nn2), (3)

where 2O(N(2n)) is the storage for step 1 and step 3 of the

multi-shoot method and O(Nn2) is the storage in step 4 of

the multi-shoot method. Comparing (2) and (3), one cannot

draw a conclusion as to which storage is bigger. Now we

compute the computational complexity of using the multi-

shoot method in [8] to solve this equation, then compute

the computational complexity of using our proposed algo-

rithm to solve this equation. After some calculations, we

obtain that the total computational complexity of using the

multiple shoot method to solve a periodic Riccati equation

is

N(2
1

3
n3 +O(n2))+O(Nn3)+N

4

3
n3

. (4)

Now we calculate the computational complexity of using

our proposed algorithm to solve an H∞ periodic Riccati

equation. As indicated above, we assume that we can re-

duce this H∞ Riccati equation to k H2 periodic Riccati equa-

tions; then from [17] we obtain that the computational com-

plexity of using so called “fast algorithms” to solve these k

H2 periodic Riccati equations is

k
(

O
(

(N −1)(2n+m)3
)

+O
(

(2n+m)3
))

. (5)

Comparing (4) with (5), one cannot actually draw a conclu-

sion as to which algorithm is more efficient.

Based on our comparison results above, we can see that

the benefit of our algorithm is not its efficiency to solve H∞

periodic Riccati equations. However, it is expected that our

algorithm has a high numerical reliability in solving H∞ pe-

riodic Riccati equations and this point has been verified in

the linear-invariant case of our algorithm. Recall example 3

in [2], which shows that we cannot obtain an accurate solu-

tion of this H∞ algebraic Riccati equation by using certain

standard algorithms; however, we can obtain an accurate

solution of this equation by using our algorithm.

The paper is organized as follows: Section 2 gives some

definitions and preliminary results. Section 3 presents our
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main result. Section 4 states the algorithm. Section 5 es-

tablishes our conclusion.

Notation: R
n×m denotes the set of n×m real matrices;

R
+ denotes the set of nonnegative real numbers; Z denotes

the set of integers with Z≥a denoting the set of integers

greater or equal to a ∈ R. Define function spaces as fol-

lows:

U =

{

u : R
+ → R

m

∣

∣

∣

∣

∫ t1

t0

‖u(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

,

Y =

{

y : R
+ → R

r

∣

∣

∣

∣

∫ t1

t0

‖y(t)‖2dt < ∞ ∀t0, t1 ∈ R
+

}

.

2. Definitions and Preliminary Results

In this section, we will give some definitions and pre-

liminary results.

To motivate the definitions in this section, we firstly de-

fine the following periodic control system ∆.

∆ : U → Y

given by the following equations:

x(0) = x0

ẋ(t) = A(t)x(t)+B(t)u(t)

y(t) = C(t)x(t)

where t ∈ R
+, x0 ∈ R

n is the initial state, u(t) ∈ R
m is the

input value, x(t)∈R
n is the state value, and y(t)∈R

p is the

output value. A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
r×n are

piecewise continuous, locally integrable, T−periodic real

matrices.

Definition 1 [4] The system ∆ is said to be uniformly

stabilizable (respectively, uniformly detectable) if there

exists K : R
+ → R

m×n (respectively, L : R
+ → R

n×r)

piecewise continuous and bounded on R such that the

system ẋ(t) = (A(t)−B(t)K(t))x(t) (respectively, ẋ(t) =
(A(t)−L(t)C(t))x(t)) is exponentially stable.

Definition 2 Let A, B1, B2, C be the matrix functions ap-

pearing in equation (1). If there exists a bounded symmet-

ric solution Π(t) to PRDE (1) such that the system

ẋ(t) =
(

A(t)+B1(t)B1(t)
T Π(t)−B2(t)B2(t)

T Π(t)
)

x(t)

is exponentially stable, then Π(t) is called a stabilizing so-

lution of (1).

Definition 3 Let A, B1, B2, C be the real matrix func-

tions appearing in (1). Suppose there exists a bounded

symmetric positive semidefinite T−periodic stabilizing so-

lution Π(t) to (1). Let P : R
+ →R

n×n. Let ÂP : R
+ →R

n×n

be defined as

ÂP(t) = A(t)+B1(t)B1(t)
T P(t)−B2(t)B2(t)

T P(t)

for all t ∈ R
+, and let ĀP : R

+ → R
n×n be defined as

ĀP(t) = A(t)+B1(t)B
T
1 (t)P(t)−B2(t)B2(t)

T Π(t)

for all t ∈ R
+.

We now set up some lemmas which are in parallel with the

lemmas appearing in [1, 2, 13, 14].

The next lemma establishes some relations that will be

very useful in the proof of the main theorem.

Lemma 4 Let A, B1, B2, C be the real matrix functions

appearing in (1), and let M be the set of smooth mappings

from R
+ to R

n×n and P, Z ∈ M. Define

F : M −→ M (6)

P(t) 7−→ Ṗ(t)+P(t)A(t)+A(t)T P(t)−P(t)(B2(t)

B2(t)
T −B1(t)B1(t)

T )P(t)+C(t)TC(t).

If P(t) = P(t)T and Z(t) = Z(t)T for all t ∈ R
+, then

F (P(t)+Z(t)) = F (P(t))+ Ż(t)+Z(t)ÂP(t)+ ÂP(t)T Z(t)

−Z(t)
(

B2(t)B2(t)
T −B1(t)B1(t)

T
)

Z(t) (7)

for all t ∈ R
+, where ÂP(t) is defined in Defintion 3. Fur-

thermore, if P(t) = P(t)T and Z(t) = Z(t)T for all t ∈ R
+

and they satisfy

0 =Ż(t)+Z(t)ÂP(t)+ ÂP(t)T Z(t)−Z(t)B2(t)B2(t)
T Z(t)

+F (P(t)) (8)

for all t ∈ R
+, then

F (P(t)+Z(t)) = Z(t)B1(t)B1(t)
T Z(t) (9)

for all t ∈ R
+.

Proof: The results can be obtained by direct computations.

The next two lemmas (Lemma 5-Lemma 6) are known

general results. The first of these gives an existence result

for the positive semidefinite T−periodic stabilizing solu-

tions of a class of PRDEs.

Lemma 5 [5,6,8] Consider the system ∆, and assume that

(A,B) is uniformly stabilizable and (A,C) is uniformly de-

tectable. Then, there exists a symmetric positive semidefi-

nite T−periodic stabilizing solution Z(t) satisfying the fol-

lowing PRDE

−Ż(t) =A(t)T Z(t)+Z(t)A(t)−Z(t)B(t)B(t)T Z(t)

+C(t)TC(t). (10)

Furthermore, Z(t) is the unique stabilizing solution of (10)

(i.e. there is no other stabilizing solution to (10)).
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Proof: See [5].

The next lemma gives a uniqueness result regarding the

bounded stabilizing solution of (1).

Lemma 6 Suppose there exists a bounded symmetric sta-

bilizing solution Π(t) to (1); then this solution must be the

unique stabilizing solution to (1) (i.e. there is no other

stabilizing solution to (1)) and it is T−periodic. Further-

more, if Π(t) ≥ 0 for all t ∈ R
+, then the system ẋ(t) =

(

A(t)−B2(t)B2(t)
T Π(t)

)

x(t) is exponentially stable.

Proof: See [19].

The next lemma sets up some basic relationships be-

tween the stabilizing solution Π(t) to equation (1) when it

exists and the matrix functions P, Z satisfying equation (8).

Lemma 7 Let A, B1, B2, C be the matrix functions ap-

pearing in (1), P(t) = P(t)T ∈ R
n×n for all t ∈ R

+ and

Z(t) = Z(t)T ∈ R
n×n for all t ∈ R

+ satisfying equation

(8), and a bounded stabilizing Π(t) = Π(t)T ∈ R
n×n for all

t ∈ R
+ satisfying equation (1), and let ĀP be the function

defined in Definition 3. Then

(i) Π(t) ≥ (P(t) + Z(t)) for all t ∈ R
+ if ĀP(t) is expo-

nentially stable,

(ii) ĀP+Z(t) is exponentially stable if Π(t)≥ (P(t)+Z(t))
for all t ∈ R

+.

Proof: The proof can be given by using Lemma 4 and some

existing results and it is omitted due to space limitations.

3. Main Result

In this section, we set up the main theorem by con-

structing two positive semidefinite matrix series Pk(t) and

Zk(t), and we also prove that the series Pk(t) is monotoni-

cally non-decreasing and converges to the unique bounded

symmetric positive semidefinite T−periodic stabilizing so-

lution Π(t) of PRDE (1) if such a solution exists.

Theorem 8 Let A, B1, B2, C be the real matrix functions

appearing in (1). Suppose that (C,A) is uniformly de-

tectable and (A,B2) is uniformly stabilizable, and define

F : M −→ M as in (6). Suppose there exists a bounded

symmetric positive semidefinite T−periodic stabilizing so-

lution Π(t) of PRDE (1).

Then

(I) two square matrix function series Zk(t) and Pk(t) can

be defined for all k ∈ Z≥0 recursively as follows:

P0(t) = 0 ∀t ∈ R
+
, (11)

Ak(t) = A(t)+B1(t)B1(t)
T Pk(t)−B2(t)B2(t)

T Pk(t)

∀t ∈ R
+
, (12)

Zk(t) ≥ 0 is the unique T−periodic stabilizing solu-

tion of

−Żk(t) = Zk(t)Ak(t)+Ak(t)
T Zk(t)−Zk(t)B2(t)B2(t)

T

Zk(t)+F(Pk(t)), (13)

and then

Pk+1(t) = Pk(t)+Zk(t) ∀t ∈ R
+; (14)

(II) the two series Pk(t) and Zk(t) in part (I) have the fol-

lowing properties:

1) (A(t) + B1(t)B1(t)
T Pk(t),B2(t)) is uniformly

stabilizable ∀k ∈ Z≥0,

2) F(Pk+1(t)) = Zk(t)B1(t)B1(t)
T Zk(t) ∀k ∈ Z≥0

∀t ∈ R
+,

3) A(t)+B1(t)B1(t)
T Pk(t)−B2(t)B2(t)

T Pk+1(t) is

exponentially stable ∀k ∈ Z≥0,

4) Π(t) ≥ Pk+1(t) ≥ Pk(t) ≥ 0 ∀k ∈ Z≥0 ∀t ∈ R
+;

(III) the limit

P∞(t) := lim
k→∞

Pk(t)

exists for all t ∈ R
+ with P∞(t) ≥ 0 for all t ∈ R

+.

Furthermore, P∞(t) = Π(t) is the unique T−periodic

stabilizing solution of PRDE (1), which is also posi-

tive semidefinite.

Proof: We construct the series for Zk(t) and Pk(t) to show

results (I) and (II) together by an inductive argument.

Firstly we show that (I) and (II) are true when k = 0. Then,

given k ∈ Z≥0 where (I) and (II) are satisfied, we will show

that (I) and (II) are also satisfied for k +1.

Case k = 0

Since P0(t) = 0 via (11), (II1) is trivially satisfied by

assumption. Since equation (13) reduces to

−Ż0(t) =Z0(t)A(t)+A(t)T Z0(t)−Z0(t)B2(t)B2(t)
T Z0(t)

+C(t)TC(t), (15)

then by Lemma 5 that there exists a unique T−periodic

positive semidefinite and stabilizing solution Z0(t) for

equation (15); hence Z0(t) ≥ 0 for all t ∈ R
+. Since

P1(t) = P0(t) + Z0(t) for all t ∈ R
+ via (14), then we

have F(P1(t)) = Z0(t)B1(t)B1(t)
T Z0(t) for all t ∈ R

+ by

Lemma 4 and (II2) is satisfied. Then by Lemma 5 (A(t)−
B2(t)B2(t)

T Z0(t)) is exponentially stable (since Z0(t) is the

stabilizing solution of (15)), hence (II3) is satisfied on not-

ing that P0(t) = 0 and P1(t) = Z0(t) for all t ∈ R
+. We can

show (II4) is satisfied by the following steps:
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1. Since Z0(t)≥ 0 for all t ∈R
+ and P1(t) = P0(t)+Z0(t)

for all t ∈ R
+, then P1(t) ≥ P0(t) for all t ∈ R

+;

2. Since P0(t) = 0 for all t ∈ R
+, (A(t) +

B1(t)B1(t)
T P0(t) − B2(t)B2(t)

T Π(t)) = (A(t) −
B2(t)B2(t)

T Π(t)) is exponentially stable (see

Lemma 6);

3. Since (A(t)+B1(t)B1(t)
T P0(t)−B2(t)B2(t)

T Π(t)) is

exponentially stable, then Π(t) ≥ (P0(t) + Z0(t)) =
P1(t) for all t ∈ R

+ by Lemma 7.

Inductive step for k ∈ Z≥0

We now consider an arbitrary q ∈ Z≥0, suppose that (I)
and (II) are satisfied for k = q ∈ Z≥0, and show that (I)
and (II) are also satisfied for k = q+1. Since F(Pq+1(t)) =
Zq(t)B1(t)B1(t)

T Zq(t) ≥ 0 for all t ∈ R
+ by inductive as-

sumption (II2), sufficient conditions for the existence of a

unique positive semidefinite T−periodic stabilizing solu-

tion Zq+1(t) to (13) are (see Lemma 5):

(α) (Aq+1,B2) is uniformly stabilizable;

(β ) (BT
1 Zq,Aq+1) is uniformly stabilizable.

Since A(t) + B1(t)B1(t)
T Pq+1(t) = Aq+1(t) +

B2(t)B2(t)
T Pq+1(t) and A(t) + B1(t)B1(t)

T Pq(t) −
B2(t)B2(t)

T Pq+1(t) = Aq+1(t) − B1(t)B1(t)
T Zq(t) for all

t ∈ R
+, conditions (α) and (β ) are clearly equivalent to

the following two conditions respectively:

(α1) (A+B1BT
1 Pq+1,B2) is uniformly stabilizable;

(β1) (BT
1 Zq,A + B1BT

1 Pq − B2BT
2 Pq+1) is uniformly de-

tectable.

We will now show the existence of Zq+1(t) is guaranteed

via the following two points:

1. Since result (II4) holds by inductive assumptions,

we have Π(t) ≥ Pq+1(t) for all t ∈ R
+, and thus

(A(t)+B1(t)B1(t)
T Pq+1(t)−B2(t)B2(t)

T Π(t)) is ex-

ponentially stable by Lemma 7 Part (ii). Hence (A +
B1BT

1 Pq+1,B2) is uniformly stabilizable and thus con-

dition (α1) and result (II1) for k = q+1 are satisfied;

2. Since (A+B1BT
1 Pq −B2BT

2 Pq+1) is exponentially sta-

ble by inductive assumption (II3), condition (β1) is

also satisfied.

Since conditions (α1) and (β1) hold, there exists

a unique positive semidefinite T−periodic stabilizing

solution Zq+1(t) for equation (13) with k = q + 1.

Since Pq+2(t) = Pq+1(t) + Zq+1(t) for all t ∈ R
+, (II2)

is trivially satisfied for k = q + 1 via Lemma 4.

Since Zq+1(t) is the stabilizing solution to (13), it

follows that (Aq+1(t) − B2(t)B2(t)
T Zq+1(t)) = (A(t) +

B1(t)B1(t)
T Pq+1(t)−B2(t)B2(t)

T Pq+2(t)) is exponentially

stable, hence (II3) is satisfied when k = q + 1. Since

Pq+2(t) = Pq+1(t) + Zq+1(t) and Zq+1(t) ≥ 0 for all t ∈
R

+, Pq+2(t) ≥ Pq+1(t) for all t ∈ R
+. Also, since

Π(t) ≥ Pq+1(t) = Pq(t) + Zq(t) for all t ∈ R
+ by induc-

tive assumption (II4) for q ∈ Z≥0, it follows that (A(t) +
B1(t)B1(t)

T Pq+1(t) − B2(t)B2(t)
T Π(t)) is exponentially

stable via Lemma 7 Part (ii) and this in turn gives Π(t) ≥
Pq+2(t) for all t ∈ R

+ via Lemma 7 Part (i). Hence (II4) is

satisfied for k = q+1.

Inductive Conclusion

The case for k = 0 and the inductive step establish that

(I) and (II) are true ∀k ∈ Z≥0, so the proof for (I) and (II)
is completed.

(III) Since the sequence Pk(t) is monotone (i.e. Pk+1(t) ≥
Pk(t)) for all t ∈ R

+ and bounded above by Π(t) (i.e.

Π(t) ≥ Pk(t) for all t ∈ R
+), the sequence converges to a

limit P∞(t) (see pp. 33-34 in [7] for the details), and conver-

gence of the sequence Pk(t) to P∞(t) implies convergence

of Zk(t) to 0 since

Z∞(t) := lim
k→∞

Zk(t) = lim
k→∞

(Pk+1(t)−Pk(t)) = 0.

Then it is clear from (II4) that P∞(t) ≥ 0 for all t ∈ R
+,

from (II2) that P∞(t) must satisfy F(P∞(t)) = 0 for all

t ∈ R
+, and from (II3) that (A(t) + B1(t)B1(t)

T P∞(t)−
B2(t)B2(t)

T P∞(t)) must be exponentially stable. Thus

P∞(t) ≥ 0 is a stabilizing solution to F(P∞(t)) = 0. Since

Π(t) ≥ 0 is a stabilizing solution to F(Π(t)) = 0 and the

stabilizing solution of PRDE (1) is always unique (see

Lemma 6), it is clear that P∞(t) = Π(t) for all t ∈ R
+.

The following corollary gives a condition under which

there does not exist a stabilizing solution Π(t) ≥ 0 to

F(Π(t)) = 0. This is useful for terminating the recursion

in finite iterations.

Corollary 9 Let A,B1,B2,C be the functions appearing

in (1). Suppose (C,A) is uniformly detectable and (A,B2)
is uniformly stabilizable, and let {Pk(t)} and F : M −→ M

be defined as in Theorem 8. If ∃k ∈ Z≥0 such that (A +
B1BT

1 Pk,B2) is not uniformly stabilizable, then there does

not exist a stabilizing solution Π(t) ≥ 0 to F(Π(t)) = 0.

Proof: Restatement of Theorem 8, implication (II1).

4. Algorithm

Let A, B1, B2, C be the real matrix functions appearing

in (1). Suppose (C,A) is uniformly detectable and (A,B2)
is uniformly stabilizable, an iterative algorithm for finding

the bounded symmetric positive semidefinite T−periodic

stabilizing solution of equation (1) is given as follows:
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1. Let P0(t) = 0 and k = 0.

2. Ak(t) = A(t)+B1(t)B1(t)
T Pk(t)−B2(t)B2(t)

T Pk(t).

3. Construct (for example use the MATLAB package

in [10]) the unique real symmetric T−periodic stabi-

lizing solution Zk(t) ≥ 0 which satisfies

−Żk(t) =Zk(t)Ak(t)+Ak(t)
T Zk(t)−Zk(t)B2(t)B2(t)

T Zk(t)

+F(Pk(t)), (16)

where F(Pk(t)) is given in (6).

4. Set Pk+1(t) = Pk(t)+Zk(t).

5. If supt∈R+ ‖Zk(t)‖ < ε where ε is a prescribed toler-

ance, then set Π(t) = Pk+1(t) and exit. Otherwise, go

to step 6.

6. If (A + B1BT
1 Pk+1,B2) is uniformly stabilizable, then

increment k by 1 and go back to step 2. Otherwise,

exit as there does not exist a real bounded symmetric

stabilizing solution Π(t) ≥ 0 satisfying (1).

5. Conclusion

In this paper, an iterative algorithm to compute the sta-

bilizing solution of a PRDE with a sign indefinite quadratic

term is given. By using our proposed algorithm, we can

reduce a PRDE with a sign indefinite quadratic term to a

sequence of PRDEs with a negative semidefinite quadratic

term which can be solved by existing methods; then the sta-

bilizing solution of the original PRDE can be approximated

by the sum of the solutions of these PRDEs with a negative

semidefinite quadratic term. Our algorithm has a quadratic

rate of convergence and a natural game theoretic interpre-

tation; these last two observations are not established here

and will be published elsewhere. In a longer version of this

work, we will also provide simulation data.
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