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Abstract— We introduce an anomaly detection framework for
wireless sensor networks able to detect statistically significant
temporal or spatial changes in either the underlying process the
sensor network is monitoring or the network operation itself.
We consider a series of Markov models to characterize the
behavior of the sensor network, including tree-indexed Markov
chains which can model its spatial structure. Large deviations
techniques are used to compare the distribution of the Markov
model estimated from past anomaly-free traces with its most
recent empirical measure. We develop optimal decision rules
for each corresponding Markov model to identify anomalies in
recent activity. Simulation results validate the effectiveness of
the proposed anomaly detection algorithms.

I. INTRODUCTION

Wireless Sensor NETworks (WSNETs) are networks of

small devices that communicate wirelessly and are used to

monitor (and control) a physical system. WSNET nodes can

be powered by batteries and have limited processing and stor-

age abilities. Coupled with appropriate software (protocols)

they can self-configure to form a network which collects data

of interest but also can push commands to specific nodes

that may control actuators. Emerging applications include

industrial and building automation, homeland defense, asset

and personnel tracking [1] and patient monitoring.

In monitoring applications one interesting question that

arises is that of detecting abnormalities (or anomalies) in

the various quantities that are being measured. Often, simple

threshold rules (e.g., a variable exceeding a certain value)

may suffice to that end. There exist however cases where

deviations from normal behavior are subtle and result in

changes in the spatial or temporal distribution of measure-

ments. Such changes are much harder to detect, yet their

detection is important as they may be precursors (either in

time of space) of “bigger” abnormalities. Homeland defense

(e.g., air quality monitoring) applications offer examples of

this type of anomalies.

The security of the network itself is also an important

consideration. Due the the use of wireless communications,

and the power constrained limited capabilities of the nodes

which precludes the use of sophisticated security measures,

WSNETs are extremely vulnerable to a wide range of

adversarial attacks, exploits, viruses, and other information

* Research partially supported by the NSF under grants DMI-0330171,
ECS-0426453, CNS-0435312, EFRI-0735974, and by the DOE under grant
DE-FG52-06NA27490.

† Corresponding author. Center for Information & Systems Eng., Dept. of
Electrical and Computer Eng., and Division of Systems Eng., Boston Univer-
sity, 15 St. Mary’s St., Brookline, MA 02446, e-mail: yannisp@bu.edu,
url: http://ionia.bu.edu/.

‡ Center for Information & Systems Eng., Boston University, e-mail:
yinchen@bu.edu.

security vulnerabilities [2]. Following a computer systems

approach, most of the literature has only considered protocol

design as a way to address these security concerns.

Our work considers anomaly detection in general enough

terms that can accommodate both the monitoring and net-

work security related problems outlined above. We define

the notion of a “state” associated with a node of the network

and assume that its evolution is Markovian. We consider a

series of models that can model the evolution of the state

both in time and in space, the latter using the connectivity

model of the network. We pay particular attention to trees

which is a common connectivity structure for WSNETs.

The key technical tool we use is large deviations for

Markov chains developed in [3], [4]. Large deviations theory

provides a powerful way of handling rare events and their as-

sociated probabilities. Assuming that we know the transition

probability matrix of the Markov chain of interest, which

can be estimated from past anomaly-free observations, we

study the large deviations of the empirical measure obtained

from recent observations. If the empirical measure takes

very unlikely values this points to a statistical anomaly.

Borrowing from hypothesis testing techniques, for each of

the Markov models we consider we develop appropriate

anomaly detection tests and establish that they are optimal

in a generalized Neyman-Pearson sense. Related techniques

have also been applied in [5] to detect anomalies in Internet

traffic. We refer the interested reader to [5] for an extensive

literature review on anomaly detection.

The rest of this paper is organized as follows. In Sec. II, we

consider a simple Markov chain model of a multi-hop sensor

network and develop the requisite anomaly detection test. In

Sec. III and IV, we adopt a tree-indexed Markov model,

survey large deviations results for its empirical measure,

and develop the corresponding anomaly detection test. We

present simulation results for each model in Sec. V, and

draw conclusions in Sec. VI.

II. A SIMPLE MARKOV CHAIN MODEL

We start with a simple Markov chain to model the propa-

gation of events of interest in the WSNET. For the purposes

of this section we assume that the WSNET is connected

and every node can send a message to every other node,

potentially via other nodes acting as relays.

Let the WSNET have n nodes. Nodes can assume one

of two states: 0 and 1. When node i observes an event of

interest it switches from state 0 to state 1 and stays in that

state for as long as the conditions that constitute the event

persist. We assume that only a single node can be in state 1
at any given point in time.
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To motivate the above setting, consider a WSNET tracking

an object as it moves through the coverage area of the

network. One situation that can be modeled in this way

is the routing of packets through the network. Assume that

the network handles very light traffic, so that only a single

packet is present at any given point in time. Any node that

receives the packet switches its state from 0 to 1 and switches

back to 0 once it transmits the packet to another node. In

applications where a WSNET is used to monitor events of

interest (temperature, radioactivity, etc.), time between two

consecutive events (measurements) is in general much longer

than the time required for the relevant information to be

received by the gateway.

Let now the state of the WSNET be the index of the

node which is in state 1 and assume that state transitions

satisfy the Markov property. We use q0(j|i) to denote the

transition probability from WSNET state i to j and denote

by Q0 the corresponding n×n transition probability matrix,

namely, Q0 = (q0(j|i))
n
i,j=1. Assume that Q0 is irreducible

and aperiodic with a unique stationary distribution π0 =
(π0

1 , . . . , π0
n), where π0

i is equal to the steady-state fraction

of time the Markov chain is in state i.
We are interested in detecting changes in the steady-

state distribution of the Markov chain; as we explained in

the introduction these may correspond to anomalies. For

the routing example above these anomalies may indicate

some change in the “typical” routing pattern of the network

which may be caused by natural (e.g., some wireless link

is down) or adversarial reasons (e.g., interference or some

other attack to the network). The transition probability matrix

Q0 can be easily estimated from a long sequence of past

observations. Given a recent trace (i.e., sequence) of states

Yt = (Y1, Y2, . . . , Yt) the Markov chain visits we seek to

detect whether this sequence has been generated from the law

Q0 or from some other (unknown) law Q1. The problem at

hand is a composite hypothesis testing problem as we seek

to differentiate between a known law Q0 (hypothesis H0)

and an unknown law Q1 (hypothesis H1).

Letting Σ = {1, 2, . . . , n}, a decision test can be defined

as follows.

Definition 1

A decision test S is a sequence of maps S t : Σt → {0, 1},

with the interpretation that when Yt = (y1, . . . , yt) is

observed, then H0 is accepted (H1 rejected) if S (Yt) = 0,

and H1 is accepted (H0 rejected) if S (Yt) = 1.

The performance of a decision test S is characterized by

the type I and type II, respectively, error probabilities

αt , PQ0
[S t rejects H0], βt , PQ1

[S t rejects H1],

where PQi
denotes a probability evaluated under law Qi. To

decide whether a hypothesis test is optimal, the following

generalized Neyman-Pearson criterion for finite alphabets

was suggested by Hoeffding [6].

Definition 2

A test S is optimal (for a given η > 0) if, among all tests

that satisfy

lim sup
t→∞

1

t
log αt ≤ −η, (1)

the test S maximizes the asymptotic exponent of the type

II error probability, i.e., uniformly over all possible possible

laws Q1, − lim supt→∞

1
t
log βt is maximal.

In the case where Yi are i.i.d., Hoeffding [6] has proposed

a simple test that compares the relative entropy between the

empirical measure (or type) of Yt and the anomaly-free law

to a threshold η in order to decide between H0 and H1.

Zeitouni et al. [7] have shown that a natural generalization

of Hoeffding’s test to the case of general Markov sources is

optimal according to the criterion in Definition 2.

Specifically, define µY
t (i, j) as the empirical joint 2-step

occurrence of the system states

µY
t (i, j) =

1

t

t
∑

k=1

1(Yk−1 = i, Yk = j), i, j = 1, . . . , n,

where 1{·} denotes the indicator function. µY
t (i, j) can

be interpreted as the fraction of time the system makes

transitions from state i to state j. We will write µ
Y
t for the

vector of all µY
t (i, j) and we will use the same convention

of denoting vectors with bold letters for the rest of the paper.

The marginals of µ
Y
t are denoted by the vectors µ

Y
L,t and

µ
Y
R,t with elements

µY
L,t(i) =

n
∑

j=1

µY
t (i, j), µY

R,t(i) =

n
∑

j=1

µY
t (j, i).

Without loss of generality, we assume that they are identical

(then µ
Y
t is called shift invariant). The empirical transition

probability from state i to state j is defined as

µY
t (j|i) =

µY
t (i, j)

µY
L,t(i)

,

with the convention that 0/0 equals 0.

Define µ
Y
L,t ⊗ Q0 as the vector with elements

µY
L,t(i)q0(j|i), i, j = 1, . . . , n, and consider the divergence

(relative entropy) between µ
Y
t and µ

Y
L,t ⊗ Q0:

D(µY
t ||µY

L,t ⊗ Q0) =

n
∑

i,j=1

µY
t (i, j) log

µY
t (i, j)

µY
L,t(i)q0(j|i)

=

n
∑

i=1

µY
L,t(i)D(µY

t (·|i)||q0(·|i)). (2)

Zeitouni et al. [7] establish the following result.

Theorem II.1 ([7]) The decision test

S
∗

1 (Yt) =

{

0, if D(µY
t ||µY

L,t ⊗ Q0) < η,

1, otherwise,

is optimal according to the generalized Neyman-Pearson

criterion of Definition 2.

This theorem provides an optimal anomaly detection test

for the simple Markov chain model we considered in this

section. The threshold η is user-defined and represents the

user’s tolerance for false alarms. In particular, the false alarm

probability αt is bounded above by e−tη for large enough t
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and the user can set η = −(log ǫ)/t to ensure that the false

alarm probability stays below ǫ. The proposed test is optimal

in the sense that it maximizes the exponential (with t) decay

rate of the misdetection probability βt among all tests with

a false alarm probability bounded above by ǫ.

III. A TREE-INDEXED MARKOV CHAIN MODEL:

EDGE-WISE

Next we consider a more general Markov model that

accounts for the connectivity structure of the WSNET. In

particular, we consider tree-indexed Markov chains since in

many WSNET implementations (for example the popular

TinyOS platform) the multihop network formed by the sensor

nodes adopts a tree structure. The tree will be formed

randomly according to an arbitrary probability law we will

specify. Generalizing the model of the previous section, every

node of the WSNET (i.e., the tree) can be in one out of a

finite number of states. We will assume, though, that the state

of the children of a node is selected conditional on the state

of the parent according to some Markov chain indexed by

the nodes of the tree.

A model of this type can model the propagation of events

up or down the tree. In a monitoring application, suppose

that a WSNET node i measures a vector xi of quantities in

its environment and passes information on xi to all nodes j
communicating with it. Consider a fixed time interval [0, t]
and define the state of a node depending on the average value

of xi in [0, t] and the corresponding values xj of nodes that

communicate with i. As a result, the state of the children is

influenced by the state of the parent and vice versa. Similarly,

one could also model information flow in the network by

defining the state of a node to be the average flow through

the node during [0, t]. Given the way we generate the random

tree, each node keeps track of the types of its children, and

the calculation of empirical measure can be distributively

done following the leaf-root path and propagating the lower-

level information recursively to the gateway.

As in Section II, we are interested in identifying statistical

anomalies (i.e., distributional changes) in the Markov model

representing the WSNET. In the monitoring application such

anomalies can point to changes in the underlying processes

the WSNET is monitoring. Similarly, in the case when the

state is defined based on the flow through the node anomalies

identify disruption in the routing of the WSNET and may

correspond to attacks.

The technical development of an optimal anomaly detec-

tion test is based on large deviations results for Markov

chains indexed by random trees derived [4]. We will consider

trees that are conditioned to have exactly n nodes and we

will take the large deviations limit as n → ∞.

A. Large deviations results: edge-wise case

We start with the simpler case where the number of

children for each node of the tree is drawn independently

from an arbitrary discrete probability distribution and only

the state of the children depends on the state of the parent.

In Section IV we will consider the more general case where

both the number of children and the corresponding states

depend on the state of the parent.

The tree-indexed Markov chain studied in this section is

generated as follows. Suppose that T = (ρ,V ,E ) is any

finite tree with root ρ and sets of vertices (nodes) and edges

denoted by V and E , respectively. Each node of the tree

is in a state selected from a finite set X . We use X(i) to

denote the state of node i. Without loss of generality we can

let X = {1, . . . ,m}. We are given a discrete probability

law ν on X and a Markovian m×m transition probability

matrix Q0 = (q0(b|a))m
a,b=1. We first construct the random

tree starting from the root ρ and selecting the number of

children N(v) for each node v ∈ V independently of every

other node and according to a discrete probability distribution

p(·) = P[N(v) = ·] such that 0 < p(0) < 1. We then assign

a state to each node by first drawing the state X(ρ) of the

root according to ν and then selecting the state X(v) of

every node v conditional on the state of its parent by using

the transition probability matrix Q0.

Consider now a finite instance of the random tree and

a realization (sample path) X of the tree-indexed Markov

chain. Define the empirical measure of X as the m2-

dimensional vector LX with elements

LX(a, b) =
1

|E |

∑

(v1,v2)∈E

1{X(v1) = a,X(v2) = b}, (3)

for each a, b ∈ X , where (v1, v2) denotes an edge of the

tree between parent v1 and child v2.

Dembo et al. [4] establish a large deviations result for LX

for trees conditioned to have n nodes. The result assumes that

the tree is critical, that is, the mean number of children of

each node is 1. As we will see this assumption can be easily

relaxed. In preparation for the result, for each probability law

µ on X × X (an m2-dimensional vector) we let µ1 and

µ2 denote the two marginals so that

µ1(a) =

m
∑

b=1

µ(a, b), µ2(a) =

m
∑

b=1

µ(b, a).

We also let Ip(·) denote the convex dual of the log moment

generating function of the offspring law p(·), namely,

Ip(x) = sup
λ∈R

{

λx − log

(

∞
∑

n=0

p(n)eλn

)}

.

It is well known (Cramér’s theorem, see [3]) that Ip(·) is the

large deviations rate function associated with the law p(·).
Finally, as in Section II, define µ1 ⊗ Q0 as the vector with

elements µ1(a)q0(b|a), a, b = 1, . . . ,m, and let << denote

pointwise strict inequality between vectors.

Theorem III.1 ([4]) Suppose that T is a tree with offspring

law p(·) such that 0 < p(0) < 1 − p(1),
∑

l lp(l) = 1 and

l−1 log p(l) → −∞. Let X be a Markov chain indexed by

T with an arbitrary initial distribution and an irreducible

Markovian matrix Q0. Then for n → ∞, the empirical pair

measure LX , conditioned on {|V | = n} satisfies a large

deviation principle in the space of probability vectors on
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X × X with speed n and the convex, good rate function

I(µ) =















D(µ||µ1 ⊗ Q0) +
∑m

a=1 µ2(a)Ip

(

µ1(a)
µ2(a)

)

if µ1 << µ2

∞ otherwise.

(4)

In (4) D(·||·) is the relative entropy between two probability

vectors defined as in (2). Note that the first term in the

rate function above characterizes large deviations of the

assignment of states to the nodes of the tree while the second

term is related to the structure of the tree.

The following lemma is useful in relaxing the assumption

that the tree is critical. We have omitted the proof for brevity.

Lemma III.2 Suppose that
∑

l lp(l) 6= 1. The distribution of

T conditioned on {|V | = n} under the offspring law p(·)
does not change when we we use the offspring law pθ(l) =
p(l)/(

∑

j p(j)eθj) for any value θ ∈ R.

We can use the above result to handle non-critical trees. In

particular, we twist the offspring law by θ as described in the

statement of Lemma III.2. Note that with 0 < p(0) < 1−p(1)
there exists a unique θ∗ such that

∑

l lpθ∗(l) = 1. Hence,

Theorem III.1 holds under pθ∗(·) which implies that the large

deviations rate function for non-critical trees is given by (4)

when we replace Ip(·) with Ipθ∗
(·).

B. Anomaly detection test: edge-wise case

Next we will develop an anomaly detection test and show

that it is optimal in a generalized Neyman-Pearson sense.

Given a long sequence of realizations Xk of a tree-

index Markov chain defined on a tree T with n nodes we

can approximate the offspring law p(·) and the transition

probability matrix Q0 by taking the average frequencies of

the corresponding samples. In particular, if LXk denotes

the empirical measure of the kth realization (cf. (3)) then

( 1
k

∑k
l=1 LXl(a, b))/( 1

k

∑k
l=1

∑m
b=1 LXl(a, b)) converges to

q0(b|a) with probability one (w.p.1) as k → ∞. Alternatively,

one can compute the frequencies on a single large tree as

n → ∞.

Assuming that we have (or have estimated) p(·) and Q0 we

are interested in a test that determines whether a particular

realization (sample) X is typical or not. That is, as in Sec. II

we want to differentiate between p(·) and Q0 (hypothesis

H0) and any other unknown law (hypothesis H1).

Let us denote by Ln
X the empirical measure of X derived

as in (3), where the superscript n indicates that the tree

has n nodes. Using similar terminology and notation as

in Section II the following theorem provides the test and

establishes its optimality; the proof is omitted in the interest

of space.

Theorem III.3 The decision test S
∗,n
2 (X)

S
∗,n
2 (X) =

{

0, if I(Ln
X) < η,

1, otherwise.

is optimal according to the generalized Neyman-Pearson

criterion.

IV. TREE-INDEXED MARKOV CHAIN MODEL:

LEVEL-WISE

In this section we consider the most general case where

both the number of children and their states depend on the

state of the parent.

A. Large deviations results: level-wise case

As in the previous Section we let X = {1, . . . ,m} denote

the set of states for every node of the tree. We construct a

random tree T = (ρ,V ,E ) as follows. We first select the

state X(ρ) of the root according to some probability law ν

on X . The offspring of any node v ∈ V is characterized by

an element of X ∗ = ∪∞

n=0{n}×X n. Specifically, for each

node v we denote by

C(v) = (N(v),X1(v), . . . ,XN(v)(v)) ∈ X
∗ (5)

the number and the types of the children of v, ordered from

left to right. For each node v with state X(v) = a, C(v) is

drawn independently of everything else but conditional on

the state a according to a Markovian transition kernel Q0

from X to X ∗. We write

Q0{(n, x1, . . . , xn)|a} =

P[(N,X1, ...,XN ) = (n, x1, . . . , xn)|a]

for the probability of having n children with states

x1, . . . , xn, respectively, conditional on the state a of the

parent.

Consider now a realization X of a tree generated as

described above. We define the empirical measure MX of

X as a measure on X × X ∗ so that

MX(a, c) =
1

|V |

∑

v∈V

1{X(v) = a,C(v) = c}. (6)

Dembo et al. [4] establish a large deviations result for MX

for trees that are conditioned to have n nodes. To state the

result we need to introduce some additional notation.

For every c = (n, a1, . . . , an) ∈ X ∗ and a ∈ X , denote

the multiplicity of the symbol a in c by

m(a, c) =
n
∑

i=1

1{ai = a},

and define the matrix A ∈ R
m2

with (nonnegative) elements

A(a, b) =
∑

c∈X ∗

Q{c|b}m(a, c), for a, b ∈ X .

Namely, A(a, b) is expected number of type a children of

a type b node. Let G (A) denote the directed graph with m
nodes associated with the matrix A so that there is a directed

link from node a to node b if and only if A(a, b) > 0. We

will say that A is weakly irreducible if we can partition X

into a recurrent and transient subset, denoted by Xr and Xt,

respectively, so that (i) for any node a of G (A) there is a

directed path to any node b of G (A) if b ∈ Xr, and (ii)
there is no directed path from any node a of G (A) to a

node b ∈ Xt of G (A) if either a = b or a ∈ Xr. We will

call the tree-indexed Markov chain X weakly irreducible if

the corresponding A is weakly irreducible and the number

of transient children, given by
∑

a∈Xt
m(a, c) is uniformly

bounded under the law Q0. We will also say that X is critical
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if the largest eigenvalue of A (which is real and positive due

to irreducibility) is equal to 1.

For every probability measure σ on X ×X ∗, let σ1 the

X -marginal of σ, i.e., σ1(a) =
∑

c∈X ∗ σ(a, c). We call σ

shift-invariant if

σ1(a) =
∑

(b,c)∈X ×X ∗

m(a, c)σ(b, c), ∀a ∈ X .

Using similar notation as in Sec. III we denote by σ1 ⊗Q0

the law specified by (σ1⊗Q0)(a, c) = σ1(a)Q0(c|a) for all

a ∈ X and c ∈ X ∗. The following theorem from [4] states

the large deviations result for the empirical measure MX .

Theorem IV.1 ([4]) Suppose that X is a weakly irreducible

and critical tree-indexed Markov chain X with an offspring

Q0 law whose exponential moments are all finite, condi-

tioned to have exactly n vertices. Then, for n → ∞, the

empirical measure MX satisfies a large deviation principle

in the space of probability measures in X ×X ∗ with speed

n and the convex, good rate function

J(σ) =

{

D(σ|σ1 ⊗ Q0), if σ is shift-invariant,

∞, otherwise.
(7)

B. Anomaly detection test: level-wise case

Next we develop an anomaly detection test and show that

it is optimal in a generalized Neyman-Pearson sense.

As we described in Sec. III-B, given a long sequence

of realizations of the tree-indexed Markov chain we can

approximate the law Q0 by computing the corresponding

frequencies. Assuming that we have (or have estimated)

Q0 we are interested in a test that determines whether a

particular realization (sample) X is typical or not. Let us

denote by Mn
X the empirical measure of X derived as in

(6), where the superscript n indicates that the tree has n
nodes. Using similar terminology and notation as in Sec. III-

B the following theorem provides the test and establishes its

optimality. The proof is omitted due to space limitations.

Theorem IV.2 The decision test S
∗,n
3 (X)

S
∗,n
3 (X) =

{

0, if J(Mn
X) < η,

1, otherwise.

is optimal according to the generalized Neyman-Pearson

criterion.

V. NUMERICAL RESULTS

In this section we present a host of numerical results that

validate the anomaly detection tests we developed.

A. Results for the simple Markov model

Figures 1 considers the following disruption in the network

routing we wish to detect: a compromised node has changed

its parent due to a jammed link. As we described in Sec. II

we model the routing by a simple Markov chain whose state

is the index of the node possessing the data packet, assuming

that we operate in the light traffic regime where only a single

node has a packet at any given point in time. In this scenario

we considered packets are generated at each node according
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Fig. 1. A compromised node switches its parent.
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Fig. 2. Detection of attack in the simple Markov chain model.

to independent Poisson processes. Once a packet is generated

it is routed to the root. The Poisson rates are small enough

to ensure a single packet in the network at any point in time

(during our simulation).

We use a long trace of observations before the attacks to

estimate the anomaly-free law Q0 and then apply the test of

Thm. II.1. The detection window was set to t = 100 and the

detection threshold to η = 0.03, which results in a type I

error probability equal to e−tη = 0.05. Figure 2 shows the

time it takes to detect each attack (about 100 time units),

which we will refer to as response time. Simulation results

verified that the exponent of the type I error probability fits

closely with theoretical value η.

B. Results for the tree model: edge-wise case

Next we consider the edge-wise tree-indexed Markov

model. The nodes of the tree monitor events in their en-

vironment and for each observed event they route a packet

with the necessary information to the root of the tree. In

all examples in this subsection and the following (Sec. V-C)

events at each node occur according to independent Poisson

processes. Our objective is to detect changes in the event

generation rates as described in Sec. III. The offspring law

p(·) is uniform in {0, 1, . . . , 5}. We defined the “state” of

each node depending on the average packet flow per unit

time through the node, including packets that originate at

the node. The average flow was mapped to 10 states. The

transition probability matrix Q0 was selected so that for each

a, Q0(·|a) is an appropriately truncated triangularly shaped
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Fig. 4. Response times in the tree models.

mass function with mode at a and symmetrically diminishing

mass as one moves away from a.

Consider the tree of Fig. 3. We selectively changed the

event generation rate at a few nodes but this results in packet

flow changes in all nodes that are in the corresponding paths

to the root. Note that depending on how flow is mapped to

states flow changes may not result in state transitions.

The calculation of the empirical measure LX is done in a

distributed way: each node keeps a vector (with dimension

equal to the number of states) of counts of how many

downstream nodes, including itself, are in a certain state.

When a node changes its state, the corresponding value in

this vector is changed and this update is propagated up

the tree. We note that distributed computation is useful in

implementing anomaly detection techniques of this type in

large WSNETs. We applied the detection test of Thm. III.3,

where the anomaly-free laws p(·) and Q0 can be computed

from observations before the anomaly is introduced. Type I

error probabilities were calculated for tree sizes from 100

to 800. And the theoretical exponent fits very well with the

observed values for a network (tree) with size larger than

200.

With η set to 0.05, we performed simulations correspond-

ing to different initial percentages of nodes with altered

event generation rates, and observed a drastic drop in the

response time when this percentage is approximately 15%,

which reasonably demonstrates our method is able to detect

anomalies within a short time.

C. Results for the tree model: level-wise case

Finally, and for the same setting as in Sec. V-B, we

consider the level-wise model and apply the detection test of

Thm. IV.2. As before, the state of a node is defined depending

on the average flow through the node. The offspring law Q0

was selected so (i) nodes with states corresponding to large

flows are more likely to have more children, (ii) nodes with

zero flow have no children, and (iii) the children have higher

probability of being in a state close to the state of the parent

(in terms of average flow).

The detection response time is shown in Figure 4. Com-

paring to the edge-wise case, the response time to detect

an anomaly is now larger, due to the increased number

of “types” when calculating empirical measures. We expect

though the level-wise model to be sensitive to even subtler

changes than the edge-wise model, detecting for instance

changes that result in deviations in the “type” (cf. 5) of

children without significant changes in the overall fraction

of nodes at a certain state. The exponent of Type I error

probabilities presents similar properties as the edge-wise case

and is in line with Thm. IV.1.

VI. CONCLUSIONS

We considered the problem of anomaly detection in wire-

less sensor networks in a general enough framework to be

able to detect statistically significant temporal or spatial

changes in either the underlying process the sensor network

is monitoring or the typical packet routing patterns in the

network. The latter type of disruptions may indicate naturally

occurring phenomena (changes in wireless connectivity) or

adversarial attacks.

We proposed the use of Markov models to character-

ize normal behavior and analyzed three (increasingly more

detailed) models. In each case we developed a rigorous

anomaly detection test based on large deviations results

for the corresponding model. Illustrative numerical results

demonstrate that the techniques we developed can detect

within a reasonable amount of time a broad variety of attacks,

changes in the underlying process being monitored, and

network failures.
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