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Abstract— In linear-quadratic-Gaussian control, the positive
definiteness of the control weighting matrix in the cost function
has been assumed, however, it has been shown that solutions
do exist for indefinite control weight matrices for the linear-
quadratic-Gaussian case. Here we extend the results to other
statistical control methods such as second cumulant statistical
control and risk-sensitive control. In this paper, we find the
optimal controller where the diffusion term in the state equation
depends on the control.

I. INTRODUCTION

Linear-quadratic-Gaussian (LQG) control [4], second cu-
mulant statistical (SCS) control [10], and risk-sensitive (RS)
control [1], [12] has been actively researched in the literature.
The control weighting matrices in these control methods,
however, have been always assumed to be strictly positive
definite. In 1998, LQG control with indefinite control weights
was solved by Chen et al. when the diffusion term in the state
equation is dependent on the control [2]. Moreover, Lim and
Zhou extended the problem to include not one, but a number
of integral quadratic constraints in [8]. In this research, we
extend the LQG results to SCS and RS control.

Statistical control is defined as the minimization of any
finite or infinite linear combinations of the cost cumulants,
thus LQG, SCS and RS control become special cases of
statistical control. In classical LQG control, the first cumulant
or the mean of the cost function is minimized. In SCS
control, also known as minimal cost variance (MCV) control,
the second cumulant, or the variance, of the cost function is
minimized. And the minimization of all the “fixed weighted”
linear combination of the cost cumulants corresponds to RS
control [11].

SCS control is a special case of statistical control, where
the second cumulant is optimized. In 1971 Sain and Liberty
published an open loop result in minimizing the performance
variance while keeping the performance mean close to a
prespecified value [10]. The full state feedback SCS control
problem is solved in [13], [11]. Nonlinear statistical control
was investigated in [14]. More recently, the application of
the statistical control concept to game theory has appeared
in the literature [3].
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In Section II, mathematical preliminaries needed to for-
mulate the indefinite control weight control problem are
given. In Section III, SCS control is defined. Hamilton-
Jacobi-Bellman (HJB) equations and associated verification
theorems are given in Section IV. Then in Section V for
a linear system and quadratic cost function, the solution
of SCS control with an indefinite control weight is found
using the HJB equation. In Section VI, the RS problem
with an indefinite control weight is solved using dynamic
programming approach. Finally, conclusions are presented
in the last section.

II. PROBLEM FORMULATION

In this section we repeat the problem formulation as in
[11] for the sake of completeness. Consider the Ito-sense
stochastic differential equation,

dx(t) = f(t, x(t), u(t))dt + σ(t, x(t), u(t))dw(t), (1)

where t ∈ T = [t0, tF ], x(t0) = x0, x(t) ∈ <n is the state,
x0 is a random variable which is independent of w, and w(t)
is a Brownian motion of dimension d defined on a probability
space (Ω,F , P ), and u(t) ∈ U ⊂ <m is the control action.
Let p and q be natural numbers. Suppose that D ⊂ <p and
that h : D → <q . Then h is said to belong to Cj(D) if it
is continuous. Let Q0 = (t0 × tF )×<n and Q̄0 = T ×<n

denote the closure of Q0. Assume that f : Q̄0 × U → <n

is C1(Q̄0 × U); σ : Q̄0 × U → <n×d is C1(Q̄0 × U); and
E{dw} = 0, E{dwdw′} = Idt. Furthermore we assume that

|f(t, 0, 0)| ≤ c,

∣∣∣∣
∂σ(t, x, u)

∂x

∣∣∣∣ +
∣∣∣∣
∂σ(t, x, u)

∂u

∣∣∣∣ ≤ c̄,

|σ(t, 0, 0)| ≤ c

∣∣∣∣
∂f(t, x, u)

∂x

∣∣∣∣ +
∣∣∣∣
∂f(t, x, u)

∂u

∣∣∣∣ ≤ c̄

for (t, x, u) ∈ Q̄0 × U, (t, x) ∈ Q̄0, and constants c and c̄.
The matrix norm notation |A| denotes sup|x|=1 |Ax|. In order
to control the performance of (1), a memoryless feedback
control law is introduced in the manner

u(t) = k(t, x(t)), t ∈ T, (2)

where k is a nonrandom function with random arguments.
It is known that this density satisfies the following back-

ward Fokker-Planck (or Kolmogorov) equation [4]

−∂p(t, x; s, y; k)
∂t

= O(k)[p(t, x; s, y; k)], s > t, (3)

where p(t, x, s, y; k) be the probability density corresponding
and O(k) is the backward evolution operator given by

O(k) =
∂

∂t
+

〈
f,

∂

∂x

〉
+

1
2

tr

(
σσ′

∂2

∂x2

)
(4)
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where
〈

f,
∂

∂x

〉
=

n∑

i=1

fi(t, x, k)
∂

∂xi

4
= O(1)(k)

1
2

tr

(
σσ′

∂2

∂x2

)
=

1
2

n∑

i,j=1

(σ(t, x, k)σ′(t, x, k))ij
∂2

∂xi∂xj

4
= O(2)(k). (5)

In (5), tr denotes the trace operator. The derivative operators
are defined so that the i-th element in the n-tuple (∂/∂x) is
(∂/∂xi), and the ij-th element in the n×n matrix operator
(∂2/∂x2) is (∂2/∂xi∂xj).

For all (t, x) ∈ Q̄0, a real valued function Φ(t, x) on
T×<n satisfies a polynomial growth condition, if there exist
constants k1 and k2 such that

|Φ(t, x)| ≤ k1(1 + |x|k2). (6)

Let C1,2(Q̄0) denote the space of Φ(t, x) such that Φ and
the partial derivatives Φt,Φxi

,Φxixj
for i, j = 1, · · · , n are

continuous on Q̄0. Also let C1,2
p (Q̄0) denote the space of

Φ(t, x) ∈ C1,2(Q̄0) such that Φ, Φt, Φxi
, Φxixj

for i, j =
1, · · · , n satisfy a polynomial growth condition. Assumptions
Φ(t, x) ∈ C1,2

p (Q̄0), k admissible, and E{|x(s)|m|x(t) = x}
bounded for m = 1, 2, · · · and t ≤ s ≤ tF ensure existence
of the terms in the right memeber of the Dynkin formula
(see [5, pages 128,135,161]),

Φ(t, x) = Etx

{∫ tF

t

−O(k)Φ(s, x(s)) ds + Φ(tF , x(tF ))
}

(7)
where Etx denotes a conditional expectation with respect to
x(t) = x. In order to assess the performance of (1), consider
the cost function

J(t, x(t), k) =
∫ tF

t

[L(s, x(s), k(s, x(s)))] ds + ψ(x(tF )).

(8)
Assume that L and ψ satisfy the polynomial growth condi-
tions

|L(t, x, k)| ≤ c1 (1 + |x|+ |k|)c2 , ∀(t, x, k) ∈ Q̄0 × U,

|ψ(x)| ≤ c1 (1 + |x|)c2 , ∀x ∈ <n, (9)

for constants c1 and c2. Fleming and Rishel show that
a process x(t) from (1), having an admissible con-
troller k, together with the assumption (9), ensure that
E{J(t, x(t), k)|x(t) = x} is finite [4, page 157]. Further-
more, we assume that σ, L, f , and M are given, and we
wish to find k. Now we make a few assumptions:

σ(t, x, k) = F (t)x(t) + G(t)k(t, x(t)), (10)

L(t, x, k(t, x)) = h(t, x) + k′(t, x)R(t)k(t, x), (11)

ψ(x(tF )) = x′(tF )QF x(tF ), (12)

and
f(t, x, k(t, x)) = g(t, x) + B(t)k(t, x), (13)

where k is an admissible feedback control law; h : Q̄0 → <+

is C(Q̄0) and satisfies the polynomial growth conditions

assumed for L; and g : Q̄0 → <n is C1(Q̄0) and satisfies
the linear growth condition and the local Lipschitz condition
assumed for f . F (t), G(t), and B(t) are continuous real
matrices of appropriate dimensions for all t ∈ T . Note that
we do not make the usual assumption, R(t) > 0.

Now, we can formulate the following three control prob-
lems:

1) LQG : mink (E{J(t, x, k)})
2) RS: mink

(− 1
θ log E{exp(−θJ(t, x, k))})

3) SCS: mink

(
Etx{J2(t, x, k)} − E2

tx{J(t, x, k)})

where Etx represents E{·|x(t) = x}.

III. SECOND CUMULANT STATISTICAL CONTROL
PROBLEM

Second Cumulant Statistical (SCS) Control , which is also
called Minimal Cost Variance (MCV) control, is a type of
statistical control where we minimize the variance of the cost
function while keeping the mean of the cost function at a
specified level. In SCS control we define a class of admissible
controllers, then the cost variance is minimized within that
class of controllers. The full-state-feedback SCS control is
solved in [11]. Here we extend the results to include the state
and control dependent diffusion term σ(t, x, k) and indefinite
control weight cost.

The class of admissible control laws, and comparison of
control laws within the class, is defined in terms of the first
and second moments of (8). Define

V1(t, x; k) = Etx{J(t, x(t), k)} (14)

V2(t, x; k) = Etx{J2(t, x(t), k)}. (15)

Define a function M : Q̄0 → <+, which is C1,2(Q̄0), as
an admissible mean cost function if there exists an admissible
control law k such that

V1(t, x; k) = M(t, x) (16)

for t ∈ T and x ∈ <n. Every admissible M defines a class
KM of control laws k corresponding to M in the manner
that k ∈ KM if and only if k is an admissible control law
which satisfies (16).

It is now possible to define a SCS control law k∗V |M . Let
M be an admissible mean cost function, and let KM be its
induced class of admissible control laws. A SCS control law
k∗V |M satisfies

V2(t, x; k∗V |M ) = V ∗
2 (t, x) ≤ V2(t, x; k), (17)

for t ∈ T , x ∈ <n, whenever k ∈ KM . The corresponding
minimal cost variance is given by

V ∗(t, x) = V ∗
2 (t, x)−M2(t, x) (18)

for t ∈ T , x ∈ <n.
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IV. HAMILTON-JACOBI-BELLMAN EQUATION FOR
V ∗(t, x)

We derive a Hamilton-Jacobi-Bellman (HJB) equation for
the second cumulant statistical or SCS control problem. This
section derives that HJB equation under the assumption that
a sufficiently smooth solution exists. A full-state-feedback
SCS control law is derived in the sequel utilizing this HJB
equation.

One of the main results of this section is summarized in the
following theorem, which makes use of the notation ‖a‖2A =
a′Aa.

Theorem 1: Let M(t, x) ∈ C1,2
p (Q̄0) be an admissible

mean cost function, and let M induce a non-empty class
KM of admissible control laws. Assume the existence of
an optimal control law k = k∗V |M and an optimum value
function V ∗ ∈ C1,2

p (Q̄0). Then the SCS function V ∗ satisfies
the HJB equation

min
k∈KM

O(k)[V ∗(t, x)] +
∥∥∥∥

∂M(t, x)
∂x

∥∥∥∥
2

σ(t,x,k)σ′(t,x,k)

= 0,

(19)
for (t, x) ∈ Q̄0, together with the terminal condition,

V ∗(tF , x) = 0. (20)
Proof: See [11] with σ(t, x) changed to σ(t, x, k). ¤

Theorem 2: (Verification Theorem). Let M be an admis-
sible mean cost function satisfying M2(t, x) ∈ C1,2

p (Q) ∩
C(Q̄), and let KM be the associated non-empty class of
admissible control laws. Suppose that a nonnegative function
V ∗(t, x) ∈ C1,2

p (Q) ∩ C(Q̄) is a solution to the partial
differential equation

min
k∈KM

O(k)[V ∗(t, x)] +
∥∥∥∥

∂M(t, x)
∂x

∥∥∥∥
2

σ(t,x,k)σ′(t,x,k)

= 0,

(21)
∀(t, x) ∈ Q together with the boundary condition
V ∗(tF , x) = 0. Then V ∗(t, x) ≤ V (t, x; k) for every
k ∈ KM and any (t, x) ∈ Q. If in addition such a k satisfies
the equation

O(k)[V ∗(t, x)] = min
k̃∈KM

{
O(k̃)[V ∗(t, x)]

}

for all (t, x) ∈ Q, then V ∗(t, x) = V (t, x; k) and k = k∗V |M
is an optimal control law.

Proof: See [11] with σ(t, x) changed to σ(t, x, k). ¤
Equation (21) in Theorem 2 differs from SCS control of

[11] by the σ term depending on k.

V. SOLUTIONS OF SECOND CUMULANT STATISTICAL
CONTROL

We derive the full-state feedback solution of the second
cumulant statistical control problem. We assume a linear
system and a quadratic cost function in this section. We
search for an admissible linear controller that minimizes the
cost variance. We consider the class of admissible controls
that satisfy the following equation

L(t, x, k(t, x)) +O(k)[M(t, x)] = 0. (22)

Here we repeat the results of Liu and Leake [9], [11]. Let
x ∈ <n be a real n-vector, z(x) and y(x) be real r-vector
functions, and α(x) be a real function defined on <n.

Lemma 3: (Liu and Leake Lemma). Let X be a positive
definite symmetric-real matrix. Then z(x) satisfies the con-
dition

〈z(x), Xz(x)〉+ 2〈z(x), y(x)〉+ α(x) = 0 (23)

if and only if 〈y(x), X−1y(x)〉 ≥ α(x). In this case, the set
of all solutions to (23) is represented by

z(x) = βH−1a(x)−X−1y(x) (24)

where
β(x) =

(〈y(x), X−1y(x)〉 − α(x)
) 1

2 , (25)

H is a non-singular matrix such that X = H ′H , and a(x)
is an arbitrary unit vector.
Proof: See [11]. ¤

Consider an open set, Q ⊂ Q0.
Theorem 4: Assume M(t, x) ∈ C1,2

p (Q)∩C(Q̄) and that
the above assumptions in Section II are satisfied. Then we
have a solution k(t, x), which may or may not be admissible,
if and only if (suppressing the arguments)

(
1
2
B′ ∂M

∂x
+

1
2
G′

∂M2

∂x2
Fx

)′(
R +

1
2
G′

∂M2

∂x2
G

)−1

(
1
2
B′ ∂M

∂x
+

1
2
G′

∂M2

∂x2
Fx

)

≥ ∂M

∂t
+

1
2
x′F ′

∂2M

∂x2
Fx + h + g′

∂M

∂x
. (26)

Then a control law k is in KM if and only if (1) it is
admissible and (2) it is of the form,

k(t, x) = β(x)H−1a(x)− 1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)
, (27)

where a(x) is an arbitrary unit vector, H ′H = R +
1
2G′ ∂

2M(t,x)
∂x2 G, and

β(x) =

√
1
4

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)′

(
R + G′

∂2M

∂x2
G

)−1 (
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)

−∂M

∂t
− h− g′

∂M

∂x
− 1

2
x′F ′

∂2M

∂x2
Fx. (28)

Moreover β(x) = 0 corresponds to the optimal mean (LQG)
cost law.
Proof: Rewriting (22),

0 =
∂M(t, x)

∂t
+ L(t, x, k(t, x))

+
1
2

tr

(
σ(t, x, k)σ′(t, x, k)

∂2M(t, x)
∂x2

)

+f ′(t, x, k(t, x))
∂M(t, x)

∂x
, (29)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA15.6

4302



we obtain

0 =
∂M

∂t
+ h + k′

(
R +

1
2
G′

∂2M

∂x2
G

)
k + g′

(
∂M

∂x

)

+k′
(

B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)
+

1
2
x′F ′

∂2M

∂x2
x.(30)

One can then solve the above equation for k, using the
method of Liu and Leake; see Lemma 3. We may identify
from (23) the following:

z ⇔ k (31)

X ⇔
(

R +
1
2
G′

∂2M

∂x2
G

)
(32)

y ⇔ 1
2
B′ ∂M

∂x
+

1
2
G′

∂2M

∂x2
Fx (33)

α ⇔ ∂M

∂t
+ h + g′

∂M

∂x
+

1
2
x′F ′

∂2M

∂x2
Fx (34)

Accordingly, we must satisfy

y′X−1y ≥ α, (35)

which gives the desired equation (26).
Incorporating (30) into (26) gives

k′
(

R +
1
2
G′

∂2M

∂x2
G

)
k + k′

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)

≥ −1
4

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)′(
R +

1
2
G′

∂2M

∂x2
G

)−1

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)

The left hand side of the above inequality is −α (see
(30)), and the right hand side is −〈y, X−1y〉. Thus if k
is the minimal mean cost law then β = 0 and M(t, x) =
V1(t, x; k) = V ∗

1 (t, x). If k is not the minimal mean cost
law, and (26) is satisfied, then β > 0. We use (24) to obtain
the control law k as

k = β(x)H−1a(x)− 1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)
.

¤
For a wide variety of problems, therefore, we have shown

that sub-optimal mean control introduces the possibility of
reducing variance, i.e., we have some freedom in selecting
a(x).

To find the solution of the SCS control problem, we rewrite
the HJB equation (21) of Theorem 2 as

−∂V ∗(t, x)
∂t

= min
k∈KM

{
f ′(t, x, k(t, x))

∂V ∗(t, x)
∂x

+
1
2

tr

(
σ(t, x, k)σ′(t, x, k)

∂2V ∗(t, x)
∂x2

)

+
∥∥∥∥

∂M(t, x)
∂x

∥∥∥∥
2

σ(t,x,k)σ′(t,x,k)

}
(36)

with boundary condition V ∗(tF , x) = 0.

Theorem 5: Assume that the conditions of Theorem 2
and Theorem 4 are satisfied. Then a nonlinear optimal SCS
control law is of the form

k∗V |M =
E1 − 1

2D−1
1 C1∥∥E1 − 1

2D−1
1 C1

∥∥
X
β

− 1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)
, (37)

where

C1 = B′ ∂V

∂x
+ G′Fx tr

∂2V

∂x2
+ G′Fx tr

(
∂M

∂x

∂M

∂x

′
2
)

,

D1 =
1
2
G′G tr

∂2V

∂x2
+ G′G tr

(
∂M

∂x

∂M

∂x

′)
,

E1 =
1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1 (
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)
,

X = R +
1
2
G′

∂2M

∂x2
G. (38)

And the optimal cost function V ∗ satisfies the partial differ-
ential equation

−∂V ∗

∂t
=

[
−X(−D−1

1 + 2E1)
1√
β
‖ −D−1

1 + 2E1‖X

− 1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1

(
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)]′

{
C1 + D1

[
−X(−D−1

1 + 2E1)
1√
β
‖ −D−1

1 + 2E1‖X

−1
2

(
R +

1
2
G′

∂2M

∂x2
G

)−1 (
B′ ∂M

∂x
+ G′

∂2M

∂x2
Fx

)]}

(39)
Proof: Omitted for brevity. ¤

We will need the following series expansion theorem.
Theorem 6: If ‖ · ‖ denotes any matrix norm for which

‖I‖ = 1 and if ‖M‖ < 1, then (I + M)−1 exists,

(I + M)−1 = I −M + M2 − . . .

and
‖(I + M)−1‖] ≤ 1

1− ‖M‖ .

Proof: See [6, p. 384].
Our next step is to estimate β(x) in the case in which the

dynamical system is linear and the cost function accumulates
at a quadratic rate. We assume that the average cost function
is in a quadratic form.

M(t, x) = x′M(t)x + m(t); (40)

so that we can obtain the explicit evaluations

∂2M(t,x)
∂x2 = 2M(t), ∂M(t,x)

∂x = 2M(t)x, and (41)

∂M(t, x)
∂t

= x′Ṁ(t)x + ṁ(t), (42)

with which one obtains the following lemma.
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Lemma 7: With the same assumptions as Theorem 4 and
equation (40). Then for the special case

h(t, x) = x′(t)Q(t)x(t), Q(t) ≥ 0,

g(t, x) = A(t)x(t), (43)

of (11) and (13), we find β(x) in (27) to be

β(x) = ‖x‖R(t), (44)

where (suppressing the argument t)

R 4
= MB(R + G′MG)−1B′M
+ MB (R + G′MG)−1

G′MF

+ F ′MG (R + G′MG)−1
B′M

+ F ′MG(R + G′MG)−1G′MF

− Ṁ −Q− (A′M+MA)− F ′MF. (45)

A particular case of this situation occurs when

V ∗(t, x) = x′V(t)x + v(t)

in which case the optimal linear SCS control law (37) can
be rewritten as

k∗V |M = − [
(1− γ)(R + G′MG)−1(B′M+ G′MF )

−2γG′F trV + γ(G′G trV)−1B′V]
x. (46)

Proof: Omitted for brevity. ¤
Let us now restrict the class of controllers, KM , to be

vector space morphisms. To denote this, we replace the
notation KM by KML. It follows from the work of Liberty
and Hartwig [7] that M and V are then quadratic, which is
consistent with the assumptions and results in the foregoing
lemma. It is straightforward to see that equation (46) defines
a homogeneous mapping, by k∗V |M (t, αx) = αk∗V |M (t, x).
Indeed, the result follows by the definition

f(x) = ‖x‖R/‖x‖Ξ2 (47)

on the domain in which the denominator does not vanish,
together with the observation that f(αx) = αf(x) on this
domain. The question of whether or not k∗V |M (t, x) is a
morphism under the addition of vectors are shown in [11].

Thus the solution to the full-state-feedback SCS control
problem with linear controller is then given by the following
theorem.

Theorem 8: Assume V ∗(t, x) ∈ C1,2
p (Q0) ∩ C(Q̄0) and

the same assumptions as in Theorem 5 and Lemma 7. Then
for k ∈ KML, there exists a linear SCS controller, if and
only if there exist solutions M and V to the pair of matrix
differential equations

V̇ = −2Ψ′B′V − 2Ψ′G′F trV + ΨG′G trVΨ
+2A′V + trVF ′F, (48)

0 = F −GΨ, (49)

and

Ṁ = (MB + F ′MG) (R + G′MG)−1 (B′M+ G′MF )
−Q− (A′M+MA)− F ′MF

−γ2

{
[
(R + G′MG)−1(B′M+ G′MF )

−(G′G trV)−1B′V + 2G′F trV]′
(R + G′MG)[

(R + G′MG)−1(B′M+ G′MF )

−(G′G trV)−1B′V + 2G′F trV]
}

(50)

where

Ψ = (1− γ)(R + G′MG)−1(B′M+ G′MF )

−2γG′F trV + γ(G′G trV)−1B′V,

and with boundary conditions M(tF ) = QF and V(tF ) = 0,
for a suitable positive time function γ(t). In such a case, the
controller is given by equation (46).
Proof: Omitted for brevity. ¤

VI. RISK-SENSITIVE CONTROL

Another special case of statistical control is risk-sensitive
(RS)control. In RS control, all the cumulants of the cost
function are optimized. We consider the minimization of the
following cost function,

Ψ(t, x) = −1
θ

log E{exp(−θJ(t, x, k))}, (51)

and we obtain the following corresponding Hamilton-Jacobi-
Bellman (HJB) equation.

0 = O(k)[Ψ(t, x)]

−1
2

tr(Ψ′xσ(t, x, k)σ′(t, x, k)Ψx) + L(t, x, k(t, x))

(52)

Because all the cumulants of J are in quadratic form, we
assume that a solution of the form,

Ψ(t, x) = x′Px + p.

For the minimal RS control problem, we obtain the
following solution.

Theorem 9: The optimal linear controller of the RS con-
trol problem is given by

k∗ = −
∞∑

n=0

(−R−1G′PG)nR−1(B′P + G′PF )x

= −K(t)x(t) (53)
Proof: Omitted for brevity. ¤
Now, we are ready to find the corresponding Riccati type

equations. The solution to the full state feedback RS problem
with indefinite control weight is given by the following
theorem.
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Theorem 10: There exist a linear controller, if and only if
there exist solution P to the following Riccati type equations;

0 = Ṗ + PA + A′P + F ′PF + Q− 2(PB + F ′PG)[ ∞∑
n=0

(−R−1G′PG)nR−1(B′P + G′PF )

]

+

[ ∞∑
n=0

(−R−1G′PG)nR−1(B′P + G′PF )

]

(G′PG + R)[ ∞∑
n=0

(−R−1G′PG)nR−1(B′P + G′PF )

]
= 0

(54)

and

0 = P ′F − [
∞∑

n=0

(−R−1G′PG)nR−1(B′P + G′PF )G′P]

(55)
Proof: Omitted for brevity. ¤

VII. CONCLUSIONS

The statistical optimal controller for the second cumulant
case, SCS, and infinite cumulant case, RS, are found when
the diffusion term in the state equation is dependent on
control. The assumption that the control weighting matrix has
to be positive definite has not been used. Thus, the control
weighting can be negative definite and the optimal controller
may exist. The optimal controllers are summerized in the
following table.

Optimal Controllers
k∗LQG = −(R + G′MG)−1(B′M+ G′MF )x

k∗RS = −∑∞
n=0(−R−1G′PG)nR−1(B′P + G′PF )x

k∗V |M =
−[(1− γ)(R + G′MG)−1(B′M+ G′MF )

−2γG′F trV + γ(G′G trV)−1B′V]x
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