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Abstract— For discrete event systems, we study the problem
of predicting failures prior to their occurrence, also referred to
as prognosis, in the inference-based decentralized framework
where multiple decision-makers interact to come up with the
global prognostic decisions. Due to the limited sensing capabili-
ties, each decision-maker is subjected to ambiguities during the
process of decision-making. In our prior work [7] we made an
observation that such ambiguities are of differing gradations
and presented a framework for inferencing over the local
control decisions of varying ambiguity levels to arrive at a global
control decision. Here we present an inference-based decentral-
ized decision-making framework for prognosis of failures: For
each event-trace executed by a system being monitored, each
local prognoser issues its own prognostic decision (failure is or
is not inevitable, or unsure) tagged with a certain ambiguity
level (zero being the minimum) that is computed by assessing
the ambiguities of the self and the others. A global prognostic
decision is taken to be the “winning” local prognostic decision,
i.e., one with the minimum ambiguity level. We characterize
the class of systems for which there are no missed detections
(all failures can be prognosed prior to their occurrence) and no
false alarms (all prognostic decisions are correct) by introducing
the notion of N -inference-prognosability, where the parameter
N represents the maximum ambiguity level of any winning
prognostic decision. An algorithm for verifying N -inference-
prognosability is presented. We also show that the notion of
coprognosability introduced in [8] is the same as 0-inference-
prognosability, and as the parameter N is increased, a larger
class of prognosable systems is obtained.

I. INTRODUCTION

Discrete event systems (DESs) are systems with discrete

states that evolve in response to certain discrete changes

(called events). Many physical systems such as manufac-

turing systems, communication protocols, reactive software,

digital hardware can be modeled as DESs at a certain level of

abstraction. The behaviors of a DES consist of all sequences

of events (called traces) it can execute starting from its

initial state. A system specification is used to identify the

set of traces that are desirable. Execution of a trace that

violates a specification constitutes a failure. The task of

failure prognosis is to predict the occurrence of an impending

failure prior to its occurrence. This helps provide a time

for reacting to an impending failure so that appropriate

corrective actions may be initiated prior to its occurrence.

Note the contrast with the task of diagnosis which requires

the detection of a failure after its occurrence.

The problem of prediction of failures prior to their occur-

rence is an active area of research (see for example [12] and

references there in). In the context of DESs, the prediction
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of a failure based on a statistical analysis was considered in

[1]. Due to the statistical nature of the analysis, the issuance

of a prediction alert only means a high confidence in a future

occurrence of a failure (but not full confidence). To capture

the inevitability of a future failure, the notion of indicator

traces (which indicate that a failure is guaranteed to occur)

was introduced in [4], where their bounded delay detection

was also studied. The notion of indicator traces was later

used in [5] to formalize the diagnosis of repeated failures in

the setting of temporal logic.

[3] formulated the notion of predictability (or prognosabil-

ity) of failures: Each failure trace must possess a nonfailure

prefix such that any indistinguishable trace has the property

that a failure is inevitable within a uniformly bounded

number of steps. Note while the existence of a uniform bound

for the delay of failure detection is essential for defining

diagnosability (otherwise a diagnoser may end up waiting

for an arbitrarily long period before diagnosing a failure),

the existence of a uniform bound within which a failure

is guaranteed to occur is not essential for defining prog-

nosability. This observation led us to weaken the definition

of prognosability in [8]: Each failure trace must possess a

nonfailure prefix such that each indistinguishable trace is an

indicator trace. (Recall an indicator trace is one for which

a failure is inevitable.) Our work in [8] also provided a test

for prognosability that is polynomial in the size of a plant

and a nonfailure specification, improving the test given in

[3] which is based on an observer construction and is of

exponential complexity. In [8], we also introduced the notion

of reaction bound for prognosis as the earliest time beyond a

prognostic decision when a failure can occur, and presented

a polynomial complexity algorithm for computing it. A

polynomial complexity algorithm for an online prognosis of

failures was also presented in [8].

In the setting of [8], a local prognoser issues a prognostic

decision only when it is unambiguous about it. Thus, the

framework does not involve any inferencing among the

local prognosers over their ambiguities, which can be of

different levels. It is known through earlier works reported

in [9], [10], [13] that adding inferencing can aid the pro-

cess of decentralized decision-making. While these prior

inferencing-based approaches relied on a “single-level” of

inferencing, a framework allowing multi-level inferencing

was later presented in [7] (for control), [6] (for diagnosis

of failures), and [11] (for diagnosis of nonfailures).

In this paper we introduce the inference-based decentral-

ized decision-making framework for the prognosis of fail-

ures. The framework supports multiple levels of inferencing

over the ambiguities of the self and the others. Each local
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prognoser uses its observations of the system behavior to

come up with its prognostic decision together with a grade

or level of ambiguity for that decision. A minimum (level-

zero) ambiguity decision is issued by a local prognoser when

following all traces, producing the same observation as the

one received, either a failure is inevitable (so a positive

decision is issued) or it is not inevitable (so a negative

decision is issued). In general a local prognoser will issue a

positive (resp., negative) decision with an ambiguity level N
following a certain observation if for each ambiguous trace,

there exists another local prognoser that can issue a negative

(resp., positive) decision with an ambiguity level at most

N − 1. Note in certain situations it is possible that a local

prognostic decision is neither “positive” nor “negative”, but

“unsure”. The global prognostic decision is taken to be the

same as a local prognostic decision whose ambiguity level

is the minimum. (Such a local decision can be considered to

be a “winning” local decision.)

We characterize the class of systems for which there are

no missed detections (all failures can be prognosed prior to

their occurrence) and no false alarms (all prognostic deci-

sions are correct) by introducing the notion of N -inference-

prognosability, where the parameter N represents the maxi-

mum ambiguity level of any winning prognostic decision.

An algorithm for verifying N -inference-prognosability is

presented. We also show that as the parameter N is increased,

a larger class of prognosable systems is obtained. Further

the notion of coprognosability introduced in [8] is the same

as 0-inference-prognosability, implying that even the class

of 1-inference-prognosable systems subsumes the class of

coprognosable systems introduced in [8].

II. NOTATION AND PRELIMINARIES

We consider a DES modeled by a nondeterministic au-

tomaton G = (X, Σ, α, X0, Xm), where X is the set of

states, Σ is the finite set of events, a function α : X ×
(Σ ∪ {ε}) → 2X is the transition function, X0 ⊆ X is the

set of initial states, and Xm ⊆ X is the set of marked or

accepting states. G is said to be deterministic if the transition

function can be written as a partial function α : X×Σ → X
and |X0| = 1. Let Σ∗ be the set of all finite sequences

of events including the empty sequence ε. Elements of Σ∗

are called traces, and subsets of Σ∗ are called languages.

For each trace s ∈ Σ∗, |s| denotes its length. For any

m ∈ N , where N denotes the set of all nonnegative integers,

Σ≥m := {s ∈ Σ∗ | |s| ≥ m} denotes the set of all traces

with m or more events. The transition function α can be

generalized to α : 2X × Σ∗ → 2X in a natural way. The

generated and marked (or accepted) languages of G are

respectively defined as, L(G) := {s ∈ Σ∗| α(X0, s) �= ∅},

and Lm(G) := {s ∈ Σ∗| α(X0, s) ∩ Xm �= ∅}.

For a trace s ∈ Σ∗, the set of all prefixes of s is denoted by

pr(s). The notation t ≤ s denotes that t is a prefix of s. For

a language K , the set of all prefixes of traces in K is defined

as pr(K) =
⋃

s∈K
pr(s). K is said to be (prefix-)closed if

K = pr(K). A language K is said to be deadlock-free if

for any s ∈ pr(K), there exists a trace t �= ε such that

st ∈ pr(K); otherwise s ∈ K is called a deadlocking trace

of K . The language K after s ∈ Σ∗, denoted by K\s, is

defined as K\s := {t ∈ Σ∗ | st ∈ K}.

Let I = {1, 2, . . . , n} denote the index set of local

prognosers that perform the task of prognosis without shar-

ing their observations. We assume that the limited sensing

capabilities of the ith local prognoser Pi (i ∈ I) can be

represented as the local observation mask, Mi : Σ ∪ {ε} →
∆i ∪ {ε}, where ∆i is the set of locally observed symbols,

and Mi(ε) = ε. The map Mi is generalized to Mi : Σ∗ →
∆∗

i
and Mi : 2Σ

∗

→ 2∆
∗

i in a natural way.

(∀s ∈ Σ∗, σ ∈ Σ, H ⊆ Σ∗)

Mi(ǫ) := ǫ; Mi(sσ) = Mi(s)Mi(σ);

Mi(H) = {Mi(s) | s ∈ H}.

III. INFERENCE-BASED DECENTRALIZED PROGNOSIS

FRAMEWORK

Let L �= ∅ be a closed language representing the generated

language of a plant, and K ⊆ L be a nonempty closed

language representing a nonfailure specification language.

Traces in L−K are considered failure traces and the task of

prognosis is to predict the execution of any trace in L−K .

Without loss of generality, the plant language L can be

taken to be deadlock-free. Otherwise we can extend each

deadlocking trace by an unbounded sequence of a newly

added event that is unobservable to all prognosers. This will

make the language deadlock-free without altering any of the

prognosability properties since the newly added event does

not produce any observation to any of the prognosers.

We introduce the notion of an inference-based decentral-

ized prognoser that consists of a set of local prognosers and

a central decision fusion unit. Let the set C = {0, 1, φ} be

the set of prognostic decisions, where “1” means a failure

is guaranteed to occur in future, “0” means a failure is not

guaranteed to occur in future, and “φ” represents an “unsure”

decision. Each inference-based local prognoser Pi is defined

as a map Pi : Mi(K) → C ×N , where for each s ∈ K ,

Pi(Mi(s)) = (ci(Mi(s)), ni(Mi(s))).

Here ci(Mi(s)) ∈ C denotes the prognostic decision of Pi

following an observation Mi(s) ∈ Mi(K), and ni(Mi(s)) ∈
N denotes the ambiguity level of the prognostic decision

of Pi. Let n(s) be the minimum ambiguity level of local

decisions, i.e.,

n(s) := min
i∈I

ni(Mi(s)).

The decentralized prognoser {Pi}i∈I that consists of local

prognosers Pi (i ∈ I) issues global prognostic decisions.

Formally, {Pi}i∈I is defined as a map {Pi}i∈I : K → C.

For each s ∈ K , the prognostic decision {Pi}i∈I(s) is given

as follows:

{Pi}i∈I(s) =























0, if ∀i ∈ I s.t. ni(Mi(s)) = n(s) :
ci(Mi(s)) = 0

1, if ∀i ∈ I s.t. ni(Mi(s)) = n(s) :
ci(Mi(s)) = 1

φ, otherwise.
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In other words, the global prognostic decision is taken to

be the same as a local prognostic decision possessing the

minimum level of ambiguity.

A useful notion of a decentralized prognoser is the largest

ambiguity level N ∈ N of any sure decision, and the

preservation of surety of a decision with a decrease in the

ambiguity level (if a certain ambiguity level decision is

“sure”, then all lower ambiguity level decisions are also

“sure”). We refer to such a prognoser to be “N -inferring”.

Definition 1: A decentralized prognoser {Pi}i∈I : K →
C is said to be N -inferring if the following two conditions

hold:

1) (∀s ∈ K) {Pi}i∈I(s) �= φ ⇒ n(s) ≤ N ,

2) (∀s, s′ ∈ K) [{Pi}i∈I(s) �= φ ∧ n(s′) ≤ n(s)] ⇒
{Pi}i∈I(s

′) �= φ.

IV. EXISTENCE/SYNTHESIS OF INFERENCE-BASED

DECENTRALIZED PROGNOSERS

We introduce the following notions of boundary traces (for

which a failure in a next step is guaranteed), indicator traces

(for which a failure in future is guaranteed), and nonindicator

traces (that are not indicator traces).

Definition 2: Given a pair (L, K) of closed languages

with K ⊆ L, we define the set of

• boundary traces of K with respect to L as, ∂L(K) :=
{s ∈ K | {s}Σ ∩ (L − K) �= ∅};

• indicator traces of K with respect to L as, ℑL(K) :=
{s ∈ K | ∃m ∈ N : L\s ∩ Σ≥m ⊆ [L − K]\s};

• nonindicator traces of K with respect to L as,

ΥL(K) := K −ℑL(K).
Note ΥL(K) = {s ∈ K | ∀m ∈ N , ∃t ∈ L\s ∩ Σ≥m : st ∈
K}.

Let N ∈ N be a given nonnegative integer. In this section

we introduce the notion of N -inference-prognosability as a

necessary and sufficient condition for the existence of an

N -inferring prognoser with the following properties.

• There are no missed detections, i.e., each failure is

prognosed prior to its occurrence:

(∀s ∈ L − K)(∃t ∈ pr(s) ∩ K)(∀u ∈ [pr(s) ∩ K]\t)

{Pi}i∈I(tu) = 1. (1)

• There are no false alarms, i.e., an incorrect prognostic

decision is never issued:

(∀s ∈ ℑL(K)) {Pi}i∈I(s) �= 0; (2)

(∀s ∈ ΥL(K)) {Pi}i∈I(s) �= 1. (3)

(1) requires the existence of a nonfailure prefix of each

failure trace where a prognostic decision “1” is issued which

is continued to be held in future (i.e., the prognoser does

not change its mind), whereas (2) (resp., (3)) requires that

for each indicator (resp., nonindicator) trace a prognostic

decision “0” (resp., “1”) is not issued.

In order to introduce the notion of N -inference-

prognosability, we inductively define a monotonically de-

creasing sequence {(ℑk, Υk)}0≤k≤N+1 of language pairs as

follows:

• Base step:

ℑ0 := ℑL(K), Υ0 := ΥL(K).

• Induction step:

ℑk+1 := ℑk ∩

(

⋂

i∈I

M−1
i

Mi(Υk)

)

,

Υk+1 := Υk ∩

(

⋂

i∈I

M−1
i

Mi(ℑk)

)

.

The computation of the sequence {(ℑk, Υk)}0≤k≤N+1

of language pairs starts with ℑ0 = ℑL(K), the set of

indicator traces, and Υ0 = ΥL(K), the set of nonindicator

traces. Note that ℑk+1 is a sublanguage of ℑk consisting of

those traces for which for each i ∈ I there exists an Mi-

indistinguishable trace in Υk. As a result when the plant

executes a trace in ℑk+1 all the local prognosers will be

ambiguous as to whether the executed trace is in ℑk+1 or

in Υk. The sublanguage Υk+1 of Υk can be understood

in a similar fashion. The language ℑk+1 has the following

intuitive interpretation: It consists of those traces for which

the prognostic decision “1” is required but all prognosers

remain ambiguous about it even after k-levels of inferencing.

A dual interpretation exists for the language Υk+1.

Using the sequence {(ℑk, Υk)}0≤k≤N of language pairs,

a local prognoser computes its prognostic decision and

associates a level of ambiguity with such a decision as

follows. For each s ∈ K , the ith local prognoser Pi computes

nℑ
i (Mi(s)) := min{k| [Mi(s) /∈ Mi(Υk)]

∨[k = N + 1]}, (4)

nΥ
i (Mi(s)) := min{k| [Mi(s) /∈ Mi(ℑk)]

∨[k = N + 1]}. (5)

Note that nℑ
i (Mi(s)) and nΥ

i (Mi(s)) are bounded above by

N + 1. Here nℑ
i
(Mi(s)) represents the ambiguity level of a

failure prognostic decision “contemplated” by the ith prog-

noser following the observation Mi(s). (When nℑ
i (Mi(s)) <

N + 1, it denotes the minimum index k such that the

observation Mi(s) does not match with the observations of

any of the traces in Υk.) Similarly, the notation nΥ
i
(Mi(s))

represents the ambiguity level of a nonfailure prognostic

decision “contemplated” by the ith prognoser following the

observation Mi(s). Which of the two contemplated decisions

is ultimately issued is decided by comparing the two ambi-

guity levels, nℑ
i (Mi(s)) vs. nΥ

i (Mi(s)), and favoring the

smaller one. This is formalized next.

For a local prognoser Pi : Mi(K) → C × N , its prog-

nostic decision and ambiguity level following an observation

Mi(s) ∈ Mi(K), i.e., Pi(Mi(s)) = (ci(Mi(s)), ni(Mi(s))),
is determined as follows:

ci(Mi(s)) =







0, if nΥ
i
(Mi(s)) < nℑ

i
(Mi(s))

1, if nℑ
i
(Mi(s)) < nΥ

i
(Mi(s))

φ, if nℑ
i (Mi(s)) = nΥ

i (Mi(s))
(6)

and

ni(Mi(s)) = min{nℑ
i (Mi(s)), n

Υ
i (Mi(s))}. (7)
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Fig. 1. Automata G and R of Example 1.

Example 1: We consider a plant modeled by the finite

automaton G shown in Fig. 1(a). Let |I| = 2,

M1(σ) =

{

σ, if σ ∈ {a, a′, c, e}
ε, otherwise,

M2(σ) =

{

σ, if σ ∈ {b, b′, c, e}
ε, otherwise.

Also, let K ⊆ L be a language generated by the finite

automaton R shown in Fig. 1(b).

We synthesize the decentralized prognoser using (4)–(7)

for N = 2. We first need to compute the language pairs

{(ℑk, Υk)}0≤k≤2. Initially, we have

ℑ0 = ac + bc + e(c + ab′(ε + c) + ba′(ε + c)),

Υ0 = pr(cd∗ + ab′cd∗ + ba′cd∗ + e(acd∗ + bcd∗)).

Since

M1(ℑ0) = ac + c + e(c + a(ε + c) + a′(ε + c)),

M2(ℑ0) = c + bc + e(c + b′(ε + c) + b(ε + c)),

M1(Υ0) = pr(c + ac + a′c + e(ac + c)),

M2(Υ0) = pr(c + b′c + bc + e(c + bc)),

we have

ℑ1 = ℑ0 ∩

(

⋂

i∈I

M−1
i

Mi(Υ0)

)

= ac + bc + ec,

Υ1 = Υ0 ∩

(

⋂

i∈I

M−1
i

Mi(ℑ0)

)

= cd∗ + e(acd∗ + bcd∗).

Also, since

M1(ℑ1) = ac + c + ec,

M2(ℑ1) = c + bc + ec,

M1(Υ1) = c + e(ac + c),

M2(Υ1) = c + e(c + bc),

TABLE I

LOCAL DECISIONS OF P1 AND P2 .

t ∈ M1(K) nℑ
1

(t) nΥ

1
(t) c1(t) n1(t)

ε 1 0 0 0

c 3 2 0 2

a 1 0 0 0

ac 1 2 1 1

a′ 1 0 0 0

a′c 1 0 0 0

e 1 0 0 0

ec 2 3 1 2

ea 1 1 φ 1

eac 2 1 0 1

ea′ 0 1 1 0

ea′c 0 1 1 0

t ∈ M2(K) nℑ
2

(t) nΥ

2
(t) c2(t) n2(t)

ε 1 0 0 0

c 3 2 0 2

b 1 0 0 0

bc 1 2 1 1

b′ 1 0 0 0

b′c 1 0 0 0

e 1 0 0 0

ec 2 3 1 2

eb 1 1 φ 1

ebc 2 1 0 1

eb′ 0 1 1 0

eb′c 0 1 1 0

we have

ℑ2 = ℑ1 ∩

(

⋂

i∈I

M−1
i

Mi(Υ1)

)

= ec,

Υ2 = Υ1 ∩

(

⋂

i∈I

M−1
i

Mi(ℑ1)

)

= cd∗.

The local decisions of P1 and P2 computed using (4)–(7)

are shown in Table I. For example, P1(ac) is computed as

follows. Since ac ∈ M1(Υ0) − M1(Υ1), we have by (4)

that nℑ
1 (ac) = 1. Also, since ac ∈ M1(ℑ1) − M1(ℑ2),

we have by (5) that nΥ
1 (ac) = 2. It follows that 1 =

nℑ
1 (ac) < nΥ

1 (ac) = 2. By (6) and (7), we have c1(ac) = 1
and n1(ac) = 1, which implies that P1 issues a prognostic

decision “1” following the observation ac ∈ M1(K) with

the ambiguity level 1.

Then, the global prognostic decisions of the decentralized

prognoser {Pi}i∈I are computed as shown in Table II. For

example, {Pi}i∈I(ac) is computed as follows. Since 1 =
n1(M1(ac)) < n2(M2(ac)) = 2 and c1(M1(ac)) = 1, we

have n(ac) = 1 and {Pi}i∈I(ac) = 1.

The following lemma shows that the decentralized prog-

noser given by (4)–(7) is an N -inferring one with no false

alarms.

Lemma 1: [6] Consider the decentralized prognoser

{Pi}i∈I : K → C consisting of local prognosers Pi :
Mi(K) → C × N (i ∈ I), and defined by (4)–(7). Then,

{Pi}i∈I is an N -inferring decentralized prognoser satisfying

(2) and (3).

We introduce the notion of N -inference-prognosability

and show that the decentralized prognoser also has no missed

detections under the decentralized prognosis performed using
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TABLE II

GLOBAL DECISIONS OF {Pi}i∈I .

s ∈ K n(s) {Pi}i∈I (s)

ε 0 0

cd∗ 2 0

a, b 0 0

ac, bc 1 1

ab′, ba′ 0 0

ab′cd∗, ba′cd∗ 0 0

e 0 0

ec 2 1

ea, eb 0 0

eacd∗, ebcd∗ 1 0

eab′, eba′ 0 1

eab′c, eba′c 0 1

the local and global prognosers given by (4)–(7) under

this condition. In fact this condition serves as a necessary

and sufficient condition for the existence of an N -inferring

decentralized prognoser with no missed detections and false

alarms.

Definition 3: The pair (L, K) of closed languages with

K ⊆ L is said to be N -inference-prognosable if ∂L(K) ⊆
ℑL(K) −ℑN+1.

The following lemma states that if (L, K) is N -inference-

prognosable, then there are no missed detections under the

decentralized prognosis performed using the local and global

prognosers given by (4)–(7).

Lemma 2: Consider the decentralized prognoser {Pi}i∈I :
K → C consisting of local prognosers Pi : Mi(K) → C×N
(i ∈ I), and defined by (4)–(7). If the pair (L, K) of closed

languages is N -inference-prognosable, then (1) holds.

The following theorem establishes the main result of the

paper.

Theorem 1: Given a pair (L, K) of closed languages with

K ⊆ L, there exists an N -inferring decentralized prognoser

{Pi}i∈I : K → C satisfying (1), (2), and (3) if and only if

(L, K) is N -inference-prognosable.

In the following we show that the system of Exam-

ple 1 is 2-inference-prognosable but it is not 1-inference-

prognosable.

Example 2: We revisit the setting of Example 1. We have

∂L(K) = ac + bc + e(c + ab′c + ba′c),

ℑL(K) = ac + bc + e(c + ab′(ε + c) + ba′(ε + c)),

ℑ2 = ec,

Υ2 = cd∗.

It follows that ∂L(K) �⊆ ℑL(K) − ℑ2, which implies that

(L, K) is not 1-inference-prognosable. Since

M1(ℑ2) = M2(ℑ2) = ec,

M1(Υ2) = M2(Υ2) = c,

we have

ℑ3 = ℑ2 ∩

(

⋂

i∈I

M−1
i

Mi(Υ2)

)

= ∅,

Υ3 = Υ2 ∩

(

⋂

i∈I

M−1
i

Mi(ℑ2)

)

= ∅.

We have ∂L(K) ⊆ ℑL(K)−ℑ3, which implies that (L, K)
is 2-inference-prognosable.

By Table II, we can verify that {Pi}i∈I is a 2-inferring

decentralized prognoser satisfying (1), (2), and (3).

Remark 1: We discuss how to verify N -inference-

prognosability of a pair (L, K) of closed regular languages

with K ⊆ L. The verification of N -inference-prognosability

requires checking emptiness of the languages ∂L(K)∩(Σ∗−
ℑL(K)) and ∂L(K) ∩ ℑN+1. Since checking emptiness of

a language can be done linearly in the size of an acceptor

of the language, we only discuss the computation of certain

acceptors for ∂L(K) ∩ (Σ∗ −ℑL(K)) and ∂L(K) ∩ ℑN+1.

A point of our construction is to establish that the step of

“determinization” (which is exponential in the size of the

automaton being determinized) is never required.

Let G = (X, Σ, α, X0, X) be the finite plant model with

L(G) = Lm(G) = L, and R = (Y, Σ, β, Y0, Y ) be a

finite deterministic generator of the nonfailure specification

language, i.e., L(R) = Lm(R) = K . For computing

∂L(K), we construct the synchronous composition G‖R :=
(Z, Σ, γ, Z0, Z) of G and R, where Z = X × Y , Z0 =
X0×Y0, and γ : Z× (Σ∪{ε}) → 2Z is defined in the usual

manner. Then L(G‖R) = L(G) ∩ L(R) = K holds. Let

Z∂ := {(x, y) ∈ Z | ∃σ ∈ Σ : α(x, σ) �= ∅, β(y, σ) = ∅}.

Then, for the finite automaton (G‖R)∂ := (Z, Σ, γ, Z0, Z
∂),

we have Lm((G‖R)∂) = ∂L(K).
Next we discuss the computation of ℑk and Υk (k ≥ 0)

inductively over k. For the base step (k = 0), let ℑ(Y ) ⊆ Y
be the set of indicator states of R from which no cycle

in R can be reached [8]. Also let Υ(Y ) ⊆ Y be the

set of nonindicator states of R from which a cycle in R
can be reached [8]. The identification of ℑ(Y ) and Υ(Y )
can be performed in complexity linear in the size of R.

Then the languages ℑL(K)(= ℑ0) and ΥL(K)(= Υ0) are

computed by replacing the marked state set Y of R with

ℑ(Y ) and Υ(Y ), respectively. Note to check the emptiness

of ∂L(K) ∩ (Σ∗ − ℑL(K)), the complement Σ∗ − ℑL(K)
of ℑL(K) can be computed in the usual manner, and the

intersection ∂L(K)∩ (Σ∗ −ℑL(K)) can be computed using

the synchronous composition operator.

We discussed above the computation of ℑ0 and Υ0 (the

base step). For the induction step, let Rℑk
and RΥk

be finite

acceptors of ℑk and Υk, respectively. For each i ∈ I , a finite

acceptor of M−1
i

Mi(ℑk) is constructed as follows: Replace

each transition that exists in Rℑk
by a set of transitions

on all Mi-indistinguishable events (including ε). Note that

since an ε-transition is implicitly defined at each state as a

self-loop, unobservable events will get added as self-loops

at each state of Rℑk
. Then, the resulting, possibly nondeter-

ministic, automaton accepts M−1
i

Mi(ℑk). It should be noted

that this resulting automaton, denoted by M−1
i

Mi(Rℑk
),

has the same state set as Rℑk
. In the same way, we

can construct a finite automaton accepting M−1
i

Mi(Υk),
denoted by M−1

i
Mi(RΥk

). Then, the synchronous compo-
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sitions Rℑk+1
:= Rℑk

‖(‖i∈IM
−1
i

Mi(RΥk
)) and RΥk+1

:=
RΥk

‖(‖i∈IM
−1
i

Mi(Rℑk
)) accept ℑk+1 and Υk+1, respec-

tively. Let Yℑk
and YΥk

be the state sets of Rℑk
and

RΥk
, respectively. Then the size of the state sets of Rℑk+1

and RΥk+1
are O(|Yℑk

| · |YΥk
||I|) and O(|YΥk

| · |Yℑk
||I|),

respectively. Once an acceptor for ℑN+1 has been computed

(using the above inductive procedure), the emptiness of

∂L(K) ∩ ℑN+1 can be checked by a reachability analysis

over (G‖R)∂‖RℑN+1
.

V. PROPERTIES OF N -INFERENCE-PROGNOSABILITY

In this section, we study properties of N -inference-

prognosable systems. First, we show that the class of co-

prognosable systems studied in [8] is equivalent to the class

of 0-inference-prognosable systems.

Definition 4: [8] A pair (L, K) of closed languages with

K ⊆ L is said to be coprognosable if

(∀s ∈ L − K)(∃t ∈ pr(s) ∩ K)(∃i ∈ I)(Ei(t) ⊆ ℑL(K)),

where Ei(t) := M−1
i

Mi(t) ∩ K .

Theorem 2: A pair (L, K) of closed languages with K ⊆
L is 0-inference-prognosable if and only if it is coprognos-

able.

We also establish that the classes of N -inference-

prognosable systems form a monotonically increasing

sequence as a function of N . Since the sequence

{(ℑk, Υk)}k≥0 of language pairs is monotonically decreas-

ing, the following result is easily obtained.

Theorem 3: For any N ∈ N , if a pair (L, K) of closed

languages with K ⊆ L is N -inference-prognosable, then it

is (N + 1)-inference-prognosable.

The converse relation of Theorem 3 need not hold. For ex-

ample, the system of Example 1 is 2-inference-prognosable,

but not 1-inference-prognosable.

VI. CONCLUSION

It is desirable to have systems in which it is possible

to prognose (predict) failures prior to their occurrence. We

studied the prognosis of failures in a decentralized framework

where multiple prognosers, based on their observations of the

executed behavior, infer the inevitability of an impending

failure. The decentralized set of prognosers use a certain

inferencing mechanism, that was originally introduced in

the setting of control [7] and also applied in the context

of diagnosis [6], [11], to resolve the ambiguities of the self

and the others. Each local prognostic decision (of whether

or not failure is inevitable) is tagged with an ambiguity

level (zero being the minimum), and the global prognostic

decision is taken to be the winning local one (i.e., one with

the minimum level of ambiguity). We introduced the notion

of N -inference-prognosability to characterize the class of

systems for which any failure can be predicted prior to its

occurrence in a manner that the maximum ambiguity level

of a winning decision does not exceed N . An algorithm for

verifying N -inference-prognosability is presented. We also

showed that a larger N corresponds to a larger class of prog-

nosable systems. Further the class of 0-inference-prognosable

systems coincides with the class of coprognosable systems

presented in [8], implying that even the class of 1-inference-

prognosable systems subsumes the class of coprognosable

ones studied in [8].

The inferencing-based decentralized decision-making

framework used here can also be cast in the modal logic

framework of [2], where the underlying Kripke structure will

have as “possible worlds”, the set of all nonfailure specifica-

tion traces, and an i-labeled edge will exist between a pair

of possible worlds if and only if they are indistinguishable to

the site-i prognoser. Note, unlike the setting of [2] where the

number of possible worlds is taken to be finite, the number

of possible worlds in our setting can be infinite since the

nonfailure specification language can contain infinitely many

traces, and each such trace constitutes one possible world.

Thus the existing results of modal logic cannot directly be

applied, and the results presented in the paper can be viewed

to supplement the existing results of modal logic.
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