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Abstract— We present a new methodology for designing low-
gain linear time-invariant (LTI) controllers for semi-global
stabilization of an LTI plant with actuator saturation, that
is based on representation of a proper LTI feedback using
a precompensator plus static-output-feedback architecture. We
also mesh the new design methodology with time-scale notions
to develop lower-order controllers for some plants.

I. INTRODUCTION

Low-gain output feedback stabilization of linear time-
invariant plants subject to actuator saturation has been
achieved using the classical observer–followed–by–state–
feedback controller architecture [1]–[3]. In this note, we
discuss an alternative controller architecture for designing
low-gain output feedback control of linear time-invariant
(LTI) plants with saturating actuators. Specifically, we use a
classical result of Ding and Pearson to show that a dynamic
prefiltering together with static output feedback architecture
can naturally yield a stabilizing low-gain controller under
actuator saturation (Section 2). Subsequently, by using time-
scale notions, we illustrate through a SISO example that
lower-order controllers can be designed, in the case where
the jω-axis eigenvalues of the plant are in fact at the origin
(Section 3).

The reader may wonder what advantage the alternate
architectures provide. Our particular motivation for devel-
oping the alternatives stems from our ongoing efforts on
decentralized controller design, and in particular our effort
to develop a low-gain methodology for decentralized plants
[4]–[8]. In pursuing this goal, we have needed to use several
novel controller structures, in particular ones that utilize pre-
compensators and output derivatives together (see our works
in [6]–[8]). This paper delineates the particular use of the
new controller atchitectures in stabilization under saturation.

What this study of decentralized control makes clear is
that freedoms in the structure of the controller facilitate
design, because they can permit design that fit the structural
limitations of the problem (in this case, decentralization).
The alternatives to low-gain control that we propose here
serve this purpose, because they naturally permit selection
of a desirable controller architecture for the task at hand.
While our primary motivation is in the decentralized controls
arena, we believe that these alternate architectures may also
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be useful in such domains as adaptive control and plant
inversion through lifting [7].

II. LOW-GAIN OUTPUT FEEDBACK CONTROL THROUGH
PRECOMPENSATION

In this section, we demonstrate design of low-gain proper
controllers for semi-global stabilization of LTI plants subject
to actuator saturation, using a novel precompensator-based
architecture. We also briefly discuss the connection of our de-
sign to the traditional observer-based design, and expose that
the design is deeply related to a family of precompensator-
based designs that also permit e.g. zero cancellation and
relocation.

Formally, we demonstrate design of a proper output feed-
back compensator that achieves semi-global stabilization of
the following plant G:

ẋ = Ax + Bσ(u) (1)
y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, σ() is
the standard saturation function, A has eigenvalues in the
closed left-half-plane (CLHP), and the plant is observable
and controllable1. Our design is fundamentally based on 1)
positing a control architecture comprising a pre-compensator
with a zero-free and uniform-rank structure together with a
feedback of the output and its derivatives (see Figure 1),
2) designing the controller using this architecture, and 3)
arguing that the designed controller admits a proper feedback
implementation. This controller design directly builds on
two early results: 1) Ding and Pearson’s result [9] for pole-
placement that is based on a dynamic pre-compensation +
static feedback representation of a proper controller (Figure
1a and 1b); and 2) Lin and Saberi’s effort [1] on stabilization
under saturation using state feedback. For clarity, we cite the
two results in the lemmas before we present our main result.

Lemma 1 is concerned with pre-compensator and feedback
design for pole placement in a general LTI system, i.e. one
of the form

ẋ = Ax + Bu (2)
y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.
Lemma 1: Consider a plant of the form (2) that is con-

trollable and observable, with observability index v. Pre-
compensation through addition of v − 1 integrators to each

1In fact, the methods developed here trivially generalize to the case where
the dynamics are stabilizable and detectable. We consider the observable and
controllable case for the sake of clarity.
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Fig. 1. Compensator artechitectures: a) and b) show the compen-
sator artechitectures presented in Ding and Pearson [9], in particular,
a precompensator-together-with-static feedback viewpoint. (b) is used to
design a proper compensator of (a). c) and d) show the compensator
artechitectures that stabilize a plant under input saturation.

plant input permits computation of the plant’s state x as
a linear function of the plant’s output y, its derivatives up
to y(v) and the pre-compensator’s state. A consequence of
this computation capability is that it permits design of a
proper feedback controller C(s) that places the poles of
the compensated plant at arbitrary locations (closed under
conjugation).
When the matrix C in the system (2) is not invertible, the
classical method to obtain the state information from output
is through observer design. This lemma of Ding and Pearson
gives an alternative design for state estimation and feedback
controller design, that is based on viewing the proper com-
pensator C(s) as a dynamic pre-compensation together with
static feedback (Figure 1a and 1b). Specifically, the method-

ology of design is as follows: first, from the pre-compensator-
based representation (Figure 1b), a computation of the plant
state from the plant output and its derivatives together with
the precompensator state can directly be obtained. Second,
the classical state feedback methodology thus permits us to
compute the static feedback in the pre-compensator-based
representation, so as to place the closed-loop eigenvalues
at desired locations. Third, the equivalence between the
precompensator-based representation and a proper feedback
controller is used to obtain a realization of the feedback
control (Figure 1a). We kindly ask the reader to see [9],
[10], both for the details of the state computation and the
equivalence between the precompensator-based architecture
and the proper feedback controller. In our development, we
broadly replicate the design methodology of Ding and Pear-
son, but use a stable rather than neutral precompensator in
order to obtain a controller that works under input saturation.

Lemma 2 is concerned with using linear state feedback
control to semi-globally stabilize the plant:

ẋ = Ax + Bσ(u), (3)

where A ∈ Rn×n, B ∈ Rn×m, and σ() is the standard
saturation function. Please see Lin and Saberi’s work [1] for
the proof of the lemma.

Lemma 2: Consider a plant of the form (3) that satisfies
two conditions: 1) all the eigenvalues of A are located
in the CLHP; 2) (A, B) is stabilizable. The plant can be
semiglobally stabilized using linear static state feedback.
That is, a parametrized family of compensators u = K(ε)x
can be designed such that, for any specified ball of plant
initial conditions W , there exists ε∗(W) such that, for all
0 < ε ≤ ε∗(W), the compensator K(ε) achieves local
exponential stabilization and contains W in its domain of
attraction.

Now we are ready to present the main result. Specifically,
the following theorem formalizes that a family of proper
controllers can be designed for semi-global stabilization
of G, based on the precompensator-together-with-derivative-
feedback architecture shown in Figure 1. The proof of the
theorem makes clear the design methodology.

Theorem 1: The plant G (Equation 1) can be
asymptotically semi-globally stabilized using proper
feedback compensation of order mv, where v is the
observability index of the plant. Specifically, a parametrized
family of compensators C(s, ε) can be designed (Figure 1c)
to achieve the following: for any specified ball of plant and
compensator initial conditions W , there exists ε∗(W) such
that, for all 0 < ε ≤ ε∗(W), C(s, ε) is locally exponentially
stabilizing and contains W in its domain of attraction. The
design can be achieved by developing a controller of the
architecture shown in Figure 1d—i.e., comprising an m-input
uniform-rank square-invertible zero-free precompensator
P with input up together with a feedback of the form
up = K0(ε)y + K1(ε)y(1) + . . . + Kv−1(ε)y(v−1) (where
K0(ε), . . . , Kv−1(ε) are matrices of dimension m×p)—and
then constructing a proper implementation.
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Proof:
We shall prove that, for the given ball of initial conditions,

a family of proper compensaters C(s, ε) can be designed so
that the actuator does not saturate, and further the closed-
loop system without saturation is exponentially stable. We
first note that, as long as the compensator permits a proper
state-space implementation and the system operates in the
linear regime, the additive contribution of the compensator’s
initial condition on the input can be made arbitrarily small
through pre- and post-scaling of the compensator by a large
gain and its inverse (see Figure 1). Thus, WLOG, we seek
to verify that ||u||∞ < 1 for the ball of initial states and
assuming null compensator initial conditions. To do so, we
will design a compensator of the architecture shown in Figure
1 that achieves the design goals, and then note a proper
implementation.

To do this, let P̃ be any asymptotically stable LTI system
of the following form:

⎡
⎢⎢⎢⎢⎣
y

(1)

P̃

y
(2)

P̃
...

y
(v)

P̃

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Im

. . .
Im

Q̃0 . . . . . . Q̃v−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

yP̃

y
(1)

P̃
...

y
(v−1)

P̃

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣

0
...
0

Im

⎤
⎥⎥⎦ uP̃ , (4)

where uP̃ ∈ Rm and yP̃ ∈ Rm are the input and output to
P̃ . Notice that P̃ is square-invertible, zero-free, and uniform
rank. Let us denote the ∞-norm gain of this plant as q.

Let us first consider pre-compensating the plant G using
P̃ , and then using feedback of the first v derivatives of
the output along with the states of the precompensator
(see Figure 1). That is, upon precompensation with P̃ , we
consider using a feedback controller of the form uP̃ =∑v−1

i=0 Kiy(i) +
∑v−1

i=0 K̃iy
(i)

P̃
, where we have presciently

used the notation Ki for the output-derivative feedbacks
since these will turn out to be the gains in the conpensator
diagrammed in Figure 1d, and where we suppress the de-
pendence on ε in our notation for the sake of clarity. For
convenience, let us define K =

[
K0 . . . Kv−1

]
, K̃ =

[
K̃0 . . . K̃v−1

]
, y(ext) =

⎡
⎢⎢⎢⎣

y
y(1)

...
y(v−1)

⎤
⎥⎥⎥⎦, and yP̃ (ext) =

⎡
⎢⎢⎢⎢⎣

y
y(1)

P̃
...

y(v−1)

P̃

⎤
⎥⎥⎥⎥⎦. In this notation, the controller becomes uP̃ =

[
K K̃

] [
y(ext)
yP̃ (ext)

]
.

We claim that such a controller can be designed, so that 1)
the closed-loop system is asymptotically stable, 2) ||uP̃ ||∞ ≤
ε for the given ball of plant initial conditions and any 0 <
ε ≤ 0.9

q , and 3) the controller gains K and K̃ are O(ε). To
see why, first note that, based on the fact that the relative
degree of the precompensator equals the observability index,

the state of the pre-compensated system x̂ =
[

x
yP̃ (ext)

]
is

a linear function of
[

y(ext)
yP̃ (ext)

]
. In particular, it is automatic

that x =
[

x
yP̃ (ext)

]
= Z

[
y(ext)
yP̃ (ext)

]
, where Z has the form[

Z1 Z2

0 I

]
, see Ding and Pearson’s development [9] for the

method of construction. Next, from Lemma 2, we see that a
low-gain full state-feedback controller K̂(ε) of order ε can
be developed for the precompensated plant, that stabilizes
the plant and also makes the ∞-norm of the input less than
ε for any ε > 0, for the given ball of plant initial conditions.

Thus, by applying the feedback K̂(ε)Z
[

y(ext)
yP̃ (ext)

]
, we can

meet the three desired objectives.
It remains to be shown that the plant input u does not

saturate upon application of this compensation. To do so,
simply note that ||u||∞ ≤ q||uP̃ ||∞ ≤ 0.9.

We can absorb the feedback of yP̃ (ext) into the pre-
compensator, so that we obtain a control scheme comprising
a precompensator P with dynamics

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
P

y
(2)
P

.

.

.

y
(v)
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Im

. .
.

Im
Q̃0 + K̃0 . . . . . . Q̃v−1 + K̃v−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yP

y
(1)
P

.

.

.

y
(v−1)
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0

.

.

.
0

Im

⎤
⎥⎥⎥⎥⎥⎦ uP (5)

together with feedback uP =
∑v−1

i=0 Kiy(i).
Finally, exactly analogously to the design method in [9].

we see automatically that the transfer function from y to u
is in fact proper, and so the design admits a proper state-
space implementation. Through appropriate scaling of the
compensator, we thus see that saturation is avoided for the
ball of plant and compensator initial conditions, while the
dynamics without saturation are exponentially stable. Thus,
semi-global stabilization has been verified.

We have given an alternative low-gain controller design for
semi-global stabilization under saturation. It is worth stress-
ing that the crux of the design is the ability to construct the
plant’s full state using only output derivatives, upon adequate
dynamic precompensation. Let us now briefly conceptualize
the connections of our design to observer-based designs and
zero-cancellation ideas.

Remark: By choosing the Q̃i appropriately, we can set the
gain q of the precompensator P̃ to an arbitrary value. Ap-
propriate selection of the precompensator can potentially fa-
cilitate selection of more numerically-stable feedback gains,
by permitting a larger input prior to the precompensator. We
leave a careful analysis to future work.

A. Conceptual Connection with Observer-Based Designs

We have used a precompensator-plus-static-output-
feedback representation for a class of feedback controllers
to design low-gain stabilizers for LTI plants with actuator
saturation, as an alternative to the traditional observer-
based architecture for design. The proof of Theorem 1
makes clear the essence of our approach for design: by
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viewing the controller as comprising an arbitrary dynamic
precompensator together with static feedback, we see
that the full state of an LTI system can be obtained as
a static mapping of output derivatives together with the
precompensator state variables. This observation yields a
design strategy where a dynamic precompensator’s impulse
response is designed followed by low-gain static state
feedback, with the goal of ensuring that the output of their
cascade is small (for the given ball of initial conditions).
This is a different viewpoint from the traditional one
in limited-actuation output-feedback design [1], [2],
[5], where actuation capabilities are divided between
observation and state-feedback tasks. We believe that this
alternative viewpoint can inform design in such domains as
decentralized control.

III. A COMPENSATOR THAT EXPLOITS TIME-SCALE
STRUCTURE

Our philosophy for low-gain control using a
precomensation-plus-feedback architecture also permits
construction of stabilizers that exploit time-scale structure
in the plant. Specifically, we here demonstrate design of
precompensators for semi-global stabilization of the plant
G, that are generally lower-order than those in Section 2
because they exploit time-scale separation in the plant.
Conceptually, when stabilization under saturation is the
goal, low-gain state feedback only need be provided for
the plant dynamics associated with jw-axis eigenvalues
(see e.g. [5] for use of this idea in observer-based designs).
In the case where these eigenvalues are at the origin, the
corresponding dynamics are in fact the slow dynamics of the
system. Thus, through time-scale separation, we can design
precompensation together with feedback so as to stabilize
the slow dynamics under actuator saturation. The use of
time-scale separation ideas to reduce the pre-compensator’s
order becomes rather intricate, and so we illustrate the
design only for SISO plants for the sake of clarity. We
shall use standard singular-perturbation notions to prove the
result. Here is a formal statement:

Theorem 2: Consider a plant G (as specified in Equation
1) that is SISO, and has q poles at the origin. This plant can
be semi-globally stabilized under actuator saturation using a
proper dynamic compensator of order q.

Proof:
We shall prove that, for any given ball of plant and con-

troller initial conditions, there exists a proper compensator of
order q such that 1) the linear dynamics of the closed-loop
is stable and 2) actuator saturation does not occur.

To this end, let us begin by denoting the the trans-
fer function of the plant’s linear dynamics by G(s). We
note that the transfer function can be written as G(s) =

bmsm+...+b0
sq(sn−q+an−q−1sn−q−1+...+a0)

, where m is the number of
plant zeros. We find it easiest to conceptualize the com-
pensator as comprising a zero-free dynamic precompen-
sator of order q, together with a feedback of the output y
and its first q − 1 derivatives, as shown in Figure 1. We
choose the precompensator to be any stable system of this

form. We denote the precompensator’s transfer function by
Cp(s) = 1

(sq+cq−1sq−1+...+c0)
, and the feedback controller by

K(s) = kq−1s
q−1+. . .+k0. We note the entire compensator

K(s)Cp(s) has order q and is proper.
With a little algebra, we find that the characteristic poly-

nomial of the closed-loop system is p(s) = sq(sn−q +
an−q−1s

n−q−1 + . . . + a0)(sq + cq−1s
q−1 + . . . + c0) +

(bmsm + . . . + b0)(kq−1s
q−1 + . . . + k0). We note that the

polynomial pf (s) = (sn−q +an−q−1s
n−q−1+ . . .+a0)(sq +

cq−1s
q−1 + . . . + c0) has roots in the OLHP, by assumption,

for the chosen stable pre-compensator Cp(s).
Let us now consider a family of multiple derivative con-

trollers, parameterized by a low-gain parameter ε > 0. In
particular, let us consider a controller with ki = a0c0

b0
γiε

q−i,
where sq + γq−1s

q−1 + . . . + γ0 is a stable polynomial with
roots λ1, . . . , λq , and ε is a low-gain parameter.

Next, we will verify that the characteristic polynomial has
n roots that are within O(ε) of the roots of pf (s), while
the remaining q roots are within O(ε2) of ελ1, . . . , ελq . To
prove this, notice first that p(s) = sqpf (s) + (bmsm +
. . .+b0)(γq−1εs

q−1 + . . .+γ0ε
q)a0c0

b0
. Noting that the entire

second term in this expression is O(ε), we see that the roots
of p(s) are O(ε) perturbations of the roots of sqpf (s). Thus,
we see that n roots are within O(ε) of the roots of pf (s),
while the remaining are within O(ε) of the origin.

To continue, let us consider the change of variables s = ε
s .

Substituting into the closed-loop characteristic polynomial,
we find that p(s) = ( ε

s)qpf (s)+εq(bm
εm

sm + . . .+b0)(
γq−1

sq−1 +
. . . + γ0)a0c0

b0
. Scaling the expression by sn+q

a0c0
, we obtain

that the expression p(s) = 0 is the following degree-(n+ q)
polynomial equation in s: εq(γ0s

n+q + . . . + γq−1s
n+1) +

εqsn+r(s) = 0, where r(s) is a polynomial in s of degree no
more that sn+q−1 with each term scaled by a coefficient of
order εq+1 or smaller. Thus, dividing by εq , we find that the
solutions s to the equation are within O(ε) of the solutions to
γ0s

n+q+. . .+γq−1s
n+1+sn = 0. However, the roots of this

equation are precisely 1
λ1

, . . . , 1
λq

, as well as 0 repeated n
times. Noting that s = ε

s , we thus recover that q roots of the
characteristic polynomial are within O(ε2) of ελ1, . . . , ελq.
Thus, we have characterized all the poles of the closed-loop
system. We notice that all the poles are guaranteed to be
within the OLHP.

Now consider the response for a ball of initial conditions
W . As in the proof of Theorem 1, we notice that the
initial state of the precompensator is of no concern in
terms of causing saturation, since the precompensator can
be pre- and post-scaled by an arbitrary positive constant.
Thus, WLOG, let us consider selecting among the family of
compensators, to avoid saturation for a given ball of plant
initial conditions and assuming zero precompensator initial
conditions. Through consideration of the closed-loop dynam-
ics associated with the slow eigenvalues (ελ1, . . . , ελq), we
recover immediately (see the proof of Lemma 1 in [1]) that,
for any specified ball of initial conditions, ||y(i)(t)||∞, is
at most of order 1

εq−1−i for i = 1, . . . , q − 1. Thus, from
the expression for the feedback controller, we find that the
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maximum value of the precompensator input u is O(ε), say
v1ε + O(ε2) for the given ball of plant initial conditions.
Furthermore, the stable precompensator imparts a finite gain,
say v2, so the maximum value of u(t) is v1v2ε + O(ε2).
Thus, for any given ball of initial conditions, we can choose
ε small enough so that actuator saturation does not occur.
Since actuator saturation is avoided and the closed-loop poles
are in the OLHP, stability is proved.

Conceptually, the reduction in the controller order per-
mitted by Theorem 2 is founded on focusing the control
effort on only the slow dynamics of the system. That is, the
controller is designed only to place the eigenvalues at the
origin at desired locations (that are linear with respect to the
low-gain parameter ε); simply using small gains enforces that
the remaining eigenvalues remain far in the OLHP. Thus, one
only needs to add precompensation to permit estimation of
the part of the state associated with the slow dynamics. In
this way, stability can be guaranteed and saturation avoided,
without requiring as much precompensation as would be
needed to estimate the whole state.

We notice that the time-scale-based design is aligned with
the broad philosophy of our alternative low-gain design, in
the sense that it provides freedom in compensator design. In
particular, as with the design in Section 2, we notice that
any stable precompensator can be used for the time-scale-
exploiting design, and further design of feedback component
in the architecture only requires knowlege of the DC gain of
the plant.

IV. EXAMPLE

In this example, we demonstrate the design of a low-gain
controller that semi-globally stabilizes the following plant:

ẋ =

⎡
⎣ 0 1 0

0 0 1
0 0 −3

⎤
⎦x +

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ σ(u) (6)

y =
[

1 1 0
0 0 1

]
x. (7)

Specifically, we show that the compensator of the form
u(t)(v) =

∑v−1
0 Aiu(t)(i) +

∑(v−1)
0 Biy(t)(i), where v is

the observability index of the plant, can stabilize the plant
under saturation. As developed in the article, the design
is achieved by first designing a pre-compensator together
with output feedback control law, and then implementing
the controller in the proper feedback representation above.
We shall use the notation from the above development in our
illustration.

Let us begin with the precompensator-plus-output-
feedback design. To begin, we notice that the observability
index of this system is 2. As per the proof of Theorem 1, let
us thus choose P̃ to be

[
ẏP̃

ÿP̃

]
=

[
0 I
−I −I

] [
yP̃

ẏP̃

]
+

[
0
I

]
uP̃ (8)

Fig. 2. The inputs a) u1 and b) u2 are shown, for ε = 0.5. Each plant
state variable is initialized at 0.99.

The eigenvalues of this system are located at −1/2±√
3/2i,

hence it is clearly asymptotically stable.
Now let us pre-compensate the plant (Equation 6) using

P̃ and design feedback of the form

uP̃ = K̃0(ε)yP̃ + K̃1(ε)ẏP̃ + K0(ε)y + K1(ε)ẏ (9)

To design the feedback, we first recover the state of the
entire system including the pre-compensator from the out-
puts yP̃ , ẏP̃ ,y, ẏ through linear transformation, and then
apply the low-gain state feedback design (see [1]) to shift
eigenvalues of the whole system left by −ε. Doing so, we
straightfowardly obtain K̃0(ε), K̃1(ε), K0(ε), and K1(ε), see
[11] for the expressions.

Hence, the control scheme can be viewed as comprising
a precompensator P :[
ẏP

ÿP

]
=

[
0 I

−I + K̃0(ε) −I + K̃1(ε)

] [
yP

ẏP

]
+

[
0
I

]
uP (10)

and the feedback flow uP = K0(ε)y + K1(ε)ẏ.
Finally, the above procedure leads to the proper feedback

compensator design

u(2)(t) = (−I + K̃0(ε))u(t) + (−I + K̃1(ε))u(1)(t)
+K0(ε)y(t) + K1(ε)y(1)(t) (11)

Now let us show how ε can be chosen. WLOG, let us
assume that the precompensator initial conditions to nil, with
the understanding that scaling of the precompensator (with
appropriately revised proper implementation) permits design
with non-zero compensator initial conditions. In particular,
consider the case where initial conditions of the plant are in
a ball W with infinity-norm radius 1, i.e., where each initial
condition has a magnitude less than or equal to 1. We find
that ε∗(W) ≈ 0.5 through an exhaustive search. Thus ε can
be chosen between 0 and 0.5. Trajectories of the two inputs
are shown for an initial condition at the edge of the ball, for
two different values of ε.
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Fig. 3. The inputs a) u1 and b) u2 are shown, for ε = 0.25. Each plant
state variable is initialized at 0.99.
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