
A proximal center-based decomposition method for multi-agent convex

optimization

Ion Necoara and Johan A.K. Suykens

Abstract— In this paper we develop a new dual decomposition
method for optimizing a sum of convex objective functions
corresponding to multiple agents but with coupled constraints.
In our method we define a smooth Lagrangian, by using a
smoothing technique developed by Nesterov , which preserves
separability of the problem. With this approach we propose a
new decomposition method (the proximal center method) for
which efficiency estimates are derived and which improves the
bounds on the number of iterations of the classical dual gradient
scheme by an order of magnitude. The method involves every
agent optimizing an objective function that is the sum of his own
objective function and a smoothing term while the coordination
between agents is performed via the Lagrange multipliers
corresponding to the coupled constraints. Applications of the
new method for solving distributed model predictive control or
network optimization problems are also illustrated.

I. INTRODUCTION

Recent advances in computer power have led to the deriva-

tion of many parallel and distributed computation methods

for solving large-scale optimization problems (e.g. [1]). For

separable convex problems, i.e. separable objective function

but with coupled constraints (they arise in many fields of

engineering: e.g. network optimization [9], [14], distributed

model predictive control (MPC) [13]), many researchers have

proposed dual decomposition algorithms such as the dual

subgradient method [1], the alternating direction method [1],

[4], [5], [12], proximal method of multipliers [2], partial

inverse method [11], etc. In general, these methods are based

on alternating minimization in a Gauss-Seidel fashion of

an (Augmented) Lagrangian followed by a steepest ascent

update for the multipliers. However, the stepsize parameter

which has a very strong influence on the convergence rate of

these methods is very difficult to tune and the minimization

in a Gauss-Seidel fashion slows down the convergence

towards an optimum. Moreover, they do not provide any

complexity estimates for the general case (linear convergence

is obtained e.g. for strongly convex functions).

The purpose of this paper is to propose a new decom-

position method for separable convex optimization problems

that overcomes the disadvantages mentioned above. Based

on a smoothing technique recently developed by Nesterov

in [8], we obtain a smooth Lagrangian that preserves sep-

arability of the problem. Using this smooth Lagrangian,

we derive a new dual decomposition method in which the

corresponding parameters are selected optimally and thus

straightforward to tune. In contrast to the dual gradient
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update for the multipliers used by most of the decomposition

methods from the literature, our method uses an optimal

first-order oracle scheme (see e.g. [7], [8]) for updating

the multipliers. Therefore, we derive for the new method

an efficiency estimate for the general case which improves

with one order of magnitude the complexity of the classical

dual gradient method (i.e. the steepest ascent update). Up to

our knowledge these are the first efficiency estimate results

of a dual decomposition method for separable non-strongly

convex programs. The new algorithm is suitable for solving

distributed model predictive control problems or network

optimization problems since it is highly parallelizable and

thus it can be effectively implemented on parallel processors.

The reminder of this paper is organized as follows. Section

II contains the problem formulation, followed by a brief

description of some of the dual decomposition methods

derived in the literature. The main results of the paper

are presented in Section III, where we describe our new

decomposition method and its main properties. In Section

IV we show that network optimization or distributed model

predictive control problems corresponding to linear systems

with interacting subsystem dynamics and decoupled costs

can be recast in the framework of separable convex problems

for which our algorithm can be applied. Finally, numerical

simulations on some test problems are included.

II. PRELIMINARIES

A. Splitting methods for separable convex programs

An important application of convex duality theory is in

decomposition algorithms for solving large-scale problems

but with special structure. This type of problems arises e.g.

in the context of large-scale networks which consists of

multiple agents with different objectives or in the context of

distributive MPC for linear systems with coupled subsystem

dynamics. The following separable convex program will be

considered in this paper:

f∗ = min
x∈X,z∈Z

{

φ1(x) + φ2(z) : Ax+Bz = b
}

, (1)

where φ1 : R
m → R and φ2 : R

p → R are continuous

convex functions on X and Z, respectively, A is an n×m

matrix, B an n× p matrix, and b is in R
n. In this paper we

do not assume φ1 and/or φ2 to be strongly convex or even

smooth. Moreover, we assume that X ⊆ R
m and Z ⊆ R

p

are compact convex sets. We use different norms on R
n,Rm

and R
p, not necessarily the Euclidean norms. However, for

simplicity in notation we do not use indices to specify the

norms on R
n,Rm and R

p, since from the context it is clear

in which Euclidean space we are and which norm we use.
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Remark 2.1 Note that the method developed in this paper

can treat both coupled inequalities Ax + Bz ≤ b and/or

equalities Ax+Bz=b (see [6]). Moreover, we can consider

any finite sum of φi’s. However, for simplicity of the

exposition we restrict ourselves to problems of the form (1).

Let 〈·, ·〉 denote a scalar product on the Euclidean space

R
n. By forming the Lagrangian corresponding to the linear

constraints (with the Lagrange multipliers λ ∈ R
n), i.e.

L0(x, z, λ) = φ1(x) + φ2(z) + 〈λ,Ax+Bz − b〉,

and using the dual decomposition method, one arrives at the

following decomposition algorithm:

Algorithm 2.2: ([1]) for k ≥ 0 do

1. given λk, minimize the Lagrangian (xk+1, zk+1) =
arg minx∈X,z∈Z L0(x, z, λ

k), or equivalently mini-

mize over x and z independently

xk+1 = arg min
x∈X

[φ1(x) + 〈λk, Ax〉]

zk+1 = arg min
z∈Z

[φ2(z) + 〈λk, Bz〉]

2. update the multipliers by the iteration

λk+1 = λk + ck(Axk+1 +Bzk+1 − b),
where ck is a positive step-size.

The following assumption holds throughout the paper:

Assumption 2.3: Constraint qualification holds for (1).

It can be shown that Algorithm 2.2 is convergent under

Assumption 2.3 and the assumption that both φ1 and φ2 are

strongly convex functions (the later guarantees that the mini-

mizer (xk+1, zk+1) is unique). In fact, under the assumption

of strong convexity it follows that the dual function

f0(λ) = min
x∈X,z∈Z

φ1(x) + φ2(z) + 〈λ,Ax+Bz − b〉

is differentiable [10], and thus Algorithm 2.2 is the gradient

method with stepsize ck for maximizing the dual function.

However, for many interesting problems, especially arising

from transformations that leads to decomposition, the func-

tions φ1 and φ2 are not strongly convex. There are some

methods (e.g. alternating direction method [1], [5], [12],

proximal point method [2], partial inverse method [11]) that

overcome this difficulty based on alternating minimization

in a Gauss-Seidel fashion of the Augmented Lagrangian,

followed by a steepest ascent update of the multipliers. A

computational drawback of these schemes is that the prox-

term c
2‖Ax+Bz−b‖2, using the Euclidean norm framework,

present in the Augmented Lagrangian is not separable in x

and z. Another disadvantage is that they cannot deal with

coupled inequalities in general. Moreover, these schemes

were shown to be very sensitive to the value of the parameter

c, with difficulties in practice to obtain the best convergence

rate. Some heuristics for choosing c can be found in the

literature [2], [5], [12]. Note that alternating direction method

variants which allow for inexact minimization was proposed

in e.g. [2]. A closely related method is the partial inverse of

a monotone operator developed in [11].

B. Accelerated scheme for smooth maximization

In this section we briefly describe an accelerated scheme

for smooth convex functions developed by Nesterov in [7],

[8]. Let f be a given concave and differentiable function on

a closed convex set Q̂ ⊆ R
n that has a Lipschitz continuous

gradient with Lipschitz constant L.

Definition 2.4: [8] We define a prox-function d of the set

Q̂ as a function with the following properties: d is continu-

ous, strongly convex on Q̂ with convexity parameter σ, and

u0 is the center of the set Q̂, i.e. u0 = arg minx∈Q̂ d(x)

such that d(u0) = 0.

The goal is to find an approximate solution of the convex

optimization problem x∗ = arg maxx∈Q̂ f(x). In Nesterov’s

scheme three sequences of points from Q̂ are updated

recursively: {uk}k≥0, {x
k}k≥0, and {vk}k≥0. The algorithm

can be described as follows:

Algorithm 2.5: ([8]) for k ≥ 0 do

1. compute ∇f(uk)
2. find x̄k = arg maxx∈Q̂〈∇f(uk), x−uk〉− L

2 ‖x−u
k‖2

and define xk = arg maxx∈{x̄k,xk−1,uk} f(x)
3. find vk = arg maxx∈Q̂ −L

σ
d(x) +

∑k
l=0

l+1
2 〈∇f(ul), x− ul〉

4. set uk+1 = k+1
k+3x

k + 2
k+3v

k.

The main property of the Algorithm 2.5 is the following

relation [8]:

(k + 1)(k + 2)

4
f(xk) ≥ max

x∈Q̂

−
L

σ
d(x)+

k
∑

l=0

l + 1

2
[f(ul) + 〈∇f(ul), x− ul〉]. (2)

Using this property Nesterov proves in [8] that the efficiency

estimates of Algorithm 2.5 is of the order O(
√

L
ǫ
), higher

than the corresponding pure gradient method for the same

smooth problem by an order of magnitude.

III. A NEW DECOMPOSITION METHOD BASED ON

SMOOTHING THE LAGRANGIAN

In this section we propose a new method to smoothen the

Lagrangian of (1), inspired from [8]. This smoothing tech-

nique preserves the separability of the problem and moreover

the corresponding parameters are easy to tune. Since separa-

bility is preserved under this smoothing technique, we derive

a new dual decomposition method in which the multipliers

are updated according to Algorithm 2.5. Moreover, we obtain

an efficiency estimate of the new method for the general

case. Note that with our method we can treat both coupled

inequalities (Ax+Bz ≤ b) and/or equalities (Ax+Bz = b).

A. Smoothing the Lagrangian

Let dX and dZ be two prox-functions for the compact

convex sets X and Z, with convexity parameter σX and

σZ , respectively. Denote x0 = arg minx∈X dX(x), z0 =
arg minz∈Z dZ(z). Since X and Z are compact and

dX and dZ are continuous, we can choose finite and

positive constants DX ≥ maxx∈X dX(x) and DZ ≥
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maxz∈Z dZ(z). We also introduce the following notation

‖A‖ = max‖λ‖=1,‖x‖=1〈λ,Ax〉. Note that

‖A‖ = max
‖x‖=1

‖Ax‖∗ and ‖Ax‖∗ ≤ ‖A‖‖x‖ ∀x,

where ‖s‖∗ = max‖x‖=1〈s, x〉 is the corresponding dual

norm of the norm used on R
n [10]. Similarly for B.

Let us introduce the following function:

fc(λ) = min
x∈X,z∈Z

φ1(x) + φ2(z)+〈λ,Ax+Bz − b〉+

c
(

dX(x) + dZ(z)
)

, (3)

where c is a positive smoothness parameter that will be

defined in the sequel. Note that the objective function in

(3) is separable in x and z, i.e.

fc(λ) = −〈λ, b〉+ min
x∈X

[φ1(x) + 〈λ,Ax〉 + c dX(x)]+

min
z∈Z

[φ2(z) + 〈λ,Bz〉 + c dZ(z)]. (4)

Denote by x(λ) and z(λ) the optimal solution of the mini-

mization problem in x and z, respectively. Function fc has

the following smoothness properties:

Theorem 3.1: [6] The function fc is concave and contin-

uously differentiable at any λ ∈ R
n. Moreover, its gradient

∇fc(λ) = Ax(λ) + Bz(λ) − b is Lipschitz continuous

with Lipschitz constant Lc = ‖A‖2

cσX
+ ‖B‖2

cσZ
. The following

inequalities also hold:

fc(λ) ≥ f0(λ) ≥ fc(λ) − c(DX +DZ) ∀λ ∈ R
n. (5)

Proof: The proof follows from standard convex argu-

ment and can be found in [6].

B. A proximal center–based decomposition method

In this section we derive a new decomposition method

based on the smoothing technique described in Section III-

A. The new algorithm, called here the proximal center

algorithm, has the nice feature that the coordination be-

tween agents involves the maximization of a smooth convex

objective function (i.e. with Lipschitz continuous gradient).

Moreover, the resource allocation stage consists in solving

in parallel by the each agent of a minimization problem with

strongly convex objective. The new method belongs to the

class of two-level algorithms [3] and is particularly suitable

for separable convex problems where the minimizations over

x and z in (4) are easily carried out.

Let us apply Nesterov’s accelerated method described in

Algorithm 2.5 to the concave function fc that has a Lipschitz

continuous gradient:

max
λ∈Q

fc(λ), (6)

where Q is a given closed convex set in R
n that contains

at least one optimal multiplier λ∗ ∈ Λ∗ (here Λ∗ denotes

the set of optimal multipliers). Notice that Q ⊆ R
n in the

presence of linear equalities (i.e. Ax+Bz−b = 0), Q ⊆ R
n
+,

where R+ denotes the set of nonnegative real numbers, in

the presence of linear inequalities (i.e. Ax + Bz − b ≤ 0),

or Q ⊆ (Rn1 × R
n2

+ ), where n1 + n2 = n, when both,

equalities and inequalities are present. Note that according

to Algorithm 2.5 we also need to choose a prox-function dQ

for the set Q with the convexity parameter σQ and center u0.

The proximal center algorithm can be described as follows:

Algorithm 3.2: for k ≥ 0 do

1. given uk compute in parallel

xk+1 = arg min
x∈X

[φ1(x) + 〈uk, Ax〉 + c dX(x)],

zk+1 = arg min
z∈Z

[φ2(z) + 〈uk, Bz〉 + c dZ(z)].

2. compute fc(u
k),∇fc(u

k) = Axk+1 +Bzk+1 − b

3. find λ̄k = arg maxλ∈Q〈∇fc(u
k), λ − uk〉 − Lc

2 ‖λ −
uk‖2 and define λk = arg maxλ∈{λ̄k,λk−1,uk} fc(λ)

4. find vk = arg maxλ∈Q − Lc

σQ
dQ(λ) +

∑k

l=0
l+1
2 〈∇fc(u

l), λ− ul〉
5. set uk+1 = k+1

k+3λ
k + 2

k+3v
k.

The proximal center algorithm is suitable for decomposition

since it is highly parallelizable: the agents can solve their

corresponding minimization problems in parallel. This is an

advantage of our method compared to most of the alternating

direction methods based on Gauss-Seidel iterations that do

not have this feature. We now derive a lower bound for the

value of the objective function which will be used frequently

in the sequel:

Lemma 3.3: [6] For any λ∗ ∈ Λ∗ and x̂ ∈ X, ẑ ∈ Z, the

following lower bound on primal gap holds: [φ1(x̂)+φ2(ẑ)]−
f∗ ≥ 〈Ax̂+Bẑ − b, λ∗〉 ≥ −‖λ∗‖∗‖Ax̂+Bẑ − b‖∗.

The previous lemma shows that if ‖Ax̂ + Bẑ − b‖∗ ≤ ǫc,

then the primal gap is bounded: for all λ̂ ∈ Q

−ǫc‖λ
∗‖∗ ≤φ1(x̂) + φ2(ẑ)] − f∗ ≤ (7)

φ1(x̂) + φ2(ẑ) − f0(λ̂).

Therefore, if we are able to derive an upper bound ǫ for

the duality gap and ǫc for the coupling constraints for some

given λ̂ and x̂ ∈ X, ẑ ∈ Z, then we conclude that (x̂, ẑ)
is an (ǫ, ǫc)-solution for problem (1) (since in this case

−ǫc‖λ
∗‖∗ ≤ φ1(x̂) + φ2(ẑ) − f∗ ≤ ǫ for all λ∗ ∈ Λ∗).

The next theorem derives an upper bound on the duality gap

for our method.

Theorem 3.4: Assume that there exists a closed convex

set Q that contains a λ∗ ∈ Λ∗. Then, after k iterations we

obtain an approximate solution to the problem (1) (x̂, ẑ) =
∑k

l=0
2(l+1)

(k+1)(k+2) (x
l+1, zl+1) and λ̂ = λk which satisfy the

following duality gap:

0 ≤ [φ1(x̂) + φ2(ẑ)] − f0(λ̂) ≤ c(DX +DZ)−

max
λ∈Q

[

−
4Lc

σQ(k + 1)2
dQ(λ)+〈Ax̂+Bẑ − b, λ〉

]

. (8)

Proof: For an arbitrary c, we have from the inequality

(2) that after k iterations the Lagrange multiplier λ̂ satisfies

the following relation:

(k + 1)(k + 2)

4
fc(λ̂) ≥ max

λ∈Q
−
Lc

σQ

dQ(λ)+

k
∑

l=0

l + 1

2
[fc(u

l) + 〈∇fc(u
l), λ− ul〉].
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In view of the previous inequality we have:

fc(λ̂) ≥ max
λ∈Q

−
4Lc

σQ(k + 1)2
dQ(λ)+

k
∑

l=0

2(l + 1)

(k + 1)(k + 2)
[fc(u

l) + 〈∇fc(u
l), λ− ul〉].

Now, we replace fc(u
l) and ∇fc(u

l) with the expressions

given in step 2 of Algorithm 3.2:

k
∑

l=0

2(l + 1)

(k + 1)(k + 2)
[fc(u

l) + 〈∇fc(u
l), λ− ul〉] =

k
∑

l=0

2(l + 1)

(k + 1)(k + 2)
[φ1(x

l+1) + φ2(z
l+1)+

c
(

dX(xl+1) + dZ(zl+1)
)

+ 〈Axl+1 +Bzl+1 − b, λ〉] ≥

k
∑

l=0

2(l + 1)

(k + 1)(k + 2)
[φ1(x

l+1) + φ2(z
l+1)+

〈Axl+1 +Bzl+1 − b, λ〉] ≥

φ1(x̂) + φ2(ẑ) + 〈Ax̂+Bẑ − b, λ〉, ∀λ ∈ Q.

The first inequality follows from the definition of a prox-

function and the second inequality follows from the fact that

φ1 and φ2 are convex functions. Using the last relation and

(5) we derive the bound (8) on the duality gap.

We now show how to construct the set Q and how to

choose optimally the smoothness parameter c. In the next

two sections we discuss two cases depending on the choices

for Q and dQ.

C. Efficiency estimates for compact Q

Let DQ be a positive constant satisfying

max
λ∈Q

dQ(λ) ≤ DQ. (9)

Let us note that we can choose DQ finite whenever Q is

compact. In this section we specialize the result of Theorem

3.4 for the case when Q has the following form: Q = {λ ∈
R

n : ‖λ‖ ≤ R}.

Theorem 3.5: [6] Assume that Λ∗ is nonempty and

bounded. Then, the sequence {λk}k≥0 generated by Algo-

rithm 3.2 is bounded.

Since Assumption 2.3 holds, then Λ∗ is nonempty. Con-

ditions under which Λ∗ is bounded can be found in [10]

(page 301). Under the assumptions of Theorem 3.5, it follows

that there exists R > 0 sufficiently large such that the set

Q = {λ ∈ R
n : ‖λ‖ ≤ R} contains Λ∗, and thus we can

assume DQ to be finite. Notice that similar arguments were

used in order to prove convergence of two-level algorithms

for convex optimization problems (see e.g. [3]).

Denote α = 4
√

DQ(DX +DZ)( ‖A‖2

σQσX
+ ‖B‖2

σQσZ

)

. The

next theorem shows how to choose optimally the smoothness

parameter c and provides the complexity estimates of our

method when Q is a ball. Our proof follows a similar

reasoning as in [8], but requires more complex arguments.

Theorem 3.6: Assume that there exists R such that the set

Q = {λ ∈ R
n : ‖λ‖ ≤ R} contains a λ∗ ∈ Λ∗. Taking c =

2
k+1

√

DQ

DX+DZ

( ‖A‖2

σQσX
+ ‖B‖2

σQσZ

)

, then after k iterations we

obtain an approximate solution to the problem (1) (x̂, ẑ) =
∑k

l=0
2(l+1)

(k+1)(k+2) (x
l+1, zl+1) and λ̂ = λk which satisfy the

following bounds on the duality gap and constraints:

0 ≤ [φ1(x̂) + φ2(ẑ)] − f0(λ̂) ≤
α

k + 1

‖Ax̂+Bẑ − b‖∗ ≤
α

(R− ‖λ∗‖∗)(k + 1)
.

Proof: Using (9) and the form of Q we obtain that

max
λ∈Q

−
4Lc

σQ(k + 1)2
dQ(λ) + 〈Ax̂+Bẑ − b, λ〉 ≥

−
4LcDQ

σQ(k + 1)2
+ max

‖λ‖≤R
〈Ax̂+Bẑ − b, λ〉 =

−
4LcDQ

σQ(k + 1)2
+R‖Ax̂+Bẑ − b‖∗.

In view of the previous relation and Theorem 3.4 we obtain

the following duality gap:

[φ1(x̂) + φ2(ẑ)] − f0(λ̂) ≤ c(DX +DZ) +
4LcDQ

σQ(k + 1)2
−

R‖Ax̂+Bẑ − b‖∗ ≤ c(DX +DZ) +
4LcDQ

σQ(k + 1)2

Minimizing the right-hand side of this inequality over c we

get the above expressions for c and for the upper bound

on the duality gap from the theorem. Moreover, for the

constraints using Lemma 3.3 and inequality (7) we have that

(R−‖λ∗‖∗)‖Ax̂+Bẑ− b‖∗ ≤ c(DX +DZ)+
4LcDQ

σQ(k + 1)2

and replacing c derived above we also get the bound on the

constraints violation.

From Theorem 3.6 we obtain that the complex-

ity for finding an (ǫ, ǫc)-approximation of the opti-

mum f∗, when the set Q is a ball, is k + 1 =

4
√

DQ(DX +DZ)
( ‖A‖2

σQσX
+ ‖B‖2

σQσZ

)

1
ǫ
, i.e. the efficiency es-

timates of our scheme is of the order O( 1
ǫ
), better than most

non-smooth optimization schemes such as the subgradient

method that have an efficiency estimate of the order O( 1
ǫ2

)
(see e.g. [7]). The dependence of the parameters c and Lc

on ǫ is as follows: c = ǫ
2(DX+DZ) and Lc =

(‖A‖2

σX
+

‖B‖2

σZ

)

DX+DZ

2ǫ
. The main advantage of our scheme is that it

is fully automatic, the parameter c is chosen unambiguously,

which is crucial for justifying the convergence properties of

Algorithm 3.2. Another advantage of the proximal center

method is that we are free in the choice of the norms in the

spaces R
n,Rm and R

p, while most of the decomposition

schemes are based on the Euclidean norm. Thus, we can

choose the norms which make the ratio
‖A‖2

σQσX
as small as

possible.

D. Efficiency estimates for the Euclidean norm

In this section we assume the Euclidean norm on R
n.
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Theorem 3.7: Assume that Q = R
n and dQ(λ) = 1

2‖λ‖
2,

with the Euclidean norm on R
n. Taking c = ǫ

DX+DZ
and

k + 1 = 2
√

(‖A‖2

σX
+ ‖B‖2

σZ

)

(DX +DZ) 1
ǫ
, then after k

iterations the duality gap is less than ǫ and the constraints

satisfy ‖Ax̂+Bẑ − b‖ ≤ ǫ
(

‖λ∗‖ +
√

‖λ∗‖2 + 2
)

.

Proof: Let us note that for these choices for Q and dQ

we have σQ = 1 and thus

max
λ∈Rn

−
4Lc

σQ(k + 1)2
dQ(λ) + 〈Ax̂+Bẑ − b, λ〉 =

(k + 1)2

8Lc

‖Ax̂+Bẑ − b‖2.

We obtain the following bound on the duality gap (Th. 3.4):

[φ1(x̂) + φ2(ẑ)] − f0(λ̂) ≤

c(DX +DZ) −
(k + 1)2

8Lc

‖Ax̂+Bẑ − b‖2 ≤ c(DX +DZ).

It follows that taking c = ǫ
DX+DZ

, the duality gap is less

than ǫ. For the constraints using Lemma 3.3 and inequality

(7) we get that ‖Ax̂ + Bẑ − b‖ satisfies the second order

inequality in y:
(k+1)2

8Lc
y2 − ‖λ∗‖y − ǫ ≤ 0. Therefore,

‖Ax̂ + Bẑ − b‖ must be less than the largest root of the

corresponding second-order equation, i.e.

‖Ax̂+Bẑ − b‖≤
(

‖λ∗‖+

√

‖λ∗‖2 +
ǫ(k + 1)2

2Lc

) 4Lc

(k + 1)2
.

After some long but straightforward computations we get

that after k iterations, where k defined as in the theorem, we

also get ‖Ax̂+Bẑ − b‖ ≤ ǫ
(

‖λ∗‖ +
√

‖λ∗‖2 + 2
)

.

Remark 3.8 When coupling inequalities Ax + Bz − b ≤
0 are present, then we choose Q = R

n
+. Using the same

reasoning as before we get that maxλ≥0 −
4Lc

σQ(k+1)2 dQ(λ)+

〈Ax̂+Bẑ − b, λ〉 = (k+1)2

8Lc
‖[Ax̂+Bẑ − b]+‖2, where [y]+

denotes the projection of y ∈ R
n onto R

n
+. Taking for c and

k the same values as in Theorem 3.7, we can conclude that

after k iterations the duality gap is less than ǫ and using a

modified version of Lemma 3.3 (i.e. a generalized version

of Cauchy-Schwarz inequality: −〈y, λ〉 ≥ −‖[y]+‖ ‖λ‖ for

any y ∈ R
n, λ ≥ 0) the constraints violation satisfy ‖[Ax̂+

Bẑ − b]+‖ ≤ ǫ
(

‖λ∗‖ +
√

‖λ∗‖2 + 2
)

.

IV. APPLICATIONS

A. Applications with separable structure

In this section we briefly discuss some of the applications

to which our method can be applied.

First application that we will discuss here is the control

of large scale systems with interacting subsystem dynamics.

A distributed MPC framework is appealing in this context

since this framework allows us to design local subsystem-

based controllers that take care of the interactions between

different subsystems and physical constraints. We assume

that the overall system model can be decomposed into M

appropriate subsystem models:

xi(k + 1) =
∑

j∈N (i)

Aijx
j(k) +Biju

j(k) ∀i = 1 · · ·M,

where N (i) denotes the set of subsystems that interact with

the ith subsystem, including itself. The control and state

sequence must satisfy local constraints

xi(k) ∈ Ωi, u
i(k) ∈ Ui ∀i = 1 · · ·M and ∀k ≥ 0,

where the sets Ωi and Ui are usually convex compact

sets with the origin in their interior. In general the control

objective is to steer the state of the system to origin or any

other set point in a “best” way. Performance is expressed

via a stage cost, which in this paper we assume to have

the following form (see also [13]):
∑M

i=1 ℓi(x
i, ui), where

usually ℓi is a convex quadratic function, but not necessarily

strictly convex. Let N denote the prediction horizon. In MPC

we must solve at each step k, given xi(k) = xi, a finite-

horizon optimal control problem of the following form:

min
xi

l
,ui

l

N−1
∑

l=0

M
∑

i=1

ℓi(x
i
l, u

i
l) (10)

s.t. : xi
0 = xi, xi

l+1 =
∑

j∈N (i)

Aijx
j
l +Biju

j
l

xi
N ∈ Ωi, x

i
l ∈ Ωi, u

i
l ∈ Ui ∀l = 0· · ·N−1, ∀i = 1· · ·M

Note that a similar formulation of distributed MPC

for coupled linear subsystems with decoupled costs was

given in [13], but without state constraints (i.e. with-

out imposing xi(k) ∈ Ωi). Let us introduce xi =
(xi

0 · · ·x
i
N ui

0 · · ·u
i
N−1),Xi = ΩN+1

i × UN
i and ψi(x

i) =
∑N−1

l=0 ℓi(x
i
l, u

i
l). Then, the control problem (10) can be

recast as a separable convex program:

min
xi∈Xi

{

M
∑

i=1

ψi(xi) :

M
∑

i=1

Cixi − γ = 0
}

, (11)

where the matrices Ci’s are defined appropriately.

Network optimization furnishes another areas in which

our Algorithm 3.2 leads to a new method of solution. In

this application the convex optimization problem has the

following form [9], [14]:

min
xi∈Xi

{

M
∑

i=1

ψi(xi) :

M
∑

i=1

Cixi − γ = 0,

M
∑

i=1

Dixi − β ≤ 0
}

,

(12)

where Xi are compact convex sets (in general balls) in R
m,

ψi’s are non-strictly convex functions and M denotes the

number of agents in the network. Note that (11) is a particular

case of the separable convex problem (12).

In [13] the optimization problem (10) (or equivalently

(11)) was solved in a decentralized fashion, iterating the

Jacobi algorithm pmax times [1]. But, there is no theoretical

guarantee of the Jacobi algorithm about how good is the

approximation of the optimum after pmax iterations and

moreover we need strictly convex functions ψi to prove

asymptotic convergence to the optimum. However, if we

solve (10) using our Algorithm 3.2, we have a guaranteed

upper bound on the approximation after pmax iterations (see

Theorem 3.4). In [9], [14] the optimization problem (12) is
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solved using the dual subgradient method described in the

Algorithm 2.2. From the simulation tests of Section IV-B we

see that our Algorithm 3.2 is superior to Algorithm 2.2.

Let us describe briefly the main ingredients of Algorithm

3.2 for problem (12). Let dXi
be properly chosen prox-

functions, according to the structure of the sets Xi’s and the

norm1 used on R
m. In this case the smooth dual function fc

has the form:

fc(λ) = min
xi∈Xi

M
∑

i=1

ψi(xi) + 〈λ1,

M
∑

i=1

Cixi − α〉+

〈λ2,

M
∑

i=1

Dixi − β〉 + c

M
∑

i=1

dXi
(xi).

Moreover, Q ⊆ (Rn1 × R
n2

+ ), where n1 and n2 denote

the number of equality and inequality constraints. It is

worth noting that in this case all the minimization problems

involved in Algorithm 3.2 are decomposable in xi and thus

the agents can solve the optimization problem (12) in a

decentralized fashion.

B. Computational results

We conclude this paper with the results of computational

experiments on a random set of problems of the form

(12), where ψi’s are convex quadratic functions (but not

strictly convex) and Xi’s are balls in R
m defined with

the Euclidean norm. Similarly, R
n (corresponding to the

Lagrange multipliers) is endowed with the Euclidean norm.

m nr iter Alg 3.2 nr iter Alg 2.2

50 1384(0.01) 5000(0.31)
100 3289(0.01) 5000(0.49)

1000 7312(0.01) 10000(0.57)

50 5000(0.0011) 5000(0.31)
100 5000(0.004) 5000(0.49)

1000 10000(0.007) 10000(0.57)

In the table we display the number of iterations of the

Algorithm 2.2 and 3.2 for different values of m = 50, 100
and 1000, and for M = 10 agents. For m = 50 and m = 100
the maximum number of iterations that we allow is 5000. For

m = 1000 we iterate at most 10000 times. We also display

between brackets the corresponding accuracy. We see that

the accuracy of the approximation of the optimum is much

better with our Algorithm 3.2 than with Algorithm 2.2.

V. CONCLUSIONS

A new decomposition method in convex programming

is developed in this paper using the framework of dual

decomposition. Our method combines the computationally

non-expensive cost of the gradient method with the efficiency

of structural optimization for solving non-smooth separa-

ble convex programs. Although our decomposition method

1For example if Xi = {x ∈ R
m : ‖x−x0‖2 ≤ R}, where ‖ ·‖ denotes

here the Euclidean norm, then it is natural to take dXi
(x) =

‖x−x0‖
2

2

2
.

If Xi = {x ∈ R
m : x ≥ 0,

P

m

i=1 x(i) = 1}, then the norm ‖x‖ =
P

m

i=1 |x(i)| and dXi
(x) = ln m +

P

m

i=1 x(i) ln x(i) is more suitable
(see [8] for more details).

resembles proximal based methods, it differs both in the

computational steps and in the choice of the parameters of

the method. Contrary to most proximal based methods that

enforce the next iterates to be close to the previous ones,

our method uses fixed centers in the prox-terms which leads

to more freedom in the next iterates. Another advantage of

our proximal center method is that it is fully automatic, i.e.

the parameters of the scheme are chosen optimally, which

are crucial for justifying the convergence properties of the

new scheme. We presented efficiency estimate results of

the new decomposition method for general separable convex

problems. We also show that our algorithm can be used to

solve network optimization or distributed model predictive

control problems. The computations on some test problems

confirm that the proposed method works well in practice.
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