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Abstract— In this paper, we consider a motion planning
problem for a class of constrained nonlinear systems. In each
simplex of a triangulation of the set of states, the nonlinear
dynamics is conservatively approximated by an affine system
subject to disturbances. This results in a hybrid abstraction,
called hybridization, of the nonlinear control system. Except
for the disturbance, this hybridization can be seen as a
piecewise affine hybrid system on simplices for which motion
planning techniques have been developed by Habets and van
Schuppen in a series of papers. We extend these techniques to
handle the disturbances by synthesizing robust affine controllers
on the simplices of the triangulation. Our approach, though
conservative, can be fully automated and is computationally
tractable. We illustrate our method on an example.

I. INTRODUCTION

Motion planning is an important problem in robotics where

it has attracted a lot of attention (see [13] for an extensive

review of the subject). Until recently, the work on this prob-

lem could be roughly classified into two main approaches.

The first approach assumed unconstrained dynamics of the

robots and focused on the complexity of the environment

while the second used a detailed dynamic model of the robot

and assumed an unconstrained state-space.

In the past decade, several approaches have been proposed

for handling in the same framework the complexity of both

the dynamics and the environment. Starting from a path ob-

tained from unconstrained dynamics, some methods modify

these paths in order to make them satisfy the differential

constraints [7], [12]. Several sampling based techniques

have also been proposed for exploring the set of possible

trajectories of the robot [5], [14]. Building on earlier work

by Habets and van Schuppen [9], [10], [8], symbolic control

approaches compute a discrete partition of the state-space,

design an abstract path at the discrete level and refine it

using local continuous controllers in each domain of the

partition [3], [6], [11]. This latter approach has been limited

to systems with affine or multi-affine dynamics for which

the algorithmic synthesis of local controllers is possible [8],

[16], [2].

In this paper, we extend this approach to handle systems

with nonlinear dynamics. In each simplex of a triangulation

of the set of states, the nonlinear dynamics is conservatively

approximated by an affine system subject to disturbances.
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This results in a hybrid abstraction, called hybridization [1],

of the nonlinear control system. Except for the disturbance,

this hybridization can be seen as a piecewise affine hybrid

system on simplices for which motion planning techniques

have been developed in [8]. We extend these techniques to

handle the disturbances by developping local robust con-

trollers on the simplices of the triangulation. Our approach,

though conservative, can be fully automated and is compu-

tationally tractable.

The paper is organized as follows. In the next section, we

formulate the motion planning problem we consider. Then,

we introduce the notion of hybridization and show how our

nonlinear motion planning problem can be replaced by a

robust hybrid motion planning problem. Then, we extend the

techniques of [8], [16] for computing local robust controllers

on simplices and use these controllers to solve the hybrid

motion planning problem. Finally, we illustrate the method

on an example.

II. PROBLEM FORMULATION

In this paper, we consider a constrained nonlinear system

of the following form:

Σ :

{

ẋ(t) = f(x(t)) + g(x(t))u(t),
x(t) ∈ D, u(t) ∈ U.

(1)

The state domain D ⊆ R
n is assumed to be a compact

polytope, possibly non-convex and with holes. Equivalently,

D can be seen as a finite union of convex compact polytopes.

The control set U ⊆ R
p is assumed to be a convex compact

polytope. Additionnally, we shall assume that the maps

f : D → R
n and g : D → R

n×p are of class C2

and C1 respectively. A continuous and piecewise C1 map

x : R
+ → D is a trajectory of Σ under the piecewise

continuous control input u : R
+ → U if equation (1) holds

for all t ∈ R
+ where x is differentiable. We consider the

following motion planning problem for system Σ:

Problem 2.1 (Motion planning): Let I ⊆ D and F ⊆ D
be a set of initial states and a set of final states, respectively.

Design a controller h : D′ → U , where I ⊆ D′ ⊆ D, such

that for all x0 ∈ I , the trajectory of system Σ, x : R
+ → D,

with x(0) = x0 and given by

ẋ(t) = f(x(t)) + g(x(t))h(x(t)), (2)

satifies the following properties:

• For all t ∈ R
+, x(t) ∈ D′ ⊆ D;

• There exists T ∈ R
+, such that for all t ≥ T , x(t) ∈ F.

We assume that the sets I and F are given by possibly

non-convex compact polytopes. Essentially, the goal of the
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motion planning problem is to design a state-feedback con-

troller (not necessarily defined on the entire state domain D)

and such that all the trajectories of Σ with an initial state in

I remain in the domain D and eventually reach the set F
and stay there forever. Let us remark that the controller h
need not be continuous.

Our approach to problem 2.1 consists of two main ingre-

dients: a hybridization of the nonlinear system Σ and robust

controllers on simplices.

III. HYBRIDIZATION

A hybridization is a hybrid abstraction of a continuous

dynamical system (see e.g. [1]). Conservativeness of the

approximation is ensured by the introduction of disturbances.

In this paper, we shall use such abstractions for solving the

motion planning problem 2.1. In the following, ‖.‖ denotes

the Euclidean norm (for vectors) and the associated induced

norm (for matrices).

A. Principle

We describe the main features of hybridizations. The

details about their computation will be given in the following

paragraph.

Definition 3.1: S = {S1, . . . , SN} is a triangulation of

the domain D if:

• For all Si ∈ S , Si is a full dimensional simplex1 of R
n;

• For all Si, Sj ∈ S, their intersection is either the convex

hull of their common vertices or empty;

• S1 ∪ · · · ∪ SN = D.

Let us further assume that S contains a triangulation of I ,

SI ⊆ S, and a triangulation of F , SF ⊆ S. We now consider

the following piecewise affine hybrid system with bounded

disturbances defined over the triangulation S:

Σ′ :

{

ẋ(t) = Aix(t) + Biu(t) + ai + d(t),
u(t) ∈ U, ‖d(t)‖ ≤ µi, if x(t) ∈ Si.

(3)

A continuous and piecewise C1 map x : R
+ → D is

a trajectory of Σ′ under the piecewise continuous control

input u : R
+ → U if there exists a piecewise continuous

disturbance d : R
+ → R

n such that equation (3) holds for

all t ∈ R
+ where x is differentiable. Let us remark that,

with the exception of the disturbance, the system Σ′ belongs

to the class of piecewise affine hybrid systems on simplices

for which motion planning techniques have been developed

in [8].

Definition 3.2: We say that the piecewise affine hybrid

system Σ′ is a hybridization of the nonlinear control system

Σ if for all i ∈ {1, . . . , N},

max
x∈Si,u∈U

‖f(x) + g(x)u − Aix − Biu − ai‖ ≤ µi. (4)

The following result shows that the hybridization Σ′ is a

conservative approximation of system Σ.

Proposition 3.3: Let x be the trajectory of nonlinear sys-

tem Σ under the control input u and with initial state x0.

1A simplex is the convex hull of n + 1 affinely independent points.

Then, x is a trajectory of the hybridization Σ′ under the

control input u and with initial state x0.

Proof: It is sufficient to prove that there exists a

disturbance d such that equation (3) holds. Let us consider

the disturbance given by, when x(t) ∈ Si:

d(t) = f(x(t)) + g(x(t))u(t) − Aix(t) − Biu(t) − ai.

From equation (4), it follows that ‖d(t)‖ ≤ µi whenever

x(t) ∈ Si. Then, it is straightforward to check that equa-

tion (3) holds.

We now define a motion planning problem for the piece-

wise affine hybrid system Σ′:

Problem 3.4 (Robust hybrid motion planning): Design a

controller h : D′ → U where I ⊆ D′ ⊆ D such that for all

x0 ∈ I , for all the trajectories of system Σ′, x : R
+ → D,

with x(0) = x0 and given by, when x(t) ∈ Si,

ẋ(t) = Aix(t) + Bih(x(t)) + ai + d(t), ‖d(t)‖ ≤ µi,

the following properties hold:

• For all t ∈ R
+, x(t) ∈ D′ ⊆ D;

• There exists T ∈ R
+, such that for all t ≥ T , x(t) ∈ F.

Let us remark that this is a robust control problem since the

specified property must hold for all admissible disturbances

d. We have as an immediate consequence of Proposition 3.3:

Corollary 3.5: If a controller h solves problem 3.4, then

it solves problem 2.1.

We now propose a method for the computation of a

hybridization Σ′ of a nonlinear system Σ.

B. Computation of the hybridization

We do not discuss the computation of a triangulation

S of the domain D. This is a well studied problem in

computational geometry for which efficient algorithms exist,

at least in low dimensional spaces (see e.g. [15]). In higher

dimensional spaces, and provided the domain can be par-

tionned in hypercubes, a triangulation of D can be obtained

using a simple triangulation of each hypercube as shown

in [1]. It is to be noted that the size of the simplices of the

triangulation can generally be made arbitrary small. We shall

use the notation δi for the diameter of the simplex Si defined

by

δi = max
x,x′∈Si

‖x − x′‖.

We now focus on the computation of the affine dynamics

in a simplex Si ∈ S. Let {v0
i , . . . , vn

i } denote the n + 1
vertices of the simplex. Essentially, the map f(x) is approx-

imated by the affine vector field Aix + ai while the map

g(x) is approximated by the constant matrix Bi. Thus, Ai

and ai are chosen such that

∀j ∈ {0, . . . , n}, Aiv
j
i + ai = f(vj

i ).

Since v0
i , . . . , vn

i are affinely independent, this condition

uniquely determines Ai and ai which can be computed by

solving a system of linear equations. Then, the matrix Bi is

defined by

Bi =
1

n + 1

n
∑

j=0

g(vj
i )
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It remains to determine the disturbance bound µi such that

equation (4) holds. The following proposition, stated without

proof (see e.g. [1]), gives an admissible value for µi:

Proposition 3.6: Let µi be given by:

µi = αiδ
2
i + βiδi max

u∈U
‖u‖

where

αi =
n2

√
n

2(n + 1)2
n

max
l=1

max
x∈Si

n
∑

k1=1

n
∑

k2=1

∥

∥

∥

∥

∂2fl(x)

∂xk1
∂xk2

∥

∥

∥

∥

and

βi =
n

n + 1

√

√

√

√

n
∑

k=1

p
∑

l=1

sup
x∈Si

‖∇gk,l(x)‖2.

Then, equation (4) holds.

More than giving a procedure to compute a bound µi

which may be actually easier to derive directly from equation

(4), the previous proposition points out the fact that the

bound on the disturbances in the hybridization can be made

arbitrarily small provided the triangulation of the domain is

sufficiently fine.

The rest of the paper is devoted to solving problem 3.4.

Our approach is essentially an extension of the techniques

developed in [8] for the class of piecewise affine hybrid

systems on simplices to the class of systems with distur-

bances. It is based on the synthesis of local robust controllers

on the simplices of the triangulation making it possible to

drive all the trajectories within a simplex through a set of

specified facets2. Then, global motion planning is ensured at

the triangulation level.

IV. ROBUST CONTROLLERS ON SIMPLICES

The results presented in this section extend those of [8]

and [16] to the class of affine systems with disturbances

on simplices. The synthesis of local controllers requires

some preliminary results on autonomous affine systems with

disturbances.

A. Affine systems with disturbances on simplices

Let S be a simplex of R
n, we consider the following

autonomous affine system with disturbances :

ẋ(t) = Ax(t) + a + d(t), x(t) ∈ R
n, ‖d(t)‖ ≤ µ (5)

where d : R
+ → R

n is a piecewise continuous disturbance.

We denote v0, . . . , vn and F0, . . . , Fn the vertices and the

facets of S with the convention that Fj is the facet opposite

to vertex vj . m0, . . . ,mn denote the outward unit normal

vectors of the facets of S.

We say that a trajectory x of (5), starting in S, exits S at

time T ≥ 0, if there exists ε > 0 such that

∀t ∈ [0, T ], x(t) ∈ S and ∀t ∈ (T, T + ε), x(t) /∈ S.

We first establish necessary and sufficient conditions such

that all the trajectories of (5), starting in S, exit S in finite

time.

2A facet of the simplex S is the convex hull of n vertices of S.

Proposition 4.1: The following assertions are equivalent:

(i) All the trajectories of (5) starting in S, exits S in finite

time.

(ii) There exists ξ ∈ R
n, ‖ξ‖ = 1, such that for all x ∈ S,

ξT (Ax + a) > µ.

(iii) For all x ∈ S, ‖Ax + a‖ > µ.

Proof: The proof is adapted from [16].

(i) =⇒ (iii): If there exists x ∈ S, such that ‖Ax+a‖ ≤ µ,

then there exists a constant trajectory of (5) given by x(t) =
x which does not exit S.

(iii) =⇒ (ii): Let G = {Ax+a| x ∈ S}, G is a convex set.

Let v0 ∈ G be the projection of 0 on G. From the projection

theorem (see e.g. [4], page 88), for all v ∈ G, vT
0 v ≥ ‖v0‖2.

From (iii), ‖v0‖ > µ, let ξ = v0/‖v0‖, then ‖ξ‖ = 1 and for

all v ∈ G, ξT v > µ.

(ii) =⇒ (i): Assume (ii) holds but not (i), then there exists

x a trajectory of (5) starting in S and staying in S forever.

Let ν = min{ξT (Ax + a)| x ∈ S} − µ, from (ii), ν > 0.

Then, for all t ∈ R
+,

ξT
x(t) = ξT

x(0) +

∫ t

0

ξT (Ax(s) + a + d(s))ds

≥ ξT
x(0) +

∫ t

0

(ξT (Ax(s) + a) − µ)ds

≥ ξT
x(0) +

∫ t

0

νds = ξT
x(0) + νt

which contradicts the fact that the trajectory x remains in

the bounded set S.

The previous property can be characterized using only the

value of the affine vector field at the vertices of the simplex:

Theorem 4.2: All the trajectories of (5) starting in S, exits

S in finite time if and only if

Conv({Av0 + a, . . . , Avn + a}) ∩ B(0, µ) = ∅. (6)

where Conv(E) denotes the convex hull of a set E and

B(0, µ) is the ball centered in 0 and of radius µ.

Proof: Since S = Conv({v0, . . . , vn}) and the vector

field is affine, it is quite simple to show that

{Ax + a| x ∈ S} = Conv({Av0 + a, . . . , Avn + a}).

Then, the theorem is proved by considering point (i) and (iii)

of Proposition 4.1.

Following [8], we now establish conditions disabling the

exit through a set of facets. The exit set of the facet Fj of

S is defined as the set

cl({x ∈ Fj | mT
j (Ax + a) > −µ}).

where cl(E) denotes the closure of a set E. The facet is

said to be blocked if its exit set is empty. It is clear that F
is blocked if and only if

∀x ∈ Fj , mT
j (Ax + a) ≤ −µ.

Lemma 4.3: If a trajectory of (5), starting in S, exits S at

the point x, then x is in the exit set of one of the facets of

S.
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Proof: The proof is directly adapted from [8]. Let x be

a trajectory of (5), exiting S at the point x (i.e. x(T ) = x).

Let us assume that x is not in the exit set of any facet of S.

Let J ⊂ {0, . . . , n} be the index set such that x ∈ Fj iff

j ∈ J . Then, there exists δ > 0 such that

∀j ∈ J ,∀z ∈ Fj , ‖z − x‖ < δ =⇒ mT
j (Ax + a) ≤ −µ

(7)

and

∀j ∈ {0, . . . , n} \ J , dist(x, Fj) > δ. (8)

Let y be a point in the interior of S, let us define the map

g(z) = (y−z)/(1+‖y−z‖). For all j ∈ {0, . . . , N}, for all

z ∈ Fj , mT
j g(z) < 0. Let ε ≥ 0 and zε denote the solution

of the differential equation

żε(t) = Azε(t) + a + εg(zε(t)) + d(t), zε(T ) = x.

Choose t1, ε1 > 0 such that ‖zε(t) − x‖ < δ for any t ∈
[T, t1), ε ∈ [0, ε1). Let ε ∈ (0, ε1) and assume that zε exits

S at a time T1 ∈ [T, t1), then from (8) it necessarily exits

through a facet Fj with j ∈ J . Let us remark that for all

j ∈ J , such that zε(T1) ∈ Fj , (7) implies that

lim
t→T

+

1

mT
j żε(t) ≤ −µ + εmT

j g(zε(T1)) + lim
t→T

+

1

mT
j d(t) < 0

which contradicts the fact that zε exits S at time T1. Then,

for all t ∈ [T, t1), for all ε ∈ (0, ε1), zε(t) ∈ S. Since

‖g(z)‖ is uniformly bounded on R
n, it follows that zε(t)

is continuous in ε, and since S is closed, zε(t) ∈ S for all

t ∈ [T, t1), for all ε ∈ [0, ε1). Particularly, for ε = 0, this

means that x(t) ∈ S for all t ∈ [T, t1) which contradicts the

fact that x exits S at time T .

From the previous lemma, it is meaningful to say that a

trajectory of (5) exits S through a facet Fj if and only if it

exits S at a point in the exit set of Fj . Then, the following

result is straightforward:

Proposition 4.4: There exists a trajectory of (5), starting

in S, and exiting S through facet Fj if and only if Fj is not

a blocked facet.

Proof: If Fj is blocked then its exit set is empty, thus

no trajectory can exit through Fj . If Fj is not blocked, then

there exists x ∈ Fj , such that mT
j (Ax + a) > −µ. Consider

the trajectory x with initial state x and for the constant

disturbance d(t) = µmj . Then,

mT
j ẋ(0) = mT

j (Ax + a) + µ > 0

which means that the trajectory exits through facet Fj .

Similar to Proposition 4.1, the previous property can be

characterized using the value of the vector field at the vertices

of the simplex S:

Theorem 4.5: There exists a trajectory of (5), starting in

S, and exiting S through facet Fj if and only if there exists

i ∈ {0, . . . , n}, i 6= j, such that mT
j (Avi + a) > −µ.

Proof: Let us assume that Fj is not a blocked facet,

then there exists x ∈ Fj such that mT
j (Ax + a) > −µ. x

is a convex combination of {vi| i ∈ {0, . . . , n}, i 6= j} and

since the vector field is affine, it follows that mT
j (Ax+a) is a

convex combination of {mT
j (Avi+a)| i ∈ {0, . . . , n}, i 6= j}

Thus, there must be at least one vertex vi of Fj such that

mT
j (Avi + a) > −µ. The converse implication is obvious.

Proposition 4.4 allows us to conclude.

B. Controller synthesis

We can now move to the synthesis problem for affine con-

trol systems with disturbances on simplices. We essentially

consider two types of local controllers on the simplex S, each

type of controller solving one of the following problems.

Problem 4.6 (Stay in a simplex): Design an affine feed-

back controller h : S → U , h(x) = Kx + k, such that

for all x0 ∈ S, for all piecewise continuous disturbances

d : R
+ → R

n satisfying ‖d(t)‖ ≤ µ for all t ∈ R
+, the

trajectory x : R
+ → R

n of the closed loop affine system

with disturbances

ẋ(t) = Ax(t) + Bh(x(t)) + a + d(t), x(0) = x0

satisfies x(t) ∈ S for all t ∈ R
+.

Problem 4.7 (Exit through a set a facets): Consider a

subset of indices I ⊆ {0, . . . , n}, and the associated subset

of facets F = {Fi|, i ∈ I}, design an affine feedback

controller h : S → U , h(x) = Kx + k, such that for

all x0 ∈ S, for all piecewise continuous disturbances

d : R
+ → R

n satisfying ‖d(t)‖ ≤ µ for all t ∈ R
+, the

trajectory x : R
+ → R

n of the closed loop affine system

with disturbances

ẋ(t) = Ax(t) + Bh(x(t)) + a + d(t), x(0) = x0

exits S in finite time through a facet in F .

We denote u0, . . . , un ∈ U the values of the controller at

the vertices of S:

ui = h(vi) = Kvi + k, i ∈ {0, . . . , n}.

Since v0, . . . , vn are affinely independent, u0, . . . , un

uniquely determines the matrix K and the vector k. At the

vertices of the simplex S, the value of the vector field of the

closed loop affine system is given by

Avi + Bh(vi) + a = Avi + Bui + a.

In the following we characterize suitable values of

u0, . . . , un with the understanding that these allows the

computation of the affine controller h.

Theorem 4.8: An affine feedback controller h solves prob-

lem 4.6 if and only if for all j ∈ {0, . . . , n}, uj ∈ U and

∀i, j ∈ {0, . . . , n}, i 6= j, mT
i (Avj + Buj + a) ≤ −µ.

Proof: All the trajectories of the closed loop affine

system remain in the simplex S forever if and only if there

does not exist any trajectory leaving S through one of the

facets. The result then follows from Theorem 4.5.

Theorem 4.9: An affine feedback controller h solves prob-

lem 4.7 if and only if for all j ∈ {0, . . . , n}, uj ∈ U and

∀i ∈ {0, . . . , n} \ I, ∀j ∈ {0, . . . , n}, j 6= i,

mT
i (Avj + Buj + a) ≤ −µ
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and

Conv({Av0 +Bu0 +a, . . . , Avn +Bun +a})∩B(0, µ) = ∅.
Proof: From Theorem 4.2, all the trajectories of the

closed loop affine system exits the simplex S if and only

if the second equation holds. Then, all the trajectories exit

through a facet in F if there does not exist any trajectory

leaving S through one of the facets not in F which is

equivalent to the first equation of Theorem 4.5.

We now discuss the computation of input values

u0, . . . , un satisfying the conditions of the previous the-

orems. Let us remark that for solving problem 4.6, the

characterization given by Theorem 4.8 only involves a set of

linear inequalities because U is a polytope. Thus, u0, . . . , un

can be computed using linear programming.

The computation of u0, . . . , un solving problem 4.7 is a

little bit more complex. Let us define the following convex

polytopes:

Uj =

{

u ∈ U

∣

∣

∣

∣

mT
i (Avj + Bu + a) ≤ −µ,

∀i ∈ {0, . . . , n} \ (I ∪ {j})

}

Uj denotes the set of values of uj such that the first equation

of Theorem 4.9 holds. We denote by Wj the set of vertices

of Uj .

Proposition 4.10: There exists an affine controller h
solving problem 4.7 if and only if there exists w0 ∈
W0, . . . , wn ∈ Wn such that

Conv({Av0+Bw0+a, . . . , Avn+Bwn+a})∩B(0, µ) = ∅.
(9)

An admissible controller is given by choosing the input

values u0 = w0, . . . , un = wn.

Proof: The proof is adapted from [8]. It is clear that the

conditions of Proposition 4.10 imply those of Theorem 4.9.

Let us show that the converse holds as well. Let us assume

that the conditions of Theorem 4.9 hold. Then, there exists

u0 ∈ U0, . . . , un ∈ Un such that

Conv({Av0 +Bu0 +a, . . . , Avn +Bun +a})∩B(0, µ) = ∅.
The intersection of these two convex sets is empty, then from

the Separation Theorem (see e.g. [4], page 111) there exist

ξ ∈ R
n and γ > 0 such that the hyperplane ξT x = γ

separates the two sets. Then,

∀x ∈ Conv({Av0+Bu0+a, . . . , Avn+Bun+a}), ξT x > γ.

Then, for all j ∈ {0, . . . , n}, ξT (Avj +Buj +a) > γ. Since

uj ∈ Uj , uj is a convex combination of the elements of Wj .

It follows, that there exists at least one wj ∈ Wj such that

ξT (Avj + Bwj + a) > γ. It follows that

∀x ∈ Conv({Av0+Bw0+a, . . . , Avn+Bwn+a}), ξT x > γ

and therefore (9) holds.

Hence, a controller solving problem 4.7 can be synthesized

by computing the vertices of the polytopes U0, . . . , Un and

then looking for a suitable combination of vertices.

In the following section, we show how we can use these

robust local controllers to solve algorithmically the motion

planning problem 3.4.

V. CONTROL OF THE HYBRIDIZATION

We now briefly describe the approach for solving the

motion planning problem 3.4 for the piecewise affine hybrid

system on simplices with disturbances Σ′.

Let S ′ be a subset of the triangulation S and let S ∈ S, we

denote by common-facets(S,S ′) the subset of facets of the

simplex S that are also facets of a simplex in S ′. We denote

by adjacent(S ′) the subset of simplices that are adjacent to

a simplex in S ′: S ∈ adjacent(S ′) if and only if S ∈ S \ S ′

and common-facets(S,S ′) 6= ∅.

We start by synthesizing a controller that keep the trajec-

tories of Σ′ in the set of final states F :

Algorithm 5.1:

1) Set S ′ := ∅;

2) For Si ∈ SF , loop: if problem 4.6 is solvable with

(S, A,B, a, µ) = (Si, Ai, Bi, ai, µi), by local affine

controller hi then set S ′ := S ′ ∪ {Si} and let h := hi

on simplex Si;

3) Set F ′ :=
⋃

Si∈S′ Si.

Then, by construction, we obviously have the following

property:

Lemma 5.2: Let F ′ ⊆ F and h : F ′ → U be computed

by Algorithm 5.1, then for all trajectories of Σ′, starting in

F ′ and given by, when x(t) ∈ Si,

ẋ(t) = Aix(t) + Bih(x(t)) + ai + d(t), ‖d(t)‖ ≤ µi,

the following holds: for all t ∈ R+, x(t) ∈ F .

Remark 5.3: Algorithm 5.1 ensures that the trajectories of

Σ′ entering a simplex in S ′ remains in this simplex forever.

One could actually relax this condition: the trajectories

entering a simplex in S ′ either remain in this simplex or

move to another simplex in S ′. A controller satisfying this

specification can be easily computed using local controllers

blocking a subset of facets of the simplices and an iterative

fix-point procedure to compute the invariant subset F ′.

However, this approach, contrarily to the one presented in the

paper, does not exclude Zeno behaviors easily and requires

further work.

We then synthesize a controller that drives the trajectories

of Σ′ in the set F ′ computed by Algorithm 5.1.

Algorithm 5.4:

1) Let S ′, h, be computed by Algorithm 5.1;

2) While SI 6⊆ S ′, loop:

• If there exists S ∈ adjacent(S ′) such that prob-

lem 4.7 is solvable with (S, A,B, a, µ,F) =
(Si, Ai, Bi, ai, µi, common-facets(S,S ′)), by lo-

cal affine controller hi then set S ′ := S ′ ∪ {Si}
and let h := hi on simplex Si;

• Else, exit;

3) Set D′ :=
⋃

Si∈S′ Si.

We have the following property, stated here without proof,

because of the lack of space:

Lemma 5.5: Let D′ ⊆ D and h : D′ → U be computed

by Algorithm 5.4, then for all trajectories of Σ′, starting in

D′ and given by, when x(t) ∈ Si,

ẋ(t) = Aix(t) + Bih(x(t)) + ai + d(t), ‖d(t)‖ ≤ µi,
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the following holds:

∀t ∈ R
+, x(t) ∈ D′ and ∃T ∈ R

+, ∀t ≥ T, x(t) ∈ F.

Finally, we have, as a straightforward consequence of the

previous lemma:

Theorem 5.6: Let D′ ⊆ D and h : D′ → U be computed

by Algorithm 5.4, if I ⊆ D′, then h solves the motion

planning problems 2.1 and 3.4.

Let us remark that our approach for solving the motion

planning problem 2.1 is clearly conservative. Our algorithm

may fail to solve the problem even though a suitable con-

troller exists. There are several sources of conservatism. The

first one is due to the use of a hybridization. Proposition 3.6

suggests that this can be reduced by using a finer triangu-

lation at the price of an increased computational effort. The

other sources of conservatism are inherent to the approach

developed in [8]. However, this conservatism allows us to

synthesize controllers that are correct by design by a fully

automated method which is computationally effective as

shown is the following section.

VI. EXAMPLE

We now consider the following problem. Let x(t) =
(x1(t),x2(t)) denote the position of an autonomous swim-

ming robot evolving in running water. The dynamics of the

system is given by:
{

ẋ1(t) = sin
(

π
w
x2(t)

)

+ u1(t) , u1(t) ∈ [−α, α]
ẋ2(t) = u2(t) , u2(t) ∈ [−α, α]

where w is the width of the river. At the center of the river,

the water speed is high while it is zero near the riverbank.

The sets of initial and final states I and F are such that

the robot has to swim against the water flow to reach F .

The nonconvex state domain D can be seen on Figure 1.

The motion planning problem is trivial if α > 1. In the

following, we considered α = 0.83.

We applied our approach to this motion planning problem.

On Figure 1, we can see the triangulation used by our

algorithm and a trajectory of the controlled robot. The robot

starts in the upper right region and reaches the bottom left

region while remaining in the state domain. We can see that

each time the robot crosses the river (from top to bottom or

from bottom to top on Figure 1), the water flow pushes the

robot towards the right. Hence, the robot first has to move

to the left, in order to cross safely the river. This is clearly

seen on Figure 1.

VII. CONCLUSION

In this paper, we presented an algorithmic approach to

a motion planning problem for nonlinear systems. Our

technique is based on two main ingredients, namely a

hybridization and robust controllers on simplices. Though

conservative, our method can be fully automated and we

showed that it is effective on an example. Our method should

probably be reserved to small-dimensional systems as the

number of simplices in the triangulation exploses when the

dimension grows.
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Fig. 1. Triangulation of the state domain and a trajectory of the controlled
robot swimming in running water. The robot starts in the upper right region
and reaches the bottom left region while remaining in the state domain. It
has to swim against the water flow.

Future work includes the extension of our approach to

temporal logic motion planning [6], [11] as well as the use

of multi-affine hybridizations with robust local controllers on

hypercubes [2].
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