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Abstract— The Direct Weight Optimization (DWO) approach
is a nonparametric estimation approach that has appeared in
recent years within the field of nonlinear system identification.
In previous work, all function classes for which DWO has been
studied have included only continuous functions. However, in
many applications it would be desirable also to be able to
handle discontinuous functions. Inspired by the bilateral filter
method from image processing, such an extension of the DWO
framework is proposed for the smoothing problem. Examples
show that the properties of the new approach regarding the
handling of discontinuities are similar to the bilateral filter,
while at the same time DWO offers a greater flexibility with
respect to different function classes handled.

I. INTRODUCTION

The Direct Weight Optimization (DWO) approach [9],

[11], [1] is a nonparametric estimation approach that has

appeared in recent years within the field of nonlinear system

identification. In its original formulation, the DWO method

finds pointwise function estimates that minimize an upper

bound of the mean square error (MSE), by solving a convex

optimization problem. In [1], a variant was proposed, where

instead the probability was minimized that an upper bound

on the estimation error exceeded a given threshold.

In previous work, all function classes for which DWO

has been studied have included only continuous functions.

However, in many applications, e.g., when modelling hybrid

systems or in image and signal processing applications, one

often encounters functions containing discontinuities. Hence,

it would be interesting also to be able to handle this case. If

not properly adjusted for this, the DWO method (similarly

to, e.g., any standard kernel smoothing) smooths out the

discontinuous level changes. To avoid this, a modification

inspired by the bilateral filter [12], [5] is introduced. The

bilateral filter is a kernel smoothing method stemming from

image processing, in which the kernel function depends

both on the regression vector and the measured outputs. By

introducing a similar dependence on the output in the DWO

method, discontinuities can be detected and accounted for.

In this paper, we limit ourselves to a smoothing problem,

where we are given a measurement of the output also for

the point where the function is to be estimated (ideas on

how to extend this are discussed in Section VI). The results

from the modified DWO and the bilateral filter turn out to

have similar properties. An advantage with DWO is that it

can offer a great flexibility in handling different kinds of

function classes, and thus can be easily adapted to different

conditions.

The paper is organized as follows: The basic problem is

formulated in Section II. DWO in its original form is pre-

sented in Section III. Section IV introduces the bilateral filter

and proposes how to extend DWO to handle discontinuities.

The modified DWO algorithm is exemplified in Section V,

and its properties are compared to the bilateral filter.

II. PROBLEM FORMULATION

Let us assume that we are given a set of data

(y(t),ϕ(t))N
t=1, generated from

y(t) = f0(ϕ(t))+ e(t) (1)

where f0 is an unknown function, f0 : R
n → R, and e(t) is

independent, identically distributed (i.i.d.) white noise with

variance σ2. Consider the problem of estimating f0(ϕ
∗) for

a certain given regression vector ϕ∗. In this paper, we will

assume that ϕ∗ equals one of the values ϕ(t) from the

given data set, and hence that we are given a corresponding

output value, which will be denoted y∗. In this case, we can

regard the problem as a smoothing problem, i.e., with the

purpose of eliminating the noise as well as possible. A simple

alternative would be to use kernel smoothing (the Nadaraya-

Watson estimator [7]) to smooth out the noise. However,

with some information of the function sampled, there are

more sophisticated methods giving better estimates.

The goal of this paper is to be able to handle the case

when f0(ϕ) is discontinuous. This is considered in Sec-

tion IV. First, however, the original version of DWO will

be described.

III. DIRECT WEIGHT OPTIMIZATION

Consider the smoothing problem described in Section II,

and let us assume that we know that f0 belongs to some

function class F . In previous work on DWO (see, e.g.,

[10]), a standard assumption on F has been that the member

functions of F locally can be approximately described by

a given basis function expansion, and that we can give an

upper bound on the approximation error. More precisely, F

is defined as follows (see [10]):

Definition 1: Let F = F (D ,Dθ ,F,M) be the set of all

functions f : D → R such that for each ϕ0 ∈ D , there exists

a θ 0(ϕ0) ∈ Dθ , such that
∣

∣

∣
f (ϕ)−θ 0T

(ϕ0)F(ϕ)
∣

∣

∣
≤ M(ϕ,ϕ0) ∀ϕ ∈ D .
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Here, F(·) is a vector of given basis functions, while

θ 0T
(ϕ0)F(ϕ) is a local (unknown) approximation of f (ϕ)

around ϕ0, and M(ϕ,ϕ0) is a given upper bound on the

approximation error. Figure 1 illustrates the definition for a

case when θ 0T
(ϕ0)F(ϕ) is linear and the bound M(ϕ,ϕ0) is

quadratic. Note that the local approximation does not need to

be explicitly computed; it is enough to know the set of basis

functions, F , and how well those can locally approximate f .

Examples of function classes that can be formulated in this

way include the class of functions with Lipschitz continuous

gradients with a given Lipschitz constant L (in fact, it can be

shown that this function class is obtained when selecting F

and M as in Figure 1). Also systems with both stochastic and

unknown-but-bounded noise terms can be handled within the

DWO framework. For more details and examples of function

classes covered by Definition 1, see e.g., [10].

ϕ0

ϕ

f
(ϕ

)

Fig. 1. Illustration of Definition 1: The true function f (ϕ) (thick

line), the local approximation θ 0T
(ϕ0)F(ϕ) (thin line), and the bounds

θ 0T
(ϕ0)F(ϕ)±M(ϕ,ϕ0) (dashed). Here, F(ϕ) and M(ϕ,ϕ0) are chosen

as F(ϕ) = [1 ϕ]T and M(ϕ,ϕ0) = (ϕ −ϕ0)
2.

Now, given this assumption that f0 ∈ F , with F defined

as in Definition 1, how would we estimate f0(ϕ
∗) for a given

point ϕ∗? The idea behind DWO is to estimate f0(ϕ
∗) by

postulating that the estimate should be linear in y(t), i.e.1,

f̂0(ϕ
∗) =

N

∑
t=1

wty(t) (2)

and determine the weights w = (w1, . . . ,wN) by minimizing

an upper bound on the maximum mean-squared error (MSE),

i.e.,

mMSE(ϕ∗,w) (3)

= sup
f0∈F

E
[

(

f0(ϕ
∗)− f̂0(ϕ

∗)
)2
∣

∣

∣
(ϕ(t))N

t=1

]

= sup
f0∈F

E

[(

f0(ϕ
∗)−

N

∑
t=1

wt ( f0(ϕ(t))+ e(t))

)2 ∣
∣

∣

∣

(ϕ(t))N
t=1

]

where in the last expression we have replaced f̂0(ϕ
∗) by

using (1) and (2).

1If some prior knowledge about the value of θ 0 is given, the estimate
should instead be affine in y(t) [10]. Note also that this assumption is not
very restrictive. For instance, any least-squares estimation with fixed basis
functions gives an estimate that is linear in y(t).

Minimizing the maximum MSE in (3) with respect to w is

a convex problem. However, depending on the function class

F , the supremum in (3) may be very difficult to compute.

Instead, we can give an upper bound to minimize, which

leads to the following optimization problem [10]:

min
w,s

(

N

∑
t=1

|wt |M(ϕ(t),ϕ∗)+M(ϕ∗,ϕ∗)

)2

+σ2
N

∑
t=1

w2
t (4)

subj. to
N

∑
t=1

wtF(ϕ(t))−F(ϕ∗) = 0

This problem can easily be rewritten as a QP [3], which can

be solved efficiently.

Interpreting the role of M(ϕ(t),ϕ∗) intuitively, we can say

that a large value of M(ϕ(t),ϕ∗) means that there is a large

uncertainty in the relation between the values of f (ϕ∗) and

f (ϕ(t)). Hence, the information contained in y(t) is not of

great value when estimating f (ϕ∗), and the corresponding

weight wt should be small.

In practice, M(ϕ(t),ϕ∗) is often unknown and has to be

estimated or selected as a design choice. How this can be

done is discussed in [8].

IV. HANDLING DISCONTINUOUS FUNCTIONS

The above algorithm has been shown to handle a number

of different function classes containing continuous functions.

However, the question on how to describe a class of piece-

wise continuous functions in a way that suits DWO is still

open. Here, we will describe one possible extension, inspired

by bilateral filters.

A. The Bilateral Filter

The bilateral filter [12], [6] is commonly seen as a quite

ad-hoc method to filter noisy piecewise constant signals.

However, connections to weighted least squares have been

shown (see [6]). The bilateral filter removes noise and forms

an estimate of the noisy signal by a weighted sum of the

neighboring points, just like DWO. The bilateral filter is a

simple extension of the classical shift invariant convolution

filter:

ŷ(x) = ∑
x′∈Ωx

wx(x
′)y(x− x′)

where wx is a weighting function with support corresponding

to the set Ωx, and ∑Ωx
wx(x

′) = 1. To take into account jumps

in the signal, the weights are allowed to depend also on

y or more precisely, the difference between y = y(x) and

y′ = y(x′). This is done by introducing a weighting function

wy. The bilateral filter output is given by:

ŷ(x) =

(

∑
Ωx

wx(x
′)wy(y− y′)

)−1

∑
Ωx

wx(x
′)wy(y−y′)y(x−x′)

The weighting functions are commonly chosen to be Gaus-

sian, i.e.

wx(x) = e
−

‖x‖2

2σ2
x , wy(y) = e

−
‖y‖2

2σ2
y .
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The result is that only points that are close in both the x- and

the y-space will be accumulated in the sum, i.e., the filter is

no longer shift invariant but adapts to the local situation.

B. Extending DWO to Handle Discontinuities

Inspired by the bilateral filter, let us now return to DWO.

As we have seen, the key to handling abrupt changes in the

outputs for the bilateral filter was to include a dependence

of y(t)−y∗ for the weights. For DWO, since the weights are

computed through optimization of a criterion that depends on

the assumed function class, the closest parallel to the bilateral

filter would be to include knowledge of the measured outputs

y(t) and y∗ in the description of the function class. This

could be done in several ways. Here, we choose to let the

approximation error bound M depend on the observed out-

puts. The optimization problem (4), from which we compute

w, is therefore modified as follows:

min
w,s

(

N

∑
t=1

|wt |M(y(t),y∗,ϕ(t),ϕ∗)+M(y∗,y∗,ϕ∗,ϕ∗)

)2

+σ2
N

∑
t=1

w2
t

subj. to
N

∑
t=1

wtF(ϕ(t))−F(ϕ∗) = 0 (5)

Typically, M(y(t),y∗,ϕ(t),ϕ∗) will be chosen as a sum of

two terms, one depending on |ϕ(t)−ϕ∗| and one depending

on |y(t)− y∗|.
Intuitively, when |y(t)− y∗| is large, we would suspect

that there might be a discontinuity between them, and by

increasing M we reduce the influence of y(t) on the estimate

f̂0(ϕ
∗).

We can also interpret the modification in terms of function

classes. From this perspective, let us use the following type

of function class instead of Definition 1:

Definition 2: Let F = F (D ,Dθ ,F,M) be the set of all

functions f : D → R such that for each ϕ0 ∈ D , there exists

a θ 0(ϕ0) ∈ Dθ , such that
∣

∣

∣
f (ϕ)−θ 0T

(ϕ0)F(ϕ)
∣

∣

∣
≤ M( f (ϕ), f (ϕ0),ϕ,ϕ0) ∀ϕ ∈ D .

Now, to be able to formulate an optimization problem that

is easy to handle, we approximate f (ϕ(t)) and f (ϕ∗) in

M( f (ϕ(t)), f (ϕ∗),ϕ(t),ϕ∗) with the observed y(t) and y∗,

respectively, and thus we obtain (5).

C. A Comparison Between DWO and the Bilateral Filter

As will be seen in the examples, the effect of applying

the extended version of DWO is very similar to the results

given by an application of the bilateral filter. Given that the

bilateral filter is created to filter piecewise constant functions

and the similarities between the M of the extended DWO

and the filter kernel of the bilateral filter, this is not very

surprising. In fact, it can be shown that there is a choice of M

giving exactly the same weights as used by the bilateral filter.

However, since DWO offers a flexibility in the choice of

assumed function classes, it is more general than the bilateral

filter in its basic form, and is therefore able to give a better

performance for a wider variety of function classes, which

can be seen in the example section next.

V. EXAMPLES

Example 1: To study the properties of the extended DWO

approach, let us first consider a simple one-dimensional

example. Here, 120 measurements were collected from the

following function:

f (ϕ(t)) =































1 if −1 ≤ ϕ(t) < −0.7,

0 if −0.7 ≤ ϕ(t) < 1,

1 if 1 ≤ ϕ(t) < 2,

1− (ϕ(t)−2) if 2 ≤ ϕ(t) < 3,

0.1(ϕ(t)−3)2 if 3 ≤ ϕ(t) < 5,

ϕ ∈U(−1,5).

The measurements y(t) were made noisy by adding normally

distributed white noise with a standard deviation of 0.05. An

outlier, y(45) = 0, was added as well.

Figure 2 shows the measurements along with filtered

measurements. As can be seen, adding just the knowledge

of y − y0 to M improves the result considerably. Notice

also the differences between the results using different basis

functions. The differences are quite intuitive. Constant basis

function handles the piecewise constant parts best while

using linear basis functions makes the best job on the linear

parts.

Figure 3 shows the corresponding weights for one of

the points close to one of the discontinuities (ϕ∗ = 1.02).

Nicely, the weights corresponding to points belonging to the

other side of the discontinuity are smaller than the weights

belonging to the same side as the considered point.

−1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ϕ

Fig. 2. The result after having applied DWO to a one dimensional example.
Dots: measured y values; solid line: constant basis function, M(y,y0,ϕ,ϕ0)=
2(ϕ−ϕ0)

2 + 1
2
(y−y0)

2; dashed line: linear basis functions, M(y,y0,ϕ,ϕ0) =
2(ϕ−ϕ0)

2 + 1
2
(y−y0)

2; dotted line: ordinary DWO for continuous function

classes, with constant basis function, M(ϕ,ϕ0) = 5(ϕ −ϕ0)
2.
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−1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

ϕ

Fig. 3. Weights for one of the points filtered in Figure 2. Solid line:
constant basis function, M(y,y0,ϕ,ϕ0) = 2(ϕ −ϕ0)

2 + 1
2
(y− y0)

2; dashed

line: linear basis functions, M(y,y0,ϕ,ϕ0) = 2(ϕ−ϕ0)
2 + 1

2
(y−y0)

2; dotted
line: ordinary DWO for continuous function classes, with constant basis
function, M(ϕ,ϕ0) = 5(ϕ −ϕ0)

2.

Figure 4 shows both the results from applying the DWO,

using a constant basis function and the extended M, and

the bilateral filter. There is not much difference for ϕ∗ < 2

between the two. Figure 5 shows the corresponding weights

for one of the filtered points (ϕ∗ = 1.02), close to one of the

discontinuities. For ϕ∗ > 2 though, the assumption that the

sampled function is piecewise constant is not very good, and

the performance of the bilateral filter is hence degraded. In

contrast, the DWO method still performs well even though

using a constant basis function, thanks to the M function

which allows a certain deviation from the basis function

expansion. Pay attention to the stair-like estimate of the

bilateral filter (also called the staircasing effect, see [4]) and

the considerably more smooth by the DWO for ϕ∗ > 3.

The behavior around the outlier deserves attention. When

using DWO for a continuous function class, the algorithm

tries to smooth the function around the outlier, at the cost

of having the neighboring estimates being affected. The

discontinuous DWO, on the other hand, treats the outlier

as if it belongs to a piece of its own, thus only affecting the

neighboring points to a very small extent. A similar behavior

can be seen for the bilateral filter (see Figure 4).

Example 2: Another interesting application area is im-

ages. In many applications, images of interest contain edges

and can be modelled by piecewise continuous functions. In

Figure 6, different filtering methods are tested to remove

noise from a star-shaped image, containing both sharp and

faint edges separating areas of gradually changing gray-

levels. The two DWO filters perform better than the lowpass

filter and comparable to the bilateral filter. The performance

−1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ϕ

Fig. 4. Bilateral filter and DWO applied to a one dimensional example.
A constant basis function together with the M inspired by bilateral filters
were used. Dashed line: DWO; solid line: the bilateral filter.

−1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ϕ

Fig. 5. Weights for one of the filtered points, close to one of the
discontinuities, from the bilateral filter and extended DWO (constant basis
function). Dashed line: DWO; solid line: the bilateral filter.

of the methods was evaluated via MSE gain2. Slightly better

MSE gain can be obtained using DWO compared to the

bilateral filter (6.86 for DWO with constant basis functions,

7.45 for DWO with linear basis functions, 6.85 for the

bilateral filter and 2.82 using a lowpass filter). These results

are encouraging but less pronounced than for the previous

one-dimensional experiment. It is however clear that the

preservation of edges in DWO is similar to the bilateral

filter, in particular when comparing the different filters to

each other in Figure 7.

2The MSE gain is defined as the ratio between the MSE for the non-
filtered image and the MSE for the filtered image. A high MSE gain is
therefore desirable. See e.g. [5].
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Fig. 6. First row: (l) True image + noise, (m) true image, (r) noise. Second
row: DWO with linear basis functions, (l) Filtered image, (m) abs(true image
- filtered image), (r) abs(true image + noise - filtered image). Third row:
DWO with constant basis functions, (l) Filtered image, (m) abs(true image
- filtered image), (r) abs(true image + noise - filtered image). Fourth row:
bilateral filtering, (l) Filtered image, (m) abs(true image - filtered image),
(r) abs(true image + noise - filtered image). Fifth row: Gaussian filtering,
(l) Filtered image, (m) abs(true image - filtered image), (r) abs(true image
+ noise - filtered image). The same color mapping has been used for all
subimages, with the exception that all images showing differences between
two images, and the noise image, have been scaled by a factor 3.

Fig. 7. A comparison between filters, abs(filter1 - filter2): Top row:
DWO linear vs DWO constant, DWO linear vs bilateral, DWO linear vs
Gaussian. Bottom row: Bilateral vs Gaussian, DWO constant vs bilateral,
DWO constant vs Gaussian. Clearly the extensions of DWO are very similar
to the bilateral filter. In all comparisons, the largest differences are found
close to the edges. The same color mapping and scaling have been used for
all subimages.

In this example, M was chosen as

M(y,y0,ϕ,ϕ0) =
Lϕ

2
(ϕ −ϕ0)

2 +
Ly

2
m(|y− y0|/d),

where m(x) is a Huber-like norm;

m(x) =

{

xα if x ≤ 1,

βx− (β −1) if x > 1.

The scale parameter d was chosen so that two measurements

from the same level would be given a small contribution

to the uncertainty bound, despite the differences caused

by noise, while the gap between measurements from two

different levels should cause a large contribution. d should

therefore be chosen smaller than the smallest difference

between two neighboring levels, and large enough so that

additions made by the noise will be smaller than d. Too

small Lϕ and Ly will make the image blurry and too large

will not smooth out the noise.

VI. DISCUSSION AND CONCLUSIONS

The paper has shown how DWO can be extended to handle

discontinuities in a similar way as the bilateral filter known

from image processing. The results for both one-dimensional

signals and images show that the DWO framework can offer

better noise reduction than the bilateral filter, in particular

through a more rigorous modelling of the signal, while at the

same time preserving edges similarly to the bilateral filter.

The approach can also be immediately applied to higher-

dimensional problems.

The extended DWO method, as well as the bilateral filter,

is a smoothing filter, and can currently only find function

estimates at points where measurements are available. In

order to apply the method to prediction problems, we must

find a way to handle the case also when no measured y∗ is

given. One way would be to use DWO in its original form

(or some other local modelling method) to get a preliminary

estimate ŷ∗, and then use the extended DWO to handle

possible discontinuities. In image processing, this would

also be a way to tackle the inpainting problem, which has

previously been discussed by, e.g., [2].

VII. ACKNOWLEDGMENTS

This work was supported by the Strategic Research Center

MOVIII, funded by the Swedish Foundation for Strategic

Research, SSF.

REFERENCES

[1] Er-Wei Bai and Yun Liu. Recursive direct weight optimization in
nonlinear system identification: A minimal probability approach. IEEE

Transactions on Automatic Control, 52(7):1218–1231, July 2007.
[2] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma

Ballester. Image inpainting. In SIGGRAPH ’00: Proceedings of

the 27th annual conference on Computer graphics and interac-

tive techniques, pages 417–424, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, 2004.

[4] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. The staircas-
ing effect in neighborhood filters and its solution. IEEE Trans Image

Process, 15(6):1499–505, 2006.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA04.2

121



[5] M. Elad. On the origin of the bilateral filter and ways to improve it.
ieee-ip, 11(10):1141–1151, October 2002.

[6] M. Elad. On the origin of the bilateral filter and ways to improve it.
IEEE Transactions on Image Processing, 11(10):1141–1151, October
2002.

[7] W. Härdle. Applied Nonparametric Regression. Number 19 in
Econometric Society Monographs. Cambridge University Press, 1990.

[8] Jacob Roll. Piecewise linear solution paths with application to direct
weight optimization. To appear in Automatica, 2008.

[9] Jacob Roll, Alexander Nazin, and Lennart Ljung. A non-asymptotic
approach to local modelling. In The 41st IEEE Conference on Decision

and Control, pages 638–643, Las Vegas, December 2002.
[10] Jacob Roll, Alexander Nazin, and Lennart Ljung. A general direct

weight optimization framework for nonlinear system identification. In
16th IFAC World Congress on Automatic Control, pages Mo–M01–
TO/1, Prague, September 2005.

[11] Jacob Roll, Alexander Nazin, and Lennart Ljung. Nonlinear system
identification via direct weight optimization. Automatica, 41(3):475–
490, March 2005.

[12] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and
color images. In Proc. 6th Int. Conf. Computer Vision, pages 839–846,
New Delhi, India, 1998.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA04.2

122


