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Abstract— This paper proposes a local gradient control law to
stabilize a group of robots to a target formation. The control
is derived from a potential function based on an undirected
infinitesimally rigid graph that specifies the target formation.
It is shown that infinitesimal rigidity is a sufficient condition
for local asymptotical stability of the equilibrium manifold
describing the target formation.

I. INTRODUCTION

This paper considers distributed control of systems of

agents that are interconnected dynamically or have a com-

mon objective, and where control is local, with the possible

exception of high-level intermittent centralized supervision.

Undoubtedly these kinds of systems will become more

and more prevalent as embedded hardware evolves. An

interesting example and area of ongoing research is the

control of a group of autonomous mobile robots, ideally

without centralized control or a global coordinate system,

so that they work cooperatively to accomplish a common

goal. The aims of such research are to achieve systems that

are scalable, modular, and robust. These goals are similar to

those of sensor networks—networks of inexpensive devices

with computing, communications, and sensing capabilities.

Such devices are currently commercially available and in-

clude products like the Intel Mote. A natural extension of

sensor networks would be to add simple actuators to the

sensors to make them mobile, and then to adapt the network

configuration to optimize network coverage.

An interesting approach to formation control is that of

[5]. The robots are point masses (double integrators) with

limited vision, and he proposes using rigid graph theory to

define the formation; he also proposes a gradient control

law involving prescribed distances. The limitation is that the

network is not homogeneous—special so-called γ-agents are

required to achieve flocking. Anderson et al. [1] propose a

novel modification of rigidity within the context of directed

visibility graphs and provide control laws not derived from

potential functions. The starting point for our paper is [6].

Following that paper, we use graphs to define formations, but

instead of global rigidity we use infinitesimal rigidity and

instead of the double integrator model we use the simpler

single integrator (kinematic point). More substantially, we

provide a more detailed stability analysis. In particular, [6]

has no topological analysis of the equilibrium set and does

not note that the equilibrium set is not compact. Moreover,
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[6] uses a LaSalle argument to prove stability, but since

the equilibrium set is not compact, this approach is open

to question. Finally, [6] does not address if the trajectories

have a limit on the equilibrium set.

The main contribution of the paper is a decentralized

gradient control law to stabilize a group of point mass

robots to any formation corresponding to an infinitesimally

rigid framework. A complete stability analysis is provided

in Section V. Regular polygon formations are studied in

Section VI where it is shown that the conditions of our theory

can be applied to this case.

II. BACKGROUND

Notation. We denote the Jacobian of a function f : R
n →

R
m evaluated at a point x as Jf (x). In the special case when

f : R
n → R, the Jacobian of f is the gradient of f and we

denote it by ∇f(x). Occasionally for convenience during

calculations of the Jacobian, the notation ∂
∂x

will be used to

represent Jf (x) = ∂
∂x

f(x).

A. Graph Theory

A directed graph G = (V, E) is a pair consisting of a

finite set of vertices V := {1, . . . , n} and a set of edges

E ⊂ V × V . We assume the edges are ordered; that is E =
{1, . . . , m}, where m ∈ {1, . . . , n(n − 1)}. We exclude the

possibility of self loops. An undirected graph is a directed

graph such that if there is an edge ei from vertex j to vertex

k, then there is also an edge el from vertex k to vertex j.

For undirected graphs, we omit the arrows in the pictorial

representation of the graph. A special undirected graph is

the graph Kn, the complete graph with n vertices, which

has an edge between every pair of vertices. A useful matrix

associated with a graph G is the m×n incidence matrix, H . It

is determined by the edges ei of G: row i of H is determined

by ei and has two non-zero entries: a 1 in column k and a

−1 in column j, where ei is the edge between vertex j and

vertex k. Thus, by definition, H1 = 0, where 1 is the vector

with a 1 in each component.

Lemma 1: ([3], p. 23) The incidence matrix H has rank

n− c where c is the number of connected components of G.

For the remainder of this work we assume that all graphs

are connected and thus Ker(H) is one dimensional. Also, di-

rected graphs are considered connected if the corresponding

undirected graph is connected.

B. Graph Rigidity

To introduce the notion of rigidity of graphs we must view

a graph as a framework embedded in the plane, R
2. Let G =

(V, E) be an undirected graph with n vertices. We embed G
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into R
2 by assigning to each vertex i a location pi ∈ R

2.

Define the composite vector p = (p1, . . . , pn) ∈ R
2n. A

framework is a pair (G, p).
We define the rigidity function associated with the frame-

work (G, p) as the function gG : R
2n → R

|E| given by

gG(p) := (. . . , ‖pk − pj‖2, . . .),

The ith component of gG(p), ‖pk − pj‖2, corresponds to

the edge ei in E, where vertices j and k are connected by

ei. Note that this function is not unique and depends on the

ordering given to the edges.

1) Rigidity and Global Rigidity: There are several equiv-

alent definitions of rigidity. The definitions below are taken

from [2].

Definition 2: A framework (G, p) is rigid if there exists

a neighbourhood U ⊂ R
2n of p such that g−1

G (gG(p))∩U =
g−1

K (gK(p)) ∩ U , where K is the complete graph with the

same vertices as G.

It is also possible to define a global version of rigidity.

Definition 3: A framework (G, p) is globally rigid if

g−1
G (gG(p)) = g−1

K (gK(p)).
The level set g−1

G (gG(p)) consists of all possible points

that have the same edge lengths as the framework (G, p). For

the complete graph K the set g−1
K (gK(p)) consists of points

related by rotations and translations, i.e., rigid body motions,

of the framework (K, p). We conclude that a graph G is rigid

if the level set g−1
G (gG(p)) in a neighbourhood of p contains

only points corresponding to rotations and translations of the

formation at p.

2) Infinitesimal Rigidity: We refer to the matrix JgG
(p)

as the rigidity matrix of (G, p). The rigidity matrix is useful

in defining some other concepts related to graph rigidity.

Definition 4: A point p is a regular point of the graph G
with n vertices if

rankJgG
(p) = max

{

rankJgG
(q) | q ∈ R

2n
}

.
In Figure 1(a) we see that the graph K3 is embedded at

a regular point. Instead, Figure 1(b) shows the graph K3

embedded at a point that is not regular.

The idea of infinitesimal rigidity is to allow the vertices

to move infinitesimally, while keeping the rigidity function

constant up to first order. Let δp be an infinitesimal motion

of the framework (G, p). Then the Taylor series expansion

of gG about p is

gG(p + δp) = gG(p) + JgG
(p)δp + higher order terms.

The rigidity function remains constant up to first order when

JgG
(p)δp = 0, that is, when δp belongs to KerJgG

(p). The

dimension of this kernel is at least 3 because gG(p) will not

change if p is perturbed by a rigid body motion. Infinitesimal

rigidity is when the dimension of the kernel is not larger than

3.

Definition 5: ([2] ) A framework (G, p) is infinitesimally

rigid in the plane if dim(KerJgG
(p)) = 3, or equivalently if

rankJgG
(p) = 2n − 3.

(a) A rigid and in-
finitesimally rigid
framework.

(b) A rigid but
not infinitesimally
rigid framework.

(c) A rigid but not infinitesimally rigid
framework.

Fig. 1.

If a framework is infinitesimally rigid, then it is also rigid.

The converse is not true. The following theorem outlines

when rigidity and infinitesimal rigidity are equivalent.

Theorem 6: ( [2] ) A framework (G, p) is infinitesimally

rigid if and only if (G, p) is rigid and p is a regular point.

Observe that for a graph to be infinitesimally rigid in the

plane it must have at least 2n − 3 edges. If it has exactly

2n − 3 edges, we say that the graph is minimally rigid.

The two different embeddings of K3 shown in Figure 1(a)-

(b) illustrate some of the rigidity properties. Both frameworks

shown are embeddings of the complete graph. They are both

rigid and globally rigid. The framework shown in Figure

1(a) is also infinitesimally rigid. If we check the rigidity

matrix for any point p where the vertices are not collinear

we will find it has rank 3. The framework in Figure 1(b) is

not infinitesimally rigid. We can check this using the rigidity

matrix. Let the embedding of the points in the plane be z1 =
(0, 0), z2 = (0, 1), z3 = (0, 2). The rigidity function for this

graph is

gG(z) =





||z1 − z2||2
||z2 − z3||2
||z3 − z1||2



 .

Then

JgG
(p) = 2





zT
1 − zT

2 zT
2 − zT

1 0
0 zT

2 − zT
3 zT

3 − zT
2

zT
1 − zT

3 0 zT
3 − zT

1



 .

If we check the rank at a collinear point p we obtain

rank JgG
(p) = 2 < 2n − 3. As the rigidity matrix does not

have maximal rank, p is not a regular point; consistent with

Theorem 6, a rigid framework is not infinitesimally rigid at

a non-regular point.
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In general, frameworks that are rigid but fail to be infinites-

imally rigid have collinear or parallel edges. For instance

the graph in Figure 1(c) is rigid but not infinitesimally

rigid because the framework could undergo an infinitesimal

distortion by perturbing the top link horizontally; the two

triangles would then rotate infinitesimally, and the middle

link rotate infinitesimally.

III. PROBLEM FORMULATION

Consider n robots in the plane, R
2. The robots are wheeled

vehicles with sensors that allow them to measure the relative

positions of some of the other vehicles. Such data can be

obtained using a camera or a radar system. The simplest

model for a wheeled vehicle is the kinematic unicycle. To

simplify the analysis, using a standard procedure we assume

the unicycle model has been feedback linearized about a

point some distance in front of each unicycle. The robots

then have a point kinematic model given by the differential

equation

żi = ui, i ∈ {1, . . . , n} (1)

where zi = (xi, yi) ∈ R
2 is the location of the ith robot in

the plane and ui ∈ R
2 is the control input for the ith robot.

We define the composite state vector z = (z1, . . . , zn), as a

vector in (R2)n.

The target formation is described by a pair {G, d} where

G is an undirected graph whose vertices represent the robots,

and vector d ∈ R
m specifies m target lengths for the edges.

We refer to G as the formation graph. The robots achieve the

target formation when the length of edge i is the prescribed

distance di > 0.

Associated with the formation control problem is also a

sensor graph that describes the sensor data seen by each

robot in the closed-loop system. The sensor graph is a

directed graph with each robot represented as a vertex in

the graph. Given a controller u, if ui is a function of zj ,

then the sensor graph will have an edge from vertex i to

vertex j. Also, we require that the control be a function only

of relative measurements. For example if robot 1 can see

robots 3 and 5, then the measurements available to robot 1

are z3 − z1 and z5 − z1, and u1 can be a function of these

two measurements. We refer to this as a distributed control

law. We have the following problem.

Problem 1: Given the system (1) and a target formation

{G, d} such that g−1
G (d) 6= ∅ and such that the framework

(G, p) is infinitesimally rigid at each p ∈ g−1
G (d), design a

distributed control law u whose sensor graph is G such that

every p ∈ g−1
G (d) is a stable equilibrium of the closed-loop

system.

IV. GRADIENT CONTROL

In this section we propose a controller to solve Prob-

lem 1. We start with the framework (G, p). It has certain

edges joining certain vertices. Using exactly the same link

structure, define relative positions between robot positions,

that is, define ei = zk − zj , where pk, pj are linked on the

framework. Without loss of generality j < k. Notice that ei

is an error vector in the direction of edge i and ‖ei‖2 is the

ith term in the rigidity function, gG(z).1 We also form the

composite vector e = (e1, . . . , em) ∈ R
2m. This vector is a

linear function of z via the incidence matrix, H ∈ R
m×n,

of the graph G; namely, with the definition

Ĥ := H ⊗ I2 ∈ R
2m×2n, (2)

we have

e = Ĥz. (3)

A. Control Law

We now consider a gradient control law to maintain an

arbitrary formation of robots. First we define a vector norm

function v : R
2m → R

m:

v(e) = (||e1||2, . . . , ||em||2).
Then using (3) we define g : R

2n → R
m by

g(z) := v(e) = v(Ĥz). (4)

Notice that g(z) is precisely the rigidity function gG(z)
(henceforth the subscript is dropped).

As a candidate potential function, we consider the positive

definite function of g(z) − d

φ(z) =
1

2
‖g(z)− d‖2. (5)

Note that φ(z) is a positive semidefinite function of z and

φ(z) = 0 if and only if g(z) = d. We propose the gradient

control

u = −(∇φ(z))T .

It follows from (1) and applying the chain rule to (5) that

ż = − (Jg(z))
T

(g(z) − d)

= −ĤT Jv(Ĥz)T (v(Ĥz) − d)

= −ĤT Jv(e)T (v(e) − d) , (6)

where the Jacobian of v is

Jv(e) = 2







eT
1 . . . 0
...

. . .
...

0 . . . eT
m






. (7)

It is evident that the control is a function only of the relative

measurements, as required by the problem specification.

More specifically, the control law for each robot is

żi = ui = −
∑

j∈{edges leaving i}

1

2
(‖ej‖2 − dj)ej , (8)

consistent with the problem specification that the sensor

graph be identically the same as the formation graph. In the

following lemma we list further interesting properties of the

controlled system (6). Proofs are omitted since the results

are easily verified.

Lemma 7:

1) The centroid z◦ := 1
n

∑n
i=1 zi is stationary: ż◦ = 0.

1The notation ei is used to refer both to the edge i and as an error vector
pointing in the direction of edge i in the framework.
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2) The control in (6) is independent of the system of

global coordinates.

3) The collinear set C := {z ∈ R
2n | (∃w ∈

R
2)(∀i) (zi − z◦) ∈ span(w)} is invariant under (6).

4) Solutions of (6) exist and are unique.

B. Coordinate Transformation

In this section we perform a coordinate transformation

that separates the centroid dynamics from the remaining

dynamics of the system. Let P be an orthonormal matrix

whose first two rows are 1
n
1

T ⊗ I2. Then consider the

transformation z̃ =

[

z◦

z

]

= Pz, where z◦ is the centroid

of z, as discussed in Lemma 7. Define H̃ = ĤP−1. From

the definition of H̃ it is clear that H̃z̃ = Ĥz. We now solve

for the z̃ dynamics, obtaining

˙̃z = P ż = −H̃T
(

Jv(H̃z̃)
)T

(v(H̃z̃) − d). (9)

So, ˙̃z = −[∇φ̃(z̃)]T , where φ̃(z̃) = 1
2‖v(H̃z̃) − d‖2.

Next we consider an interesting property of H̃ . Note that

since the first two columns of P−1 are in Ker(Ĥ), H̃ has

the form
[

0 H
]

. From Lemma 1, dim(Ker(H) = 1, so

dim(Ker(Ĥ) = 2. Then by using the dimension of Ker(Ĥ),
the invertibility of P , and the block form of H̃ , we know

that Ker(H) = {0}.

Now expand H̃z̃ =
[

0 H
]

[

z◦

z

]

= Hz . So the z̃

dynamics from (9) can be rewritten as

[

ż◦

ż

]

= −
[

0

H
T

]

(

Jv(Hz)
)T

(v(Hz) − d). (10)

If we define φ(z) := 1
2‖v(Hz)− d‖2 then ż = −(∇φ(z))T ,

and so z is again a gradient system.

C. Existence and Uniqueness of Solutions

Using the coordinate transformation of the previous sec-

tion it is possible to confirm existence and uniqueness of

solutions in the (z◦, z) coordinates. The z◦ dynamics and

the z dynamics are decoupled, so we can analyze solutions

independently. From Lemma 7 we know that ż◦ = 0 so

solutions trivially exist for all time. The dynamics of z evolve

according to a gradient system with potential function φ(z),
a radially unbounded function. Consider the sublevel set

Ua := { z ∈ R
2n−2 | φ(z) ≤ a}

and define a Lyapunov function to be V (z) := φ(z). Denote

by −L∇φV (z) the Lie derivative of −∇φ(z)T . For the z

system −L∇φV (z) = −‖∇φ(z)‖2, a negative semidefinite

function. So the set Ua is invariant for any a > 0. Fur-

thermore, on the set Ua, the function ∇φ(z) is Lipschitz

continuous. Therefore, solutions z(t) exist for all time and

are unique, for all initial conditions starting in Ua.

V. STABILITY RESULTS

In this section we present our main stability result. To

begin, the following assumption is crucial to our approach.

Assumption 8: Given a target formation {G, d}, we as-

sume that g−1
G (d) 6= ∅ and the framework (G, p) is infinites-

imally rigid at each p ∈ g−1
G (d) .

A. Equilibria

We are interested in studying the equilibria of (6). First

we have the equilibrium set E1 = g−1(d), which represents

the desired formations as specified by the formation graph:

E1 := {z | g(z)− d = 0 } ≡ {z | φ(z) = 0 }.

Unfortunately, these are not the only equilibria of (6). There

is also a larger set of equilibria E2 := {z | Jv(Ĥz)T (g(z)−
d) = 0 }. The matrix

Jv(Ĥz)T = 2







e1 . . . 0
...

. . .
...

. . . em







has a nontrivial kernel if and only if some ei = 0, that is, two

robots are collocated. So for a point z to be an equilibrium

in E2, each ||ei||2 = di or ||ei||2 = 0. Finally the complete

set of equilibria of (6) is E = {z | ∇φ(z) = 0 }. Notice that

E1 ⊂ E2 ⊂ E . Simulation has shown that, in general, E2 6= E .

These extra equilibria are not unexpected: The matrix ĤT is

2n × 2m, so if m > n, then ĤT has a nontrivial kernel. In

particular, the set E includes equilibria where the robots are

collinear.

It is also possible to define equilibrium sets for the reduced

state z. In particular, the desired target formations are

E1 = { z ∈ R
2N−2 | v(Hz) = d }.

The advantage of using E1 rather than E1 in the ensuing

stability analysis is that (it is easily shown that) E1 is

compact, whereas E1 is not.

To conclude this section, we examine some of the alge-

braic and geometric properties of E1 = g−1(d). First, observe

that E1 is a real algebraic variety, since it is the intersection

of the zero level sets of polynomial functions. This implies

it has a finite number of connected components [7]. Under

Assumption 8, E1 inherits further properties summarized in

the following lemma.

Lemma 9: If Assumption 8 holds, a set S ⊂ g−1(d) is a

topologically connected component of g−1(d) if and only if

for each p, p′ ∈ g−1(d), p and p′ are related by a combination

of rotations and translations of R
2, and S is maximal with

respect to rotations and translations. Moreover, E1 is a three

dimensional embedded submanifold of R
2n.

B. Linearized Dynamics

In order to study the stability of the equilibrium manifold

E1, we will consider the linearized z-dynamics on E1.

Theorem 10: The matrix Jf (z) evaluated at a point on E1

has three zero eigenvalues; the rest are real and negative.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA15.3

480



Proof: Let z0 ∈ E1 and define e0 = Ĥz0. Also,

let f(z) = −Jg(z)T (g(z) − d), the vector field for the z
dynamics. Applying the product rule to f and using the fact

that g(z0) − d = 0 it follows that

Jf (z0) = −Jg(z0)
T Jg(z0) . (11)

The matrix Jf (z0) is symmetric and thus has real eigen-

values, and also Ker(Jf (z0)) = Ker(Jg(z0)). The function

g(z) is the rigidity function for graph G and Jg(z) is the

rigidity matrix, so by Assumption 8, the rank of Jg(z) is

2n − 3 at all points on E1. Therefore, dim(KerJg(z0)) = 3,

so Jf (z0) has three zero eigenvalues. Moreover, the structure

of Jf (z0) implies that it is a negative semidefinite matrix,

so the non-zero eigenvalues are negative.

The previous results can also be extended to the

reduced system ż = −(∇φ(z))T . Let f(z) :=

−H
T (

Jv(Hz)
)T

(v(Hz) − d). Also define the function

g : R
2n−2 → R

m by g(z) := v(Hz).

Corollary 11: The matrix Jf (z) evaluated at a point on

E1 has one zero eigenvalue; the rest are real and negative.

C. Main Result

Let S ⊂ R
ν be a set and x ∈ R

ν a point. Then the

point to set distance is dist(x,S) = infy∈S ||x − y||. With

respect to a dynamical system with state x we say a set S
is stable if (∀ǫ > 0)(∃δ > 0) dist(x(0),S) < δ ⇒ (∀t ≥
0) dist(x(t),S) < ǫ. We say a set S is locally asymptotically

stable if it is stable and if (∃δ > 0) dist(x(0),S) < δ ⇒
limt→∞ dist(x(t),S) = 0 .

Next we review center manifold theory. Consider a system

in normal form

θ̇ = Aθ + f1(θ, ρ) (12)

ρ̇ = Bρ + f2(θ, ρ), (13)

where θ ∈ R
ν−κ, ρ ∈ R

κ, A has eigenvalues only on the

imaginary axis, B is Hurwitz, f1(0, 0) = 0 and f2(0, 0) = 0.

The C∞ functions f1 and f2 are restricted in order such that

Jf1
(0, 0) = 0 and Jf2

(0, 0) = 0. An invariant manifold M is

a center manifold of (12)-(13) if it can be locally represented

as

M := { (θ, ρ) ∈ U | ρ = h(θ) }

where U is a sufficiently small neighbourhood of the origin,

h(0) = 0, and Jh(0) = 0. It can be shown that a center

manifold always exists [4] and the dynamics of (12)-(13)

restricted to the center manifold are

ξ̇ = Aξ + f1(ξ, h(ξ)) (14)

for a sufficiently small ξ ∈ R
ν−κ. The stability of the system

(12)-(13) can then be analyzed from the dynamics on the

center manifold using the next theorem.

Theorem 12: ([8], p. 195) If the origin is stable under

(14), then the origin of (12)-(13) is also stable. Moreover

there exists a neighbourhood W of the origin such that for

every (θ(0), ρ(0)) ∈ W there is a solution ξ(t) of (14) and

constants ci > 0, γ > 0 such that

θ(t) = ξ(t) + r1(t)

ρ(t) = h(ξ(t)) + r2(t),

where ‖ri(t)‖ < cie
−γt.

The following is our main result.

Theorem 13: (Main Result) Suppose Assumption 8 holds.

Then E1 is locally asymptotically stable. Moreover, there

exists a neighborhood U of E1 such that for each z(0) ∈ U
there exists a point p ∈ E1 where limt→∞ z(t) = p.

Proof: To prove E1 is stable we study the (z◦, z) dy-

namics. First apply the linear transformation P ∈ R
2n×2n of

Section IV-B to separate the system into (z◦, z) components.

The z◦ dynamics are stationary, so we study only the reduced

z system. Without loss of generality assume z0 = 0. From

Corollary 11 and the symmetry of Jf (0) we know there

exists an orthonormal transformation Q ∈ R
(2n−2)×(2n−2)

such that QJf (0)QT is in block diagonal form with a zero

for the first term and a block B ∈ R
(2n−3)×(2n−3) that

is Hurwitz. Then rewrite the z dynamics near 0 ∈ E1 as

ż = Jf (0)z +(f(z)−Jf (0)z) and define (θ, ρ) = Qz. Then

it is easily verified that the (θ, ρ) dynamics have the form

θ̇ = f1(θ, ρ) (15)

ρ̇ = Bρ + f2(θ, ρ) , (16)

where f1(0, 0) = 0 and f2(0, 0) = 0, and Jf1
(0, 0) = 0 and

Jf2
(0, 0) = 0.

Now we claim that M := {(θ, ρ) | (∃z ∈ E1) (θ, ρ) =
Qz} is a center manifold for the system (15)-(16). First,

M is invariant because it consists of equilibria of (15)-(16).

Second it is tangent to the θ-axis at 0. This can be seen as

follows. Let

g̃(θ, ρ) := g

(

QT

[

θ
ρ

])

.

Then M = {(θ, ρ) | g̃(θ, ρ) − d = 0}. We must show that

the row vectors {dg̃1(0), . . . , dg̃m(0)} that span the normal

space of M at 0, have their first entry equal to zero. Now

observe that






dg̃1(0)
...

dg̃m(0)






= Jg(0)QT ,

so we must show that the first column of Jg(0)QT is

zero. But this follows from the fact that the first entry of

QJf (0)QT = −(Jg(0)QT )T (Jg(0)QT ) is zero. Thus, there

exists a function h(θ) such that in a neighborhood W0 of 0

M∩W0 = {(θ, ρ)|ρ = h(θ)}.

Since M is an equilibrium manifold, we know that

f1(θ, h(θ)) = 0 on W0. It follows that the dynamics

restricted to M are ξ̇ = 0, and thus ξ(t) = ξ(0).
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6
.

Now applying Theorem 12, we obtain the solutions for

(θ, ρ) starting in W0 are

θ(t) = ξ(0) + r1(t)

ρ(t) = h(ξ(0)) + r2(t),

where ‖ri(t)‖ < cie
−γt for some c1, c2, γ > 0.

This implies limt→∞(θ(t), ρ(t)) = (ξ(0), h(ξ(0)) ∈
M, so limt→∞ z(t) = QT (ξ(0), h(ξ(0))) ∈ E1, and

limt→∞ z(t) = P−1(z◦(0), QT (ξ(0), h(ξ(0)))) ∈ E1, as

desired.

This argument can be repeated for each point on E1 to

obtain a cover {Wk} of E1. Since E1 is compact, we pass

to a finite subcover to form a neighborhood of E1. Local

asymptotic stability of E1 then follows. Finally, this argument

can be trivially lifted to E1 since the center of mass dynamics

are stationary.

In summary, the infinitesimal rigidity of the formation

graph was the key assumption in proving that the target set is

an embedded submanifold and that the linearized dynamics

have the required structure to apply center manifold theory.

VI. REGULAR POLYGON FORMATIONS

An application of the formation stabilization control de-

veloped in the previous sections is to stabilize the robots to

a regular polygon. A regular polygon is a useful formation

for forming a large aperture antenna array.

Now consider a graph denoted G∗ with n vertices and 2n
edges, such that vertex i is connected to vertices i+1, i+2,

i − 1 and i − 2. The graph G∗
6 is shown in Figure 2. We

order the edges in the graph so that the expanded incidence

matrix Ĥ = H ⊗ I2 ∈ R
4n×2n is Ĥ :=

[

I2n − P ∗

I2n − (P ∗)2

]

.

Note that Ĥ =

[

I2n

I2n + P ∗

]

(I2n − P ∗) thus if e = Ĥz

then
[

I2n + P ∗ −I2n

]

e = 0. Thus the components of e
have a special form with ei+n = ei + ei+1 for i = 1, . . . , n.

Let

d∗ :=

[

c1
c∗1

]

,

where
√

c ∈ R is the side length of the regular polygon and

c∗ := 4c cos2 π
n

. We assume that c 6= 0. If p is a point where

the robots form a regular polygon, then gG∗(p) = d∗. By

construction, g−1
G∗(d∗) 6= ∅. Techniques from graph theory

can be used to show that the framework (G∗, p) is globally

rigid and therefore, the robots located at p ∈ R
2n form a

regular polygon if and and only if p ∈ g−1
G∗(d∗). Thus, the

regular polygon formation is the only formation in the set E1,

with two distinct embeddings (up to translation and rotation),

corresponding to reflections of each other. All that remains

to be done to apply our theory is to check the rank of the

rigidity matrix on E1.

Lemma 14: The framework (G∗, p) is infinitesimally rigid

for all p ∈ g−1
G∗(d∗).

Proof: The rigidity matrix is JgG∗
(p) = Jv(e)Ĥ , with

e = Ĥp. The graph G∗ is connected, so from Lemma 1

we know that dim(Ker(Ĥ)) = 2. The strategy of the

proof is to show that Im(Ĥ) ∩ Ker(Jv(e)) = 1, from

which it follows that rank(Jg∗
G
(p)) = 2n − dim(Ker(Ĥ)) −

dim(Im(Ĥ) ∩ Ker(Jv(e))) = 2n − 3. Without loss of

generality, we consider the counterclockwise embedding of

G∗. Let ξ := (ξ1, . . . , ξ2n) ∈ R
4n, with ξi ∈ R

2, be

a vector of the form ξ = (w, Rw, R2w, . . . , Rn−1w, (I +
R)w, R(I + R)w, . . . Rn−1(I + R)w). where w ∈ Ker(eT

1 ),
and R ∈ R

2×2 is the rotation matrix by 2π/n radians. We

claim that Ker(Jv(e)) = span{ξ}. Since Jg∗
G
(p) cannot have

rank greater than 2n − 3 the result immediately follows.

From the geometry of the regular polygon we have that

for i = 1, . . . , n

ei = Ri−1e1 , (17)

en+i = Ri−1(I + R)e1 . (18)

To show ξ ∈ Ker(Jv(e)), we must show eT
i ξi =

0, i = 1, . . . , 2n. From (17) we have that eT
i ξi =

(Ri−1e1)
T (Ri−1w) = eT

1 w = 0, for i = 1, . . . , n. From

(18) we have that eT
n+iξn+i = (Ri−1(I +R)e1)

T (Ri−1(I +
R)w) = 0, for i = 1, . . . , n, as desired. Conversely, suppose

η ∈ Ker(Jv(e)); that is, eT
i ηi = 0, and eT

n+iηn+i = 0, for i =
1, . . . , n. But this immediately implies, from the geometry

of the plane, that ηi = Ri−1η1 and ηn+i = Ri−1(I + R)η1,

for i = 1, . . . , n, with eT
1 η1 = 0, as desired.

Since graph G∗ forms an infinitesimally rigid framework

at regular points, our gradient control can be applied to

stabilize a regular polygon.
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