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Abstract— This paper addresses the problem of fol-
lowing a moving target by an autonomous unmanned
vehicle. The target may have higher maneuverability and
a smaller minimum turning radius than the pursuing
vehicle. The goal is to keep the autonomous vehicle as
close as possible to the target all the time. We present a
simple and constructive bearings-only guidance law and
give its mathematically rigorous analysis.

Index Terms— Bearings-only guidance, navigation,
UAV, mobile robots, target tracking

I. INTRODUCTION

Problems of automatic guidance, navigation, control

and coordination of autonomous unmanned vehicles

for performing various tasks in remote or hazardous

environments have attracted a lot of attention in recent

years; see e.g. [12], [13], [2], [14], [3], [11], [9], [10],

[4], [7] and references therein.

This paper addresses the problem of following a

moving target by an autonomous unmanned vehi-

cle. The kinematics of the autonomous vehicle un-

der consideration is described by a standard model

that is applicable to wheeled robots, unmanned aerial

vehicles (UAVs), missiles and underwater vehicles.

The proposed vehicle model satisfies standard design

constraints on speed and maneuverability. On the other

hand, maneuverability of the target that is followed

by this autonomous vehicle is not constrained. In

particular, the target kinematics may be described

by a similar kinematics model but with a smaller

minimum turning radius. Such a problem arises, for

example, when moving ground vehicles are followed

and observed by UAVs in numerous military and

security applications [3], [9], [10]. Providing automatic

following an assigned target on the ground without any

human intervention is recognized as a key element in

obtaining full autonomy for unmanned aerial vehicles

[1]. Another possible example is a wheeled robot

following a smaller and less powerful vehicle. It is

obvious, that in such problems tracking with a zero

steady-state error is impossible, and our goal is to keep

the autonomous vehicle as close as possible in some

sense to the target.
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In this paper, we introduce the concept of a fol-

lowing guidance law with a certain upper time pe-

riod. Furthermore, we present a simple and easily

implementable following guidance law and give its

mathematically rigorous analysis. This guidance law

belongs to the class of so-called bearings-only guid-

ance algorithms. The effectiveness of the proposed

guidance law is also confirmed by illustrative examples

and simulations. Some guidance algorithms for similar

problems were proposed in [3], [10], [9], however, no

mathematically rigorous results were given.

The reminder of the paper is organized as follows.

Section II presents basic definitions and states the

problem under consideration. Section III introduces the

proposed guidance law and gives its mathematically

rigorous analysis. Illustrative examples and computer

simulations are presented in Section IV. Finally, Sec-

tion V gives brief conclusions and outlines directions

for future research.

II. PROBLEM STATEMENT

We consider a target moving in a plane. Let

(xT (t), yT (t)) be the Cartesian coordinates of the

target in this plane. The target motion may be governed

by any law, and the only constraint on the target

motion is that the trajectory (xT (t), yT (t)) is smooth,

and the target velocity is bounded, i.e.:
√

ẋT (t)2 + ẏT (t)2 ≤ VT ∀t ≥ 0 (2.1)

for some given constant VT > 0. Let T [VT ] denote the

class of all maneuvering target trajectories satisfying

(2.1).

The target is pursued by an autonomous vehicle

which is moving in the same plane with a constant

speed VV . Let (xV (t), yV (t)) be the Cartesian coordi-

nates of the vehicle. Also, let θ(t) be the orientation

of this vehicle with respect to the x−axis, that is θ(t)
is measured from the x−axis in the counterclockwise

direction, it takes values in the interval [0, 2π). Then,

the kinematic equations of the vehicle motion are given

by

ẋV (t) = VV cos(θ(t)) ;

ẏV (t) = VV sin(θ(t)) ;

θ̇(t) = ω(t) . (2.2)

Here ω(t) is the control input. The equations (2.2)

can describe the kinematics of tactical missiles, UAVs
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or wheeled mobile robots; see e.g. [15], [2], [5], [6],

[4]. The standard design specifications impose the

following input constraint:

−ωmax ≤ ω(t) ≤ ωmax ∀t ≥ 0 (2.3)

where ωmax > 0 is a given constant. In this case, the

minimum turning radius of the vehicle is

Rmin =
VV

ωmax

. (2.4)

We assume that the information on the target that is

available to the controller of the autonomous vehicle

is the target coordinates (xT (·), yT (·)). Also, the ve-

hicle’s own coordinates and heading are measured.

Hence, we wish to design for the autonomous a

guidance law of the form:

ω(t) = F(xT (τ) |t0, yT (τ) |t0,
xV (τ) |t0, yV (τ) |t0, θ(τ) |t0) (2.5)

Our control goal is to keep the autonomous vehicle

as close as possible to the target. We will use the

following assumption:

VV > VT . (2.6)

It is obvious that if (2.6) does not hold then for

any feedback guidance law (2.5) there exists a target

motion such that

|xT (t) − xV (t)| + |yT (t) − yV (t)| → ∞

as t → ∞.

There is a vast literature on the problem of tracking

for two wheeled mobile robots, see e.g. [2], [8].

Typically, in those papers both the robot-target and

the robot-follower are described by the equations of

the form (2.2), and it is assumed that the speed of the

follower is greater than the speed of the target, and

the minimum turning radius of the follower is smaller

than the minimum turning radius of the follower. It

is known that under these assumptions, the robot-

follower can asymptotically track the robot-target, that

is

|xT (t) − xF (t)| → 0, |yT (t) − yF (t)| → 0,

|θT (t) − θF (t)| → 0

as t → ∞. Those results are not applicable to the

problem that is under consideration in this paper. First,

we consider the very general class of targets (2.1)

which includes targets that are more maneuvering than

the vehicle. In particular, a very important subclass

consists of targets that are described by the equations

of the form (2.2) but might have a minimum turning

radius rmin such that rmin < Rmin. Such a situation

arises, for example, in an important practical problem

of surveillance of ground targets by UAVs because the

minimum turning radius of a typical UAV is much

larger than the minimum turning radius of a ground

Fig. 1. Vehicle encircles the target along a minimum radius circle

vehicle. It is obvious, that in such situations, the

condition

‖xT (t) − xF (t)‖ → 0, ‖yT (t) − yF (t)‖ → 0

is not achievable with any guidance law (2.5). More-

over, a standard UAV design requirement requires that

the speed of UAVs cannot be below some minimum

level VV , known as stall speed, at any time. A typical

tactical UAV may have the stall speed around 80 km/h,

hence, when the ground target moves with a speed

below 80 km/h, the asymptotic tracking is obviously

impossible. Also, it is quite common for ground targets

to be steady for some periods of time. To state our

control goal, we first introduce a number of definitions.

Definition 2.1: Let t∗ ≥ 0 be some time. The time

t∗ is said to be a time of encircling for a guidance law

of the form (2.5) and a target trajectory from the class

T [VT ] defined by (2.1) if at this time the vehicle is

moving along a minimum radius circle and the target

lies either inside this circle (see Fig. 1) or on this circle.

Definition 2.2: Let P > 0 be a constant. A

guidance law of the form (2.5) is said to be fol-

lowing with the upper time period P if for any

target trajectory from the class T [VT ] defined by

(2.1) and any target and vehicle initial conditions

(xT (0), yT (0), xV (0), yV (0), θ(0)) there exists a se-

quence of times of encircling {ti}
∞

i=1 where ti+1 >

ti ≥ 0 such that

ti+1 − ti ≤ P ∀i = 1, 2, 3, . . . . (2.7)

Problem Statement: Our problem is to find a con-

structive and easily implementable in real time fol-

lowing guidance law for the autonomous vehicle (2.2)

and the class of target trajectories T [VT ] defined by

(2.1) .

III. THE MAIN RESULT

In this section, we propose and study a follow-

ing guidance law. Let v1 and v2 be non-zero two-

dimensional vectors, and let α be the angle between

the vectors v1 and v2 measured from v1 in the coun-

terclockwise direction, 0 ≤ α < 2π. Now introduce

the following function:

f(v1, v2) =







0 α = 0
1 0 < α ≤ π

−1 π < α < 2π

(3.8)
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Fig. 2.

see Fig. 2. Also, introduce two-dimensional vectors

d(t) and sV (t) by

d(t) :=

(

xT (t) − xV (t)
yT (t) − yV (t)

)

,

sV (t) :=

(

VV cos(θ(t))
VV sin(θ(t))

)

. (3.9)

We will consider the following guidance law of the

form (2.5):

ω(t) =

{

ωmaxf(sV (t), d(t)) d(t) 6= 0
0 d(t) = 0

(3.10)

Here d(·) and sV (·) are defined by (3.9). It is obvious

that the guidance law (3.8), (3.9), (3.10) satisfies the

assumption (2.3).

Remark 3.1: The guidance law (3.8), (3.9), (3.10) is

defined by the angle α(t) between the vehicle velocity

vector sV (t) and the vector from the vehicle to the

target, and the guidance law does not depend on the

distance to the target. Therefore, the guidance law

(3.8), (3.10) belongs to the class of so-called bearings-

only guidance laws.

Now we are in a position to present the main result of

this paper.

Theorem 3.1: Consider the autonomous vehicle de-

scribed by the equations (2.2) and the class of target

trajectories satisfying (2.1). Suppose that the assump-

tion (2.6) holds. Then, the guidance law defined by

(3.8), (3.9), (3.10) is a following guidance law with

the upper period

P =
2πRmin

VV − VT

where Rmin is the minimum turning radius of the

autonomous vehicle defined by (2.4).

Proof of Theorem 3.1 The proof of the theorem

is based on properties of the Lyapunov function

W (xT , yT , xV , yV , θ) defined as follows. Let d, sV

and f(sV , d) be defined by (3.8) and (3.9). If d = 0
then W (xT , yT , xV , yV , θ) := 0. If d 6= 0 then

the function f(d, sV ) is defined. If f(sV , d) = 0
then W (xT , yT , xV , yV , θ) := ‖d‖ where ‖ · ‖ is

the standard Euclidean norm. In other words, in this

case W (xT , yT , xV , yV , θ) is the distance between

Fig. 3.

Fig. 4.

(xT , yT ) and (xV , yV ). If f(sV , d) = 1 then con-

sider the minimum radius circle Cl crossing the point

(xV , yV ) with the tangent vector sV and located ”to

the left” from the straight line L defined by (xT , yT )
and the vector sV (see Fig. 3). Since f(sV , d) =
1, Cl and (xT , yT ) belong to the same half-plane

defined by L. If (xT , yT ) lies either inside Cl or on

Cl, then W (xT , yT , xV , yV , θ) := 0. Otherwise, if

(xT , yT ) lies outside Cl, consider two straight lines

from (xT , yT ) that are tangent to Cl. Let O1 and

O2 be the intersection points between these straight

lines and the circle Cl whereas O1 will be the clos-

est of them to (xV , yV ) if we go along Cl in the

counterclockwise direction (see Fig. 3). Furthermore,

let |(xV , yV ), O1| be the length of the corresponding

arc of the circle Cl, and ‖O1, (xT , yT )‖ be the stan-

dard Euclidean distance between O1 and (xT , yT ).
Then W (xT , yT , xV , yV , θ) := |(xV , yV ), O1| +
‖O1, (xT , yT )‖. Analogously, if f(sV , d) = −1 then

W (xT , yT , xV , yV , θ) is defined by the same proce-

dure with the circle Cl replaced by the circle the

minimum radius circle Cr crossing the point (xV , yV )
with the tangent vector sV and located ”to the right”

from the straight line L defined by (xT , yT ) and the

vector sV , and with the counterclockwise direction

replaced by the clockwise direction (see Fig. 4). Let

t2 > t1 be some times, and consider the guidance law

(3.8), (3.9), (3.10) and a target satisfying the constraint

(2.1). Assume that for any t ∈ [t1, t2] the inequality

W (xT (t), yT (t), xV (t), yV (t), θ(t)) > 0 holds. Then,

we prove that

W (xT (t2), yT (t2), xV (t2), yV (t2), θ(t2)) ≤
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Fig. 5.

W (xT (t1), yT (t1), xV (t1), yV (t1), θ(t1)) −

(t2 − t1)(VV − VT ). (3.11)

Indeed, it is obviously enough to prove (3.11) for t1, t2
such that (t2 − t1) is small enough. By our definition

of the Lyapunov function W (xT , yT , xV , yV , θ),

W (xT (t1), yT (t1), xV (t1), yV (t1), θ(t1)) =

|(xV (t1), yV (t2)), O
1
1 | + ‖O1

1, (xT (t1), yT (t1))‖,

W (xT (t2), yT (t2), xV (t2), yV (t2), θ(t2)) =

|(xV (t2), yV (t2)), O
2
1 | + ‖O2

1, (xT (t2), yT (t2))‖,(3.12)

and if (t2 − t1) is small enough, the point

(xV (t2), yV (t2)) lies on the same minimum radius

circle with (xV (t1), yV (t1)) and close enough to it.

Two following two cases are possible.

Case 1. The point O2
1 belongs to the arc

((xV (t2), yV (t2)), O
1
1), see Fig. 5. Here O1

1

and O2
1 are the point O1 in the definition

of W (xT (t1), yT (t1), xV (t1), yV (t1), θ(t1))
and W (xT (t2), yT (t2), xV (t2), yV (t2), θ(t2))
correspondingly. In this case,

‖O2
1, (xT (t2), yT (t2))‖ ≤ |O2

1 , O
1
1 | +

‖O1
1, (xT (t1), yT (t1))‖ +

‖(xT (t1), yT (t1)), (xT (t2), yT (t2))‖. (3.13)

Furthermore, it follows from (2.1) that

‖(xT (t1), yT (t1)), (xT (t2), yT (t2))‖ ≤ (t2 − t1)VT .(3.14)

This and (3.13) imply that

‖O2
1 , (xT (t2), yT (t2))‖ ≤ |O2

1 , O1
1 | +

‖O1
1 , (xT (t1), yT (t1))‖ + (t2 − t1)VT . (3.15)

Moreover,

|(xV (t1), yV (t1)), (xV (t2), yV (t2))| = (t2 − t1)VV .(3.16)

Now (3.11) follows from (3.12), (3.15) and (3.16).

Case 2. The point O2
1 is outside the arc

((xV (t2), yV (t2)), O
1
1), see Fig. 6. In this case, the set with

the boundary consisting of the lines (O1
1 , (xT (t1), yT (t1))),

((xT (t1), yT (t1)), O
2
1) and the arc (O2

1 , O1
1) is convex.

Furthermore, this convex set lies inside the triangle
(O1

1 , (xT (t2), yT (t2)), (xT (t1), yT (t1))) which is another
convex set. This implies that

Fig. 6.

‖O2
1 , (xT (t2), yT (t2))‖ + |O1

1 , O2
1 | ≤

‖O1
1 , (xT (t1), yT (t1))‖ +

‖(xT (t1), yT (t1)), (xT (t2), yT (t2))‖. (3.17)

Furthermore, (3.17) and (3.14) imply that

‖O2
1 , (xV (t2), yV (t2))‖ + |O1

1 , O2
1 | ≤

‖O1
1 , (xT (t1), yT (t1))‖ + (t2 − t1)VT . (3.18)

Now (3.11) follows from (3.15), (3.18) and (3.16).
We have proved the inequality (3.11). Now (3.11) obvi-

ously implies that for any t1 > 0 there exists a time t2 > t1
such that

W (xT (t2), yT (t2), xV (t2), yV (t2), θ(t2))) = 0.

Now let t1 be a time such that

W (xT (t1), yT (t1), xV (t1), yV (t1), θ(t1)) = 0

and

W (xT (t+1 ), yT (t+1 ), xV (t+1 ), yV (t+1 ), θ(t+1 )) > 0

where
ν(t+) := lim

ǫ>0,ǫ→0
ν(t + ǫ)

for any function ν(t). It is obvious by the definition of the
Lyapunov function W that in this case

W (xT (t+1 ), yT (t+1 ), xV (t+1 ), yV (t+1 ), θ(t+1 ))
≤ 2πRmin. (3.19)

Now it follows from (3.11) and (3.19) that
W (xT (t2), yT (t2), xV (t2), yV (t2), θ(t2))) = 0 for
some t2 > t1 such that

(t2 − t1) ≤
2πRmin

VV − VT

.

The statement of the theorem obviously follows from this.
This completes the proof of Theorem 3.1.

IV. ILLUSTRATIVE EXAMPLES

In this section, we present several examples of computer
simulations for the proposed guidance law (3.8), (3.9) and
(3.10). Simulation parameters of the vehicle and the target
are shown in Table I. In the first experiment, we consider
a target moving along a straight line with a constant speed
VT = 15 m/s. Fig. (7) shows the simulation result for the
guidance law (3.8), (3.9) and (3.10). The vehicle approaches
the target and starts circling with its minimum radius circle,

Rmin = VV

ωmax
= 80m. The second and third experi-

ments are performed to ascertain the ability of the proposed
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TABLE I

SIMULATION PARAMETERS 1

Parameter Value Comments

x(0) (0, 0, 0) Vehicle’s initial posture
xT (0) (−400m, 0) target’s initial position
Vv 40 m/s Vehicle’s linear velocity
ωmax 0.5 rad/s Vehicle’s maximum angular velocity
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Fig. 7. Experiment 1

guidance strategy to work at different states of the target
maneuvering. The vehicle is assigned to follow a ground
target with a smaller turning radius than that of the vehicle.
In the second scenario, the ground target moves along a curve
shown in Fig. (7). Fig. (8) demonstrates the trajectory of the
vehicle following a target which moves along a course with

the turning radius RT = VT

ωT max

= 15m. Similar to the

previous cases, the vehicle approaches the target and follows
it in a circular trajectory with the vehicle’s minimum turning
radius.

V. BRIEF CONCLUSION AND FUTURE RESEARCH

The concept of a following guidance law with a certain
upper period has been introduced for the problem of fol-
lowing a maneuvering target by an autonomous vehicle. We
have proposed a simple and easily implementable following
guidance law and derived its upper period. An interesting
and challenging problem for future research is to design
a following guidance strategy with the smallest possible
upper period. It is expected that the importance of this and
similar problems will be increasing with the growing use of
autonomous unmanned vehicles in surveillance applications.

−700 −600 −500 −400 −300 −200 −100 0

−600

−500

−400

−300

−200

−100

0

m

m

 

 

UAV trajectory

Target trajectory

Fig. 8. Experiment 2
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Fig. 9. Experiment 3
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