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Abstract— The paper presents a controller for an active filter
to compensate reactive power and current harmonic distortion
in a single phase system, i.e., to guarantee a power factor close
to unity. The proposed controller considers the negative effects
caused by the interaction between load and line impedances,
which may lead to instabilities. In particular, the scheme
provides a solution in the critical scenario, when the load is
composed by a capacitor connected in parallel to a distorted
current source. The rationale behind the solution consists in the
introduction of a lead compensator with a gain that is adjusted
by adaptation, which replaces the conventional proportional
term. This modification improves the stability conditions when
the load and source impedances are considerable. Special
attention is given to the current control loop because it is
precisely in this loop where the instability problems arise.
Realistic numerical results are provided to illustrate the benefits
of the proposed solution.

I. INTRODUCTION

Many domestic and industrial loads are of nonlinear
nature, that is, they are composed of electronic devices with
a nonlinear behavior, which introduce harmonic distortion
into the electric grid, and thus they are also referred as
distorting loads. A direct consequence is a low power factor,
deterioration of devices connected to the net, overheating
of transformers and interferences to the nearby costumers,
among others. The shunt active filters arise as an effective
solution for the compensation of reactive power, harmonic
distortion and current unbalance due to distorting loads.
Different control solutions for active filters have appeared
in [1]-[4]. Usually, the models used for the control design
do not consider the dynamics of the load nor the line
impedances, then it is expected that direct application of an
active filter under this controller may produce oscillations
and an instability scenario is prone to happen. It has been
observed that this issue is particularly worsen when the active
filter intends to compensate higher order harmonics [5]. As
a consequence of these unmodeled dynamics a resonance
effect arises, which is produced by the interaction between a
predominantly capacitive load1, the line impedance and the
connection of the shunt active filter. This phenomenon may
induce instability and frequent firing of protections, damag-
ing the bank of capacitors and the line isolation. It is clear
that the accelerated growth of harmonic distortion sources
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worsen these problems. Some works have explained the
instability mechanism when the aforementioned impedances
are considered. In [5]-[8] the authors explain the instability
mechanism that arises when a dynamical load is connected
to the electric grid. Then, it is shown that the conventional
strategies, using the load and line current detection method,
may conduce to an unstable operation. In [7] the authors
show that current detection methods may become unstable
when a capacitor is connected in parallel to the load. In
[5] and [8] the authors present a voltage detection method
that somehow alleviates this issue. On the other hand, a
solution commonly used in practice consists in introducing
an inductor in series to the load, with the idea of making
the equivalent load predominantly inductive [9]. However,
this solution, although effective in most cases, may result
expensive.

This paper proposes a controller to guarantee the com-
pensation of harmonic distortion in spite of the presence
of impedances in the line and load. In particular, the case
studied considers an inductance plus a resistor as the line
impedance and a capacitor as the load impedance, which
is a critical situation that has received much attention in
the last few years [5]-[8]. The idea behind this solution
consists in replacing the proportional term used in the current
loop of recently proposed controllers [4], [10]-[12] by a
lead compensator. It is analytically shown that, after this
modification, the stability conditions are improved. Then, it is
proposed to use an adaptation to estimate the associated gain
of the lead compensator to enhance the robustness against
parameters variation. Finally, to show the benefits of the
proposed controller, numerical results using PSCAD 4.0 have
been included using a single-phase full-bridge shunt active
filter.

II. SYSTEM DESCRIPTION

A. Shunt Active Filter

Figure 1 shows the topology of the shunt active filter,
which is designed to compensate reactive power and har-
monic distortion in a distribution system. This topology is
composed of a voltage source inverter (VSI) connected to
the line via an inductor L. A distorting nonlinear load is
connected to the voltage source vS producing a distorting
current iLT which is considered as a disturbance. The voltage
in the point of common connection is represented by v ′

S .
Traditionally, for control design purposes, it is assumed
that the load current is static, in the sense that, it can be
considered as a simple distorted current source without any
associated impedance. It is also assumed that the impedances
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Fig. 1. Single-phase full-bridge shunt active filter connected to a distrib-
ution system.

associated to voltage source and transmission line are both
negligible. A capacitor C is connected on the dc-side of the
VSI.

The system dynamics of the scheme shown in Fig. 1,
where the impedances of line and load have been omitted,
are described by

L
di

dt
= vS − e (1)

C

2
d(v2

C)
dt

= ei − v2
C

R
(2)

iS = i + iLT (3)

where iS and i represent line and injected currents, respec-
tively, vC is the capacitor voltage on the dc-side; e � uvC

is the injected voltage representing the actual control input,
with u∈ [−1, 1] the duty ratio of a PWM generated switching
sequence δ ∈ {0, 1} of a relatively high frequency. This is
referred in the power electronics literature as the average
model [13]. For security purposes, it is usual, in normal
active filters, to connect a large resistor to discharge the
capacitor whenever the system is turned off. This resistor,
together with switching and other losses are lumped in the
model as an unknown constant resistive element R.

To facilitate the control design, it is common in practice
to assume that the current dynamics (1) responds much
faster than the dynamics involving the capacitor (2), and
thus, they can be decoupled from one another invoking time
scale separation. This assumption allows to split the control
design in two loops, namely, current inner loop and voltage
outer loop. Based on this idea, and following the energy
shaping plus damping injection technique of the passivity-
based control approach, a solution was presented in [4],
which is briefly revisited below as it will serve as the basis
for the proposed controller. The interested reader is referred
to [4] for additional details.

Current inner loop. The control objective of this control
loop consists in injecting the necessary current so that, the
currents iS is forced to be proportional to the source line
voltage vS . The proportionality constant, denoted as scalar g,
represents an equivalent conductance observed at the point of
common connection. In other words, the objective consists

in driving ĩS = iS − i∗S to zero, where i∗S is the current
reference given by

i∗S = gvS (4)

where g is determined by the voltage regulation loop, as will
be shown later.

A solution for this tracking objective consists in the
construction of a control signal u that cancels vS , adds
a damping term to reinforce the stability, and introduces
a bank of resonant filters tuned at the harmonics under
compensation. The expression of such a current tracking loop
is given by

e = vS + k1ĩS +
∑
k∈H

2γks

s2 + k2ω2
0

ĩS (5)

where s denotes the Laplace complex variable, k1 and γk,
with k ∈ H, are positive control design parameters, and
H = {1, 3, 5, ...} represents the set of harmonics indexes
considered for compensation, in this case the odd harmonics.
It is well known that single phase distorting loads produce
mainly odd harmonics of the fundamental frequency. Notice
that the resonant filters are tuned at the k-th harmonic
component, i.e., kω0. In [4] the authors show that controller
(5), in closed loop with system (1)-(3), guarantees that
ĩS goes to zero asympotically, as far as there are enough
resonant filters to compensate each harmonic component of
the disturbances, and under the assumption of nonlinear static
disturbances.

The infinite gain, provided by the resonant filters in the
control scheme (5), represents a potential source of instabil-
ity. To alleviate this issue, in this paper, and as it is common
practice, the resonant filters are replaced by bandpass filters
of the form

(kω0Ak/Qk)s
s2 + (kω0/Qk)s + k2ω2

0

, k ∈ H (6)

where Ak >0 and Qk >0 are the desired gain and the quality
factor of the k-th bandpass filters, respectively. In this way,
the resonance peaks have a limited gain of value Ak.

Voltage outer loop. To accomplish the regulation objective,
the capacitor voltage vC should be maintained at a constant
voltage level Vd. This regulation objective is solved by
suitable designing the scalar g, which, as seen in equation
(4), is used to construct the reference i∗S. This control loop
is formed by a proportional term of limited bandwidth plus
an integral term of the form

G =
ki

s
z̃ +

kp

τ1s + 1
z̃ (7)

g =
G

v2
S,RMS

(8)

where z̃ � V 2
d

2 − v2
C

2 ; kp and ki are the proportional
and integral gains, respectively, and vS,RMS is the root
mean square value of the source voltage. The scale factor
1/v2

S,RMS in (8) is introduced to avoid numerical errors in
the computation of g. In fact, G represents an approximate of
the total power delivered by the power supply to the system
composed by active filter and load.
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B. Stability analysis considering line and load dynamics

In contrast to the previous case, the output impedance of
the power supply and the associated impedance of the line,
as well as the effect of the associated passive elements on
the load side, are considered in this case. Figure 2 shows
the equivalent circuit of the shunt active filter considering
impedances in both the line and the load. In this system,
an impedance ZS(s) is connected in series with the internal
voltage vS . The load is represented by a Norton equivalent
circuit, where the static current generator iL represents the
purely distorting load and the impedance ZL(s) models its
associated passive components. The active filter is composed
of a voltage source e connected in parallel to the overall load
by means of an inductor L.

vS

iS

ZS(s)

ZL(s)

i

iLT

iZL iL

e

L

+
_

vS

,

Source Shunt AF Load

Fig. 2. Equivalent circuit of a shunt active filter connected to a more
realistic distribution system considering load and line impedances.

From the equivalent circuit of Fig. 2, the source current
can be computed as

iS =
ZL(s)

ZS(s) + ZL(s)

(
vS

ZL(s)
+ i + iL

)
(9)

Notice that, in the ideal case where the line is an ideal
conductor, the source impedance is negligible, and the load
current is static, then ZS(s) = 0 and ZL(s) = ∞, out of
which iS = iL + i.

The new definition of the source current (9) in terms
of impedances ZS(s) and ZL(s) defines the new current
dynamics. Figure 3 shows the closed loop diagram of the
new definition of the source current dynamics (9) with the
controller (5), and after rearranging the terms. Notice that, in
contrast with the ideal case, the gain loop includes an extra
transfer function denoted by

GZ(s) =
ZL(s) (1 + gZS(s))

ZS(s) + ZL(s)
(10)

The characteristic polynomial must include now the poles
associated to impedances ZS(s) and ZL(s). Therefore, some
poles risk to be unstable if the original controller scheme is
preserved, as it will become clear later.

A critical case that has been studied lately consists in tak-
ing the line impedance as an inductor in series with a resistor,
and the load impedance as a capacitor [7], that is, they have
the frequency domain representation ZS(s) = LSs+RS and
ZL(s) = 1/(CLs). In this case, instability problems have
been experimentally observed even for arbitrarily small CL.
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Fig. 3. Block diagram of the current loop considering load and line
impedances.

The transfer function GZ(s), for this particular case, is given
by

GZ(s) =
gLSs + gRS + 1

LSCLs2 + CLRSs + 1
(11)

which adds, in the gain loop, a couple of complex-conjugate
poles and a zero located at λZ = −(gRS +1)/(gLS). Notice
that, for 1 >> gRS , as normal in practice, the zero location
is approximately in −1/(gLS).

To show in a simpler form the influence of the impedances
consideration, consider first the unperturbed system with a
proportional damping term only as the controller. This yields
the following characteristic polynomial

1 +
gLSs + gRS + 1

Ls(LSCLs2 + CLRSs + 1)
k1 = 0 (12)

In this simplified case the Routh-Hurwitz criterion provides
the following necessary and sufficient stability condition 0<
k1 <RSL/LS, which depends directly on the unknown line
parameters RS and LS . Notice that, for practical values of L,
RS and LS , the admissible value of k1 can be considerably
limited.

III. PROPOSED CONTROLLER

To overcome the instability problem induced by the pres-
ence of line and load impedances, it is necessary to modify
the inner loop (5) of the controller. A first proposal consists in
multiply the damping term by a lead compensator as shown
in (13)-(14). This modified current loop controller includes
also a term that cancels v′

S and a bank of bandpass filters
tuned at the harmonics under compensation as before.

e = v′S + k1F (s)̃iS

+
∑
k∈H

(kω0Ak/Qk)s
s2 + (kω0/Qk)s + k2ω2

0

ĩS (13)

F (s) =
τzs + 1
τps + 1

(14)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC18.2

3751



where the lead compensator F (s) introduces a zero in −1/τz

and a pole in −1/τp. Usually τp <<τz to place the pole far
to the left of the zero, hence the pole would have a small
effect on the resonant dominant part of the root locus.

It has been observed that this simple modification allows,
not only a wider range of values for k1, but also the
compensation of higher harmonics. However, it can be shown
that the admissible range of k1 strongly depends on system
and bandpass filters parameters. In other words, if these
parameters are known, then a suitable gain, say k ∗

1 , can be
fixed to preserve stability of the equilibrium point.

As parameters are usually unknown and possibly time
varying, the selection of k∗

1 could be incorrect, which may
entail a poor performance and instability. To alleviate these
issues, the following adaptive estimator for the parameter k ∗

1

is proposed

φ = F (s)̃iS (15)
˙̂
k1 = μφĩS (16)

where k̂1 is an estimate of k∗
1 , μ is a positive design

parameter, φ is the so-called regressor, and F (s) is the
transfer function of the lead compensator.

The structure of the previous adaptive law, is justified as
follows. Let us define the estimation error k̃1 = k̂1 − k∗

1 . In
Fig. 3, add the filter F (s) and replace the constant gain by
its estimate k̂1. Then, decompose the estimate into the ideal
(unknown) gain k∗

1 and the parameter error k̃1 and “pull-out”
the later from the diagram. Figure 4 shows the block diagram
considering all these changes, where, for simplicity, the
resonant filters have been removed. Computing the transfer
function from the signal k̃1φ to ĩS (neglecting the additional
inputs due to vS and iL) yields

ĩS = −H(s)[k̃1φ] , H(s) =
GZ(s)

Ls + k∗
1F (s)GZ(s)

.

Replacing the expression above in (16), and noting that ˙̃
k1 =

˙̂
k1, yields

˙̃
k1 = −μφ[H(s)(k̃1φ)]. (17)
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Fig. 4. Block diagram of the modified current loop.

This differential equation is ubiquitous in adaptive control
and has been studied extensively [16], [17]. To get an idea of

the nature of the equation consider an ideal case where H(s)
is a simple positive gain, say h, (this is the case when φ is
“slow” with respect to the bandpass filtering of H(s) and
μ is small, so k̂1 changes also slowly). Then, the equation
reduces to the non–autonomous linear equation

˙̃k1 = −μhφ2(t)k̃1,

that can be explicitly solved as

k̃1(t) = exp−μh
R

t
0 φ2(τ)dτ k̃1(0).

It is clear that the parameter estimation error satisfies
|k̃1(t)| ≤ |k̃1(0)| for all t ≥ 0, showing that the search
tends to reduce the estimation error as desired. Under some
conditions on φ(t)—namely, that it is not square integrable—
it can be also shown that k̃1(t) → 0.

The approximative explanation given above can be for-
malized using averaging analysis and the notion of average
positive realness [18] of the transfer function leading to the
following proposition, whose proof is a direct application of
Theorem 3.8 of [18].

Proposition III.1 Consider the dynamical system described
by (17). Assume
(i) H(s) is a stable transfer function.

(ii) φ(t) is a nonzero T –periodic integrable function of t.
(iii) The average positive real condition

i=∞∑
i=−∞

Re{H(jωi)}|ci|2 >0,

is satisfied, where ci are the coefficients of the expo-
nential Fourier series of φ and ωi = 2πi

T .

Then there exists μ∗ > 0 such that, for all μ ∈ (0, μ∗), k̃1(t)
converges exponentially to zero. �

In words, the proposition states that, if
• μ is sufficiently small, i.e., slow adaptation, and
• the energy of the spectrum of φ is concentrated on the

frequency range when ReH(jω) ≥ 0, that is, in the
range when the phase shift is smaller that π

2 ,
then the overall system will have some suitable stability
properties. Notice that we have neglected in this analysis
the presence of the signals vS and iL and concentrated our
attention on the adaptation loop.

A block diagram of the overall proposed controller is
shown in Fig. 5.

IV. NUMERICAL RESULTS

The proposed controller shown in Fig. 5 that uses the
estimator of k1 (16) has been tested in the simulation
program PSCAD 4.0 with the following parameters: L = 5
mH, C = 2200 μF, Vd = 380 VDC , and the switching
frequency fsw = 20 kHz. A voltage source of 127 VRMS at
f = 60 Hz is considered with source impedance parameters
LS = 2.65 mH and RS = 2.59 Ω (same as the ones
above used). The load is composed of a single-phase diode
rectifier with a capacitor of 10 μF with an associated load
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Fig. 5. Block diagram of the overall proposed controller.

resistance on the dc-side. The critical case, connecting a
capacitor of 82 μF in parallel to a distorted current load,
has been considered. The design parameters of the proposed
controller are selected as follows: Ak = 50 and Qk = 40
∀ k = {1, 3, 5, ..., 17}, kp = 0.4, ki = 0.06, τz = 0.004,
τp = 0.0001 and μ = 0.001.

Figure 6 shows the responses of the system under the
basic controller (5), after the connection of a capacitor CL

on the load side. This figure shows (from top to bottom)
the line voltage v′

S , the compensated line current iS , the
load current iL and the current i injected by the active
filter. Notice that, before the connection of capacitor CL,
the responses have reached the desired equilibrium with
a given k1, in particular, the compensated current iS is
almost sinusoidal and in phase with the line voltage v ′

S ,
thus guaranteeing a power factor close to unity. After the
connection of capacitor CL, the selected k1 falls outside
the admissible region, i. e., resonant dominant poles get a
positive real part. As a consequence, a resonance effect is
produced causing oscillations that considerably distort all
signals. In contrast, Fig. 7, displaying the same signals as
before, shows that, after a relatively small transient due to the
connection of capacitor CL, the compensated source current
iS recovers its almost sinusoidal shape with the same phase
as the line voltage v′

S .

Figure 8 shows the transient responses of (top) the equiv-
alent conductance g and (bottom) the capacitor voltage vC

when capacitor CL is connected on the load side and under
the proposed controller. It is observed that, after a relatively
small transient, the capacitor voltage is maintained close
to the reference Vd = 280 VDC , while the equivalent
conductance g converges towards a certain positive constant
value.

Figure 9 shows the transient responses of (top) the estimate
k̂1 and (bottom) the regressor φ after the connection of the
capacitor CL on the load side. This figure shows that, after
a relatively short transient, the estimate k̂1 asymptotically
converges towards a constant, while the regressor φ reaches
practically zero.

Fig. 6. Transient responses, under the original compensator (5) and (7),
during the connection of capacitor CL on the load side of: (from top to
bottom) line voltage v′S , compensated line current iS , load current iL and
active filter current i.

V. CONCLUDING REMARKS

The paper presented a modification to a typical con-
troller for an active filter to guarantee compensation of
reactive power and current harmonic distortion despite of
the presence of a critical dynamical and distorting load. The
critical case, that has been studied here, consisted in the
connection of a capacitor in parallel to the original load.
This represents a compensation mechanism commonly used
in practice for power factor correction, which explains the
interest given here and in previous works. A model of the
overall system has been presented considering the load and
source impedances. It was shown that the interaction between
the line and load impedances, in this critical case, produces
a resonance effect, which induces instability. The proposed
solution included an adaptive implementation to enhance the
robustness against system parameters uncertainties. Numer-
ical results have been provided to illustrate the benefits of
this solution.
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