
Optimal Dynamic Sleep Time Control in Wireless Sensor Networks

Xu Ning and Christos G. Cassandras

Center for Information and Systems Engineering

Boston University, Brookline, MA 02446

nx@bu.edu, cgc@bu.edu

Abstract— We present a dynamic optimization approach to
save energy in Wireless Sensor Networks (WSN) at the link
level. One of the main sources of energy waste in a WSN
is idle listening, i.e., nodes consuming energy to sample an
idle channel. Our approach utilizes known traffic statistics and
optimally controls the sleep interval between consecutive wake-
ups of the receiver so that the expected total energy spent during
each transmission is minimized. We derive necessary conditions
for optimality that can be numerically solved but may fail
to provide the optimal solution. Thus, we also propose an
alternative efficient algorithm providing an explicit discretized
solution. Simulation results are included to compare fixed sleep
times to our dynamic control policy.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a spatially dis-

tributed wireless network consisting of low-cost autonomous

nodes which are mainly battery powered and have sensing

and wireless communication capabilities [1]. Usually, nodes

in such a network share a common objective, such as

environmental monitoring or event detection.

Energy in WSN nodes is consumed by the CPU, by

sensors, and by radio, with the latter consuming the most

[2]. In order to optimize energy usage, it is important

to identify the major sources of waste in communication

[3]: collision, overhearing, control packet overhead and idle

listening. Among these four sources, idle listening (i.e.,

the receiver staying awake during idle time anticipating an

incoming transmission) accounts for the most significant

waste of energy in a WSN.

Energy waste due to idle listening can be reduced by

adopting a Medium Access Control (MAC) scheme. MAC

can be categorized into scheduled and unscheduled schemes.

Scheduled schemes, such as S-MAC [3], maintain a sched-

ule among a small cluster of nodes such that nodes have

coordinated transmission. Therefore, nodes can turn off their

radio according to the schedule. Unscheduled schemes, on

the other hand, try to emulate an “always-on” receiver by

introducing additional ad-hoc synchronization. One way to

achieve this is to use Low-Power Listening (LPL) [4].

LPL is an approach to save energy at the link level, which

consists of a sender and a receiver. The main steps of LPL

are:

1) The receiver remains at a sleep state most of the time,

and occasionally wakes up to sample the channel in

The authors’ work is supported in part by NSF under grants DMI-
0330171 and EFRI-0735974, by AFOSR under grants FA9550-04-1-0133
and FA9550-04-1-0208, and by DOE under grant DE-FG52-06NA27490.

order to determine whether it is busy or idle.

2) When the sender wants to send a message, it begins

with an attached signal called the “preamble” to the

receiver. The preamble can be viewed as a “wake up

signal”. After the preamble signal, the sender sends the

message.

3) When the receiver wakes up and samples the channel,

either of two cases may occur: (i) If the channel is

idle, the receiver sets the next wake-up time and sleeps

again, (ii) If the channel is busy (preamble detected),

the receiver stays on until the message is received.

After transmission, the receiver also sets its next wake-

up time and sleeps again.

One obvious advantage of unscheduled MAC is its uni-

versality, since all transmission controls are transparent to

the applications to which it just appears to be an always-on

radio. Another advantage is that it does not need advance

synchronization (it can, though, benefit from it since a

preamble can be shortened when the transmission pair is

roughly synchronized). However, many MAC schemes that

adopt LPL only use periodic sleep time control for its

simplicity. Depending on the tasks they perform, WSNs

can be differentiated in terms of continuous monitoring or

event-driven operation; in the latter, network activities are

triggered by external random events. Since event times are

not deterministic, many wake-ups actually take place during

times when an event is not likely to happen. Using variable

preamble LPL, due to its handshaking action, it is not

required to have a periodic sleep time control at all, which

enables us to control the sleep time carefully and save more

energy.

In previous work [4] we proposed a way to utilize network

statistical information in aperiodic sleep time control. It was

shown that if statistical information about event times is

known, we can control the sleep time of the receiver so that it

samples the channel more frequently when an event is more

likely to happen, and less frequently when it is not. It was

also shown that this dynamic sleep time control dominates

fixed sleep time control in terms of performance expressed

as a trade-off between energy and latency. However, we did

not attempt to provide an optimal control minimizing energy.

Instead, we provided a way to calculate the best sleep time

given a certain delay constraint, which in turn specifies the

energy consumption of the sender. If one seeks to optimize

over energy consumption of the link, it is necessary to tune

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA14.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2332

the delay constraint in order to achieve optimality.

In this paper, our contribution lies in reformulating sleep

time control as a dynamic optimization problem whose

objective is to minimize the link energy, i.e., the energy to

transmit and receive a message. The model, similar to the

one used in [4], incorporates statistical information related

to all random events. The optimization problem is solved

using Dynamic Programming (DP) to produce an optimal

sleep time control policy, in the sense that the energy spent

in each transmission is minimized. Exploiting the structure of

the problem, we are able to derive an explicit DP algorithm

which is of low complexity and hence compute the optimal

control policy.

The paper is organized as follows. In Section II, we

describe the problem of interest, and establish the DP for-

mulation. Section III describes the special case when inter-

event times are exponentially distributed. In Section IV, we

derive necessary conditions of optimality, and transform the

optimization problem into a pair of differential equations

with known initial conditions. In Section V, we discretize

the state space and provide an O(M2) algorithm (M is the

cardinality of the discretized state space) to solve the DP

problem and obtain an optimal control policy. Simulation

results are provided in Section VI and conclusions are given

in Section VII.

II. PROBLEM DESCRIPTION AND ANALYSIS

We consider a sender-receiver link in a WSN. The sender

is a wireless node equipped with some event detector which

is driven by external, random events such as body movements

in a room or fire alarms. When the sender detects an event

or reports its status, it sends a message to the receiver, which

is a downstream node in the network. In this link, variable

preamble LPL is used. Depending on the specific application,

LPL can have different implementations:

1) “Plain-vanilla” LPL. This is the simplest LPL where

both the receiver’s sleep period and the sender’s pream-

ble length are fixed. Usually the preamble length is a

little bit longer than the sleep period to ensure that

the preamble is “picked up” by one of the receiver’s

channel pollings. B-MAC [5] uses this type of LPL.

2) “Short preamble” LPL. In this version, the receiver’s

sleep period remain fixed. However, there exists some

degree of clock synchronization between the sender

and the receiver so the sender can estimate within some

short interval when the receiver will wake up. Hence,

the sender can send a shorter preamble as long as it

is long enough to cover the estimated interval. This

version is used in WiseMAC [6].

3) “Variable preamble” LPL. Although the short pream-

ble version also varies the length of the preamble,

it requires clock synchronization between the two

peers. In variable preamble LPL, there is no need for

such synchronization. Instead, handshaking is used. As

shown in Fig. 1, the sender sends “strobed preambles”

– intermittent transmission of a preamble signal with

gaps for listening. When the receiver wakes up and

DATA

Rx

Sender

Receiver

!

OFF

P P P P !

R

SYN

…

OFF ON OFF OFF

t

Fig. 1. Low-power listening (LPL) with “strobed preamble”. After each
preamble packet P sent, the sender listens for a brief period for acknowl-
edgement from the receiver, then send P again if no acknowledgement is
received.

picks up a preamble signal, it replies to the sender so

a handshake is formed. Then, the sender knows for

sure the receiver is awake in receiving mode, so the

message will be transmitted. X-MAC [7] is based on

variable preamble LPL.

The central problem in LPL consists of determining how

often the receiver should wake up and sample the channel.

Clearly this is a trade-off between the sender and the receiver.

On one hand, as the receiver wakes up more often, energy

depletes faster because each wake up needs to turn on and

off the radio, where a start-up energy cost is incurred. Denote

this energy cost by c. On the other hand, if the sleep time

between two receiver sampling events is long, the sender will

obviously need to send a longer preamble so that it can be

picked up by the receiver in its next wake up. Sending a

preamble also incurs an energy cost which is proportional

to the length (time wise) of the preamble. For simplicity, let

the energy cost per unit time of the preamble be 1. Hence,

the problem is to determine how the receiver should control

its sleep time so that the total energy spent in each message

transmission is minimized.

To formulate an optimization problem, we start by describ-

ing our model. First, since each channel sampling activity at

the receiver is short in time duration, we assume these to

be points in the timeline. Second, although in the variable

preamble LPL strobed preamble packets are used, we assume

that the preamble is a continuous signal whose length is

a real positive number. Third, we focus on the preamble

and the channel sampling activities, and ignore the energy

cost during the transmission of the data payload part of

the message since it is not controllable in the scope of our

optimization problem. A typical sample path is shown in Fig.

2.

Sender

Receiver

0

0

T
i

D
i

Z(t
n
)t1

A
i

……

A
i-1

t
n-1 t

n
t
n+1

Fig. 2. A typical sample path

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA14.2

2333

We define the “ith event” to be the instant when the

transmission of the ith message’s preamble starts. In Fig. 2,

Ai is the occurrence time of the ith event and Ti = Ai−Ai−1

is the ith inter-event time. We assume Ti is a random variable

with c.d.f. F (·) and p.d.f. f (t) = F ′ (t). Let tn be the

nth wake-up time of the receiver with respect to time 0,

and Z (tn) = tn+1 − tn is the controllable sleep time to be

determined at time tk. Di is the preamble time of message i,
which is also random. Based on the problem setup and due

to the renewal property, we can see that there is no coupling

between different events. This allows us to focus on only

one event at time Ai and derive an optimal control policy

which applies to any other event as well. The optimization

problem is formulated as follows:

min
n,t1,t2,...,tn

E {nc + Di} (1)

s.t. n = arg min
k

tk > Ti

Di = tn − Ti

This is an atypical optimization problem, partly because

the number of sampling events n is a control variable. To

illustrate how this works, suppose we are currently at time

tn in Fig. 2. We have to decide the sleep time Z (tn). After

the receiver sleeps and then wakes up at time tn+1, two cases

can arise. First, if Ti < tn+1 = tn +Z (tn), the receiver will

pick up the preamble signal. In this case, the cost is

Gn = c + Di = c + tn + Z (tn) − Ti

In the second case, Ti > tn+1. Then, at time tn+1, event

Ai has not occurred yet, so the receiver will not pick up

the preamble. Hence, it will calculate the next sleep time

Z (tn+1) and repeat the process. The cost will be:

Gn = c + Gn+1

The probability that the first case arises is

P1 = Pr (Ti < tn+1|Ti > tn) =
F (tn + Z (tn)) − F (tn)

1 − F (tn)

and the probability that the second case arises is simply P2 =
1−P1. Then, the expected cost to receive message Ai, using

the control Z (tn), is:

E [Gn (Z (tn)) |Ti > tn] = (c + E [Di|Ti > tn])P1

+ (c + E [Gn+1]) P2

Now we can clearly see a recursive structure: the decision

at time tn depends on a possible future decision at time tn+1

where Gn+1 depends on Z (tn+1). A Bellman equation can

be derived by defining J (t) as the minimum expected cost-to-

go to receive message Ai, that is, the expected energy spent

to receive Ai given the fact that Ai has not occurred up to

t, the time of any sampling event in Fig. 2 which does not

detect the preamble (e.g., tn−1 or tn). J (t) can be expressed

as:

J (t) = min
z>0

{c+A0 (t, z)P 0
1 (t, z)+J (t + z)P 0

2 (t, z)} (2)

where z is the sleep time control at time t and

A0 (t, z) = E [t + z − Ti|t ≤ Ti ≤ t + z]

P 0
1 (t, z) =

F (t + z) − F (t)

F̄ (t)
= 1 − P 0

2 (t, z)

F̄ (τ) = 1 − F (τ)

We can see that the system state is represented by t and

the minimum expected cost to receive message Ai contains

three parts: (i) a fixed cost c to wake up at time t + z; (ii)
the expected preamble cost A0 (t, z) if Ai occurs during the

sleep time; (iii) the future minimum expected cost J (t + z)
to receive Ai if Ai does not occur during the sleep time.

Here we assume that random variable Ti has support region

(0, +∞). For a distribution with a limited support region

0 < Ti ≤ Tmax, the boundary condition of (2) is J (Tmax) =
c and in this case, the allowable control set is limited to

0 < z ≤ Tmax − t.
By solving the Bellman equation [8] (2) for all possible

t > 0, one can obtain the optimal sleep time control policy

z (t).

III. CHARACTERIZING THE OPTIMAL SOLUTION

In this section we try to characterize the optimal solution

to (2). For notational simplicity, define u = t + z, which is

the wake-up time epoch of the receiver determined at time

t. We rewrite the Bellman equation (2) as:

J(t) = min
u>t

{c + A(t, u)P1(t, u) + J(u)P2A(t, u)} (3)

where

A (t, u) = A0 (t, u − t)

P1 (t, u) = P 0
1 (t, u − t)

P2 (t, u) = P 0
2 (t, u − t)

Define

V (t, u) = c + A (t, u)P1 (t, u) + J (u)P2 (t, u) (4)

Let the optimal policy be u∗ (t) which is a function of t.
Because u∗ (t) is the solution to (3), we have:

J (t) = min
t<u(t)≤Tmax

V (t, u (t)) = V (t, u∗ (t)) (5)

We assume that F (τ) has a finite support 0 ≤ τ ≤ Tmax,

and f (τ) has a continuous derivative. Since t < u∗ (t) ≤
Tmax for any t, either u∗ (t) = Tmax or

∂V (t, u)

∂u

∣

∣

∣

∣

u=u∗(t)

= 0 (6)

that is,

F (u∗ (t)) +
∂ [J (u)P2 (t, u)]

∂u

∣

∣

∣

∣

u=u∗(t)

= F (t)

Differentiating with respect to t on both sides, we obtain:

du∗ (t)

dt
=

f (u∗ (t)) + J ′′ (u∗ (t)) F̄ (u∗ (t))
−2J ′ (u∗ (t)) f (u∗ (t))
−J (u∗ (t)) f ′ (u∗ (t))

−1

f (t)

(7)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA14.2

2334

For J (t), we have:

dJ (t)

dt
=

dV (t, u∗ (t))

dt

=
∂V (t, u∗ (t))

∂t
+

(

∂V (t, u)

∂u

∣

∣

∣

∣

u=u∗(t)

)

du∗ (t)

dt

=
∂V (t, u∗ (t))

∂t

=
(t − u∗ (t) + J (t) − c) f (t)

F̄ (t)
(8)

Differential equations (7) and (8) govern the optimal

solution, namely, J (t) and u∗ (t). With (7) and (8) we

can integrate backwards to find the optimal solution, given

appropriate initial conditions. Notice that for t → Tmax, we

have u∗ (t) = Tmax. Define t0 such that for t0 ≤ t < Tmax,

u∗ (t) = Tmax and let I0 = (t0, Tmax]. So in I0,

u∗ (t) = Tmax (9)

J (t) = V (t, Tmax) = c + A (t, Tmax) (10)

To find t0, because in u∗ (t) = Tmax for t ∈ I0, we have:

∂V (t, u)

∂t

∣

∣

∣

∣

u=Tmax

< 0

that is:

F (Tmax) +
∂ [J (u)P2 (t, u)]

∂u

∣

∣

∣

∣

u=Tmax

< F (t)

so

1 − F (t) − cf (Tmax) < 0

t0 = F−1 (1 − cf (Tmax)) (11)

I0 is the interval where equation (6) does not hold,

but provides the initial condition needed to integrate (7)

and (8) backwards. Note that in (7), the calculation of

du∗ (t) /dt involves J (u∗ (t)) and its derivatives. Because

u∗ (t) > t and we are integrating backwards, all these

quantities are already known when we compute du∗ (t) /dt.
In summary, we have obtained two differential equations

(7) and (8) which are necessary conditions for the locally

optimal control policy u∗ (t) and the associated cost-to-go

function J (t). Using initial conditions (9)-(11) we can solve

(7) and (8) to find u∗ (t) (subject to constraints t < u∗ (t) ≤
Tmax) and J (t), which are locally optimal solutions. For

intervals other than I0 that u∗ (t) happens to be Tmax

resulting from (7), we calculate the corresponding J (t) with

(10). Since z∗ (t) = u∗ (t) − t, we can easily obtain the

sleep time control policy at time t. Letting M = Tmax/h
and h being the step size, solving the differential equations

is generally an O(M) task, which is very efficient. However,

the drawback is that because (6) is only a necessary condition

for the optimality of u∗ (t), it may not be the global optimal

solution. Numerical stability is another concern as we will

see in the numerical example section. This motivates an

alternative approach that leads to a globally optimal solution

at the expense of increased computational cost.

IV. DISCRETE TIME MODEL AND DYNAMIC

PROGRAMMING ALGORITHM

To find the global optimal u∗ (t), in what follows we

define the DP algorithm which solve the Bellman equation

(2) exhaustively. One way to deal with this problem is to

discretize the state space. Because the state t is a scalar,

the exhaustive algorithm’s complexity only depends on the

discretization resolution.

Suppose the support region of T is [0, Tmax] which is

finite. We discretize the support region into M time slots

and let h = Tmax/M , then, slot i represents interval

[ih, (i + 1)h), i ∈ {0, 1, ..., M − 1}. For any given time

t, the corresponding slot i is such that t ∈ [ih, (i + 1)h).
Therefore, the discretized state space is {0, 1, ..., M − 1}. In

this discrete time model, we only allow the receiver to wake

up at time epochs {0, 1, ..., M}, so the decision space at state

i is {1, ..., M − i}. A decision z at state i means the receiver

will wake up at time (i + z)h.

For notational simplicity, let ti = ih and u = (i + z),
so that u ∈ {(i + 1) , ..., M}. Denoting by Ji the cost-to-go

function at state i, we have

Ji =min
u

Vi,u

=min
u

{c + A (ti, uh)P1 (ti, uh) + JuP2 (ti, uh)}

=min
u

{

c +

∫ uh

ih
(uh − x) f (x) dx

F̄ (ih)
+

F̄ (uh)

F̄ (ih)
Ju

}

u ∈ {(i + 1) , ..., M} (12)

Now we can solve (12) numerically. The direct, exhaustive

algorithm to solve (12) has complexity O
(

M3
)

, because one

has to compute Vi,u for all possible i and u ,and to compute

Vi (u) for a single (i, u) pair is an O (M) task due to the

inner integral. However, the computation can be simplified

noting that Vi,u can be obtained easily from Vi,u+1 without

computing the integral again. To see this, we first, define:

fi =

∫ (i+1)h

ih

f (x) dx (13)

F̄i = F̄ (ih) =
M−1
∑

j=i

fi (14)

Ei =

∫ (i+1)h

ih

xf (x) dx (15)

all of which can be calculated in advance of the sleep time

control with knowledge of f (x). Therefore,

Vi,u = c +
uh
(

F̄i − F̄u

)

−
∑u−1

j=i Ej

F̄i

+
F̄u

F̄i

Ju (16)

Because

Vi,M = c +
MhF̄i −

∑M−1
j=i Ej

F̄i

(17)

Vi,u = Vi,u+1 −
1

F̄i

[

uhfu + hF̄i − F̄u+1 − Eu

+F̄u+1Ju+1 − F̄uJu

]

(18)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA14.2

2335

0 10 20 30 40 50
0

1

2

3

4

Time

J

0 10 20 30 40 50
0

1

2

3

4

5

Time

z
*

DP

ODE

DP

ODE

Fig. 3. Optimal sleeping time and cost-to-go function value with uniform
interarrival time distribution.

for a given state i, we can compute each Vi,u for all (i + 1) ≤
u ≤ M using (17) and (18) in O (1), providing that Ju is

already computed for all u. Finally, for each i, we compute:

Ji = min
(i+1)≤u≤M

Vi,j

z∗i = min
(i+1)≤u≤M

Vi,j − i

Obviously, the total complexity of the above algorithm is

O
(

M2
)

. The spatial complexity is actually O (M) because

for each i iteration, we can use the same memory space to

store Vi,j . The resulting {z∗i } is the optimal sleep time at

each state i.

V. NUMERICAL RESULTS

A. Distribution Examples

Uniform distribution. We consider a uniform distribution

for the interarrival time T ∼ U [0, Tmax] We choose the

parameters c = 0.2 and Tmax = 50 (seconds). This means

that a channel sampling action costs as much energy as 200
milliseconds of transmission, which is a reasonable figure.

Under this distribution, the optimal sleeping time can be

calculated using the DP algorithm as well as solving the

differential equation (ODE). We also choose the time slot

size h = 0.1, so M = 500. h is also used as the step size in

ODE. The result is shown in Figure 3.

We can see that as t increases, the sleep time z∗ (t)
decreases gradually, and approaches 0 at t → U . Recall

that the sleep time at t is calculated based on the fact that

“no event has occurred during the last t amount of time”.

Therefore, as t increases, the possibility that the event takes

place in the near future increases as well, which leads to

a shorter sleep time. Consider that ODE is a linear time

algorithm, it is a better approach here. However, to prevent

numerical instability in ODE, the step size h cannot be too

large, which limits the lower bound of ODE’s computation

effort.

Wiebull distribution. The Weibull distribution is a class

of distributions to model random events with an increasing

0 10 20 30 40 50
0

1

2

3

Time

J

0 10 20 30 40 50
0

2

4

6

8

Time

z
*

DP

ODE

DP

ODE

Fig. 4. Optimal sleep time and cost-to-go function value under Weibull
distribution.

0 10 20 30 40 50
0

1

2

3

Time
J

0 10 20 30 40 50
0

5

10

15

Time

z
*

DP

ODE

DP

ODE

Fig. 5. Optimal sleep time and cost-to-go function value under bimodal
Gaussian distribution.

hazard rate with respect to the age of the event. We choose

parameters α = 20 and β = 2 (the hazard rate is increasing

linearly with time). We truncate the distribution at Tmax = 50
(seconds) to limit the support region. In practical systems this

is a reasonable approach. Other parameters are the same:

c = 0.2, h = 0.1, M = 500. The results obtained from DP

and ODE are shown in Figure 4. For the ODE case, the step

size h = 0.1 is too large and causes numerical instability so

we reduced it to h = 0.02.

Bimodal Gaussian distribution. A Bimodal Gaussian

(BG) distribution is a distribution with two different modes

and within each mode a Gaussian distribution. Our param-

eters are: µ1 = 12.5, µ2 = 40, σ1 = σ2 = 5 where µi and

σi are the corresponding mean and standard deviation of the

ith mode. The modal probability is 0.5. The optimal policy

obtained is shown in Figure 5:

We first notice that there is a discontinuity in the optimal

sleep time curve, generated by DP. From t = 0 to around

t = 15, we see the sleep time is decreasing. However,

because the probability of an event occurring in the interval

of [20, 30] is relatively small, the optimal sleep time is to

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA14.2

2336

“skip over” the period in order to save energy. We also

notice that ODE completely fails to handle the jump, which

is expected. The explanation to the occurrence of such a

jump is that there exist multiple local minima in V (t, u), so

(6) no longer provides a globally optimal solution.

B. Comparison of fixed and dynamic sleep time control

policies

To show the advantage of optimal sleep time control, we

compare it to the best fixed sleep time control policy using

simulation. In the simulation, we generate a sample path of

10,000 events, and compare the average energy spending

per message between the best fixed sleep time control and

dynamic sleep time control. The optimal fixed sleep time is

obtained through exhaustive search. The comparison results

are shown in the following table:

Distrib. Best Fixed DP Save%

Uniform 3.13 2.96 5.50

Weibull 2.67 2.40 10.21

BG-1 3.23 2.68 16.81

BG-2 3.23 2.02 37.55

In the comparison, each distribution takes the same pa-

rameters from the previous examples except for the bimodal

Gaussian-2 where σ1 = σ2 = 2.5. We notice that for the

uniform distribution, the energy saving is merely 5%. This is

because for a uniform distribution, the tail P (T < τ |T > t)
is still uniform, so not much value can be extracted from the

fact that “the age of this renewal process is t”. For other

distributions, as the p.d.f. “deviates” more from uniform,

more energy savings can be achieved. Because we are already

comparing with the best fixed control, this comparison shows

the superiority of dynamic sleep time control over fixed

control. Finally, we emphasize that the algorithm itself does

not depend on any particular distribution.

C. Computation time experiment

To demonstrate the feasibility of our algorithm, we im-

plemented the computation on a Tmote wireless sensor,

manufactured by Sentilla, Inc. The Tmote is equipped with

a 8MHz MSP430 16-bit microcontroller, manufactured by

Texas Instruments, Inc. We measured the CPU time used to

compute the optimal sleep time policy using the ODE and

DP which includes equations (14)-(18) (note: fi’s are given

or estimated through a separate process). The experiment

result of CPU time (in seconds) versus M is shows in the

following table:

M 50 100 200 300

ODE 1.5 3 6 9

DP 3 11 45 97

Due to the limitation of onboard memory (10KBytes), we

were unable to experiment with larger M . However, the final

case of M = 300 is more than enough: if the inter-event

time does not exceed 60 seconds (typical in WSN because of

heartbeat/health/routing messages), this produces a resolution

of 0.2 seconds. We believe that a value in the vicinity of

M = 100 offers a good trade-off between performance and

resource usage. In the M = 300 case, the CPU time is only

97 seconds which is manageable. Moreover, this computation

is performed only once to generate the optimal sleep time

policy, unless the inter-event time distribution is changed.

We also notice that ODE is much faster than DP thanks

to its linear time growth. However, as is mentioned before,

ODE has numerical stability problems and cannot handle

cases like the BG distributions.

VI. CONCLUSIONS

We have formulated a dynamic optimization problem for

saving energy in a transmission control scheme based on

a variable preamble technique. We first managed to solve

the continuous time Bellman equation, resulting in a pair

of differential equations characterizing the optimal solution.

Since the differential equations, although efficient to solve,

provide only necessary optimality conditions and do not

always lead to global optimal solutions, we discretize the

system and provided the DP algorithm which is easy to

implement and low in complexity. Our numerical results

show that our approach fully utilizes statistical information

in controlling the sleep time of a wireless sensor node,

resulting in substantial energy savings in comparison to the

best possible fixed sleep time control. Ongoing work aims at

extending this approach to the network level, where the main

obstacle is to reformulate the optimization problem subject

to the fact that only partial information is available. Another

extension is to combine DP and ODE in a hierarchical way

such that M can be reduced while retaining a fine grain of

control via solving ODE as a fast subproblem.

REFERENCES

[1] S. Megerian and M. Potkonjak, Wireless Sensor Networks, ser. Wi-
ley Encyclopedia of Telecommunications. New York, NY: Wiley-
Interscience, January 2003.

[2] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems. New York, NY,
USA: ACM Press, 2004, pp. 188–200.

[3] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor networks,” IEEE/ACM

Transactions on Networking, vol. 12, no. 3, pp. 493–506, June 2004.
[4] X. Ning and C. G. Cassandras, “Dynamic sleep time control in event-

driven wireless sensor networks,” in Proceedings of the 45th IEEE

Conference on Decision and Control, San Diego, CA, USA, December
13-15 2006, pp. 2722–2727.

[5] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in SenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems. New
York, NY, USA: ACM Press, 2004, pp. 95–107.

[6] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An ultra low power
mac protocol for multi-hop wireless sensor networks,” Lecture Notes

in Computer Science, vol. 3121, pp. 18–31, Jan 2004, springer-Verlag
GmbH.

[7] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks,”
in SenSys ’06: Proceedings of the 4th International Conference on

Embedded Networked Sensor Systems, New York, NY, USA, November
1-3 2006, pp. 307–320.

[8] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
MA, USA: Kluver Academic Publishers, Janurary 2007, vol. 1,2.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA14.2

2337

