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Abstract— This paper is concerned with the characterization
of weak-sense limits of state-dependent G-network under heavy
traffic. It is shown that, for a certain class of networks (which
includes a two layer feedforward network and two queues in
tandem), it is possible to approximate the number of customers
in the queue by a reflected stochastic differential equation.
The benefits of such an approach are that it describes the
transient evolution of these queues and allows the introduction
of controls, inter alia. We illustrate the application of the results
with numerical experiments.
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I. INTRODUCTION

Queueing systems that receive signals, in addition to

customers, are called G-networks and were first introduced

by Gelenbe in [20]. Signals may come from outside or

from other queues within the network and cause different

types of effects on the receiving queue. A common type

of signal, which is called “negative customer,” forces the

receiving queue to remove a customer from the waiting line.

Other examples of signals include: “triggers,” which moves

a customer from one queue to another [21]; “disasters,”

which completely cleans the waiting line of the receiving

queue [14]; and “resets,” which sets the length of the

receiving queue to a random value distributed according to

the stationary distribution for that queue [24]. Thus, every

queue in the system may exert some sort of control over

the network through the signals. These models have been

extensively studied (some examples include [49], [13], [32],

[45], [34], [31], [15], [35], [16], [29]) and are motivated by

a series of practical applications. One of the most successful

applications, which was also the initial motivation for G-

networks, is neural network modelling [22], [30], [19]. In

this context, each queue represents a neuron and positive

and negative customers are interpreted as excitatory and

inhibitory signals, respectively (see also, [25], [7], [6]). Other

applications include, computer networks with virus infection,

load balancing networks, and synchronization signalling in

parallel computation (see [5] for an extensive list of refer-

ences). Another more recent application is modelling genetic

regulatory systems [23], [3].

Although G-networks generally have some pleasing math-

ematical properties, such as product-form stationary distri-

butions, the transient evolution of these systems are not

easily (or conveniently) described and is rarely treated. The
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interaction among several different queues and the discrete

nature of the system contribute to making it a complex prob-

lem and often the only resource available are simulations,

which are time consuming and computationally expensive.

Moreover, problems such as the optimum choice of signal

or customer scheduling are impractical in this setting. Thus,

a mathematical model is sought, even if approximative, that

can give a reasonable degree of accuracy.

There exists two common types of approximations that

describe the transient evolution of queueing networks: fluid

and diffusion (or heavy traffic) approximations. Usually, fluid

models describes the dynamics of the system “average” by a

differential equation. Diffusion approximations differs from

the fluid model in the fact that the “randomness” usually

found in queueing systems is not averaged out and it appears

in the model as a Wiener process (or in some cases as

an Itô integral). Hence, diffusion approximations are more

faithful to the dynamics of the system when compared to

fluid approximations. However, this comes with the addition

of the heavy traffic assumption, which requires the rate

of customers entering a queue to be close to the rate of

customers leaving this queue. This is a common scenario

in many applications of interest, most notably in modern

computer systems.

The problem of describing the transient evolution of a

queueing network with negative customers has been dealt

with in some recent works using fluid approximation [33],

[4]. In the latter article, transient evolution of a state-

dependent network with negative customers was considered

using a fluid approximation together with a heavy traffic

assumption. However, as discussed in the above paragraph,

diffusion approximations are more suited for systems un-

der this condition. To our knowledge, G-networks have

not yet been treated under a diffusion analysis. Such an

approximation is useful in practical problems in which G-

networks are applicable. For example, one could use the

heavy traffic approximation to construct a stochastic optimal

control problem for synchronization of signals in parallel

computer systems. In addition, the diffusion model can help

us gain insights into the connections among some of the

model parameters and the general behavior of queueing

networks with signals.

Diffusion approximations for queueing systems have been

studied since the pioneering works of Kingman [39], Pro-

horov [47] and Borovkov [9], [10] in the early 60’s. Other

early papers on the subject include [48], [18], [50], [37],

[17], to cite a few. One of the interesting aspects of diffusion

approximations is that they offer a “macroscopic view” [51]
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of the complex interactions that are present in queueing

networks, and synthesize the general behavior of the system

in a simple time dependent equation. In addition, the approxi-

mation has been observed to give a good estimate for systems

under heavy, or only moderately heavy, traffic [40]. Hence, it

is no surprise that it has been successfully applied to several

practical problems, most of them in computer systems, where

heavy traffic is common. Some example include ([2], [12],

[1], [27], [26], [42], [28]).

In this paper, we will consider G-networks with state-

dependent arrival rates (of customers and signals), service

rates and routing probabilities. Besides [4], discussed above,

other results regarding state dependent G-queues and net-

works treat the system under stationary regime [8], [36],

[16]. As mentioned previously, the benefits of the diffusion

approximation is that it describes the transient evolution

of these networks via a stochastic model. In addition, the

state-dependence allows for the introduction of feedback

controls [40]. We also consider that the network is under

heavy traffic, in the sense that every queue in the system is

operating at nearly maximum capacity. Under this condition,

it will be shown that the number of customers in each

queue in the network can be approximated by a reflected

stochastic differential equation. The model is an adaptation

of the models presented in [40], [46] with the introduction

of negative customers. The result presented here is for a

certain class of queueing networks which satisfy assumption

3.2a, which will be presented later in the development of

the model. Two examples of networks are given which

satisfy this condition: two queues in tandem and a two layer

feedforward network.

The layout of the paper is as follows: in the following

section the queueing model treated here will be described in

more details. Next, in section III, the heavy traffic theorem

for the number of customers will be stated and proved. In

section IV, it will be shown two examples of networks which

satisfy condition 3.2a. Finally, in section V, we illustrate the

application of the model with a numerical example.

II. QUEUEING MODEL

We will restrict ourselves to queues with one server, first

come first served (FCFS) service discipline, and signals of

the “negative customer” type. Hence, any queue that receives

this signal is forced to remove a customer from the system. If

the queue is empty, the negative customer will have no effect

on the system. Although being denominated a “customer,”

this signal does not receive service and leaves the receiving

queue immediately after its arrival. Signals coming from

within the network are regular customer that have finished

work at a queue and were routed as a negative customer.

The queue length process, Xi, for a network of K queues

takes the form

Xi(t) = Xi(0)+Ai(t)−Di(t)−Si(t)

+ ∑
j≤K

[

D+
ji −D−

ji(t)
]

−Ui(t), (1)

where Ai(t) is the cumulative number of exogenous clients

that arrived at queue i by time t, Di(t) is the number of

service completions at queue i by time t, and Si(t) is the

number of removed customers due to an exogenous signal

by time t. The process D+
ji(t) denotes the total number

of customers that left queue j and joined queue i as a

regular customer by time t, and D−
ji(t) is the total number

of customers removed from queue i due to a negative arrival

originated from queue j.

Let Nα
i be standard Poisson processes with càdlàg sample

paths, for α ∈ {a,s,d} and i ∈ {1, ...,K}. Also, define the

processes Ñα
i (t)

△
= Nα

i (
∫ t

0 Λα
i (X(s))ds), where Λα

i : R
K
+ →

R+ are measurable functions. Then we define Ai(t)
△
=

Ña
i (t), Si(t)

△
= Ñs

i (t), Di(t)
△
=
∫ t

0 I{Xi(s−)>0}Ñd
i (t), D+

i j(t)
△
=

∫ t
0 I

+
i j(s)dDi(s), and D−

i j(t)
△
=
∫ t

0 I
−
i j(s)dD̃i j(s), where D̃i j(t)

△
=

∫ t
0 I{Xi(s−)>0,X j(s−)>0}dÑd

i (s).

The processes I
+
ji(t) and I

−
ji(t) are defined as the indicator

functions of the events that a customer leaving queue j at

time t is routed to queue i as a positive or negative customer,

respectively. The process Ui(t) denotes the cumulative num-

ber of customers not allowed to enter the queue due to the

buffer being full by time t. If the buffer size is infinite for

queue i, the process Ui(t) can be considered as the “zero”

process.

All stochastic processes given above are defined on the

same probability space (Ω,F ,P). References to it are not

necessary and will be omitted henceforth. Let Ft be the

minimal σ -algebra that measures all driving processes de-

fined above up to time t (i.e., {Ft , t ≥ 0} is a filtration).

In addition, the following assumption will be used. Amongst

other things, it guarantees that the counting processes defined

above are nonexplosive and have a martingale representation,

which will be given below. The condition on the continuity

and boundedness of the rates can be relaxed and that is

discussed in [44].

Assumption 2.1: (a) The random quantities Xi(0), Nα
i , i ∈

{1, ...,K}, α ∈ {a,s,d}, are mutually independent.

(b) The functions Λα
i (·), i ∈ {1, ...,K}, α ∈ {a,s,d}, are

continuous and bounded.

(c) E

[

I
α
i j(t)

∣

∣

∣
F r

t

]

= Qα
i j(X(t−)), for i, j ∈ {1, ...,K}, α ∈

{+,−}, where Qα
i j : R

K
+ → [0,1] is a measurable function

and F r
t is the minimal σ -algebra that measures all driving

processes up to time t, not including the current routing

decision.

Owning to the assumption above, the jump processes Ai,

Di, Si and D̃i j have the following martingale decompositions

(see [46] pg. 625 and [11], T8 pg.27)

Ai(t) = Ma
i (t)+

∫ t

0
Λa

i (X(s))ds

Di(t) = Md
i (t)+

∫ t

0
I{Xi(s)>0}Λd

i (X(s))ds

Si(t) = Ms
i (t)+

∫ t

0
I{Xi(s)>0}Λs

i (X(s))ds

D̃i j(t) = M̃d
i j(t)+

∫ t

0
I{Xi(s)>0,X j(s)>0}Λd

i (X(s))ds,
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where Ma
i , Ms

i , Md
i , and M̃d

i j are Ft-martingales. In order to

have a martingale decomposition for D+
i j and D−

i j define

M+
i j (t)

△
=
∫ t

0

(

I
+
i j(s)−Q+

i j(X(s−))
)

dDi(s)

M−
i j (t)

△
=
∫ t

0

(

I
−
i j(s)−Q−

i j(X(s−))
)

dD̃i j(s)

The same argument used in ([46], pg.626) can be used to

show that M+
i j and M−

i j are Ft-martingales. Now it is possible

to write

D+
i j(t) =

∫ t

0

(

I
+
i j(s)−Q+

i j(X(s−))
)

dDi(s)

+
∫ t

0
Q+

i j(X(s−))dDi(s)

= M+
i j (t)+

∫ t

0
Q+

i j(X(s−))dMd
i (s)

+
∫ t

0
Q+

i j(X(s))I{Xi(s)>0}Λd
i (X(s))ds

D−
i j(t) = M−

i j (t)+
∫ t

0
Q−

i j(X(s−))dM̃d
i j(s)

+
∫ t

0
Q−

i j(X(s))I{Xi(s)>0,X j(s)>0}Λd
i (X(s))ds.

Hence, the process X = (Xi, i = 1...K)′ accepts the following

representation

X(t) = X(0)+
∫ t

0
B(X(s))ds+M(t)−U(t)

where

Bi(x)
△
= Λa

i (x)−Λd
i (x)I{xi>0}−Λs

i (x)I{xi>0}

+ ∑
j≤K

[

Q+
ji(x)I{x j>0}−Q−

ji(x)I{x j>0,xi>0}
]

Λd
j (x)

Mi(t)
△
= Ma

i (t)−Md
i (t)−Ms

i (t)+ ∑
j≤K

[

M+
ji (t)−M−

ji (t)

+
∫ t

0
Q+

ji(X(s−))dMd
j (s)−

∫ t

0
Q−

ji(X(s−))dM̃d
ji(s)

]

,

and Mi is an Ft-martingale.

III. HEAVY TRAFFIC LIMIT

As it is usual in heavy traffic analysis, we consider a

sequence of queueing networks (Xn,n > 0) indexed by the

parameter n. As n increases, the system approaches heavy

traffic in the sense that the rate of customers entering the

system approaches that of customers leaving the system. The

following scale is usually employed:

xn(t)
△
= Xn(nt)/

√
n.

Let any mathematical object defined in the previous section

with respect to Xn be now indexed with an upper script n

(e.g., F n
t , Λa,n

i , Q
+,n
i j , etc.). Similarly, any counting process

defined in the previous section (e.g., Ai, Si, Di, D+
i j , D−

i j , Ui) is

now replaced by its scaled equivalent (e.g., An
i , Sn

i , Dn
i , D

+,n
i j ,

D
−,n
i j , Un

i ). For example, An
i (t) now denotes 1/

√
n times the

number of exogenous customers that arrived at queue i by

time nt, that is,

An
i (t)

△
=

1√
n

Na
i

(

∫ nt

0
λ a,n

i (xn(s/n))ds

)

with λ a,n
i (ξ )

△
= Λa,n

i (
√

nξ ), ξ ∈ R
K , for each n > 0, and the

martingale decomposition becomes

An
i (t) = M

a,n
i (t)+

√
n

∫ t

0
λ a,n

i (xn(s))ds,

after a change of variable. Likewise, let q
α,n
i j (ξ )

△
=

Q
α,n
i j (

√
nξ ), for α ∈ {+,−}, i, j ∈ {1, ...,K}, ξ ∈ R

K . Also,

let the size of the buffer for the scaled process be Bi for the

ith queue (Bi may be infinite).

In the first assumption below, it will be defined how state

dependence is introduced. Even though the dependence is

very small for large n, it has significant effect in the limit.

As it will be seen, the functions f α
i (x) and f

β
i j (x) will appear

in the drift term of the limit equation.

Assumption 3.1: For o(·) uniformly in x, we assume that:

(a) There exists non-negative constants rα
i and r

β
i j, and

bounded and continuous functions f α
i (x) and f

β
i j (x), j, i ∈

{1, ...,K}, α ∈ {a,d,s} and β ∈ {+,−}, such that λ α,n
i (x) =

rα
i + f α

i (x)/
√

n+o(1/
√

n), and q
β ,n
i j (x) = r

β
i j + f

β
i j (x)/

√
n+

o(1/
√

n).
(b) For any i ∈ {1, ..,K} ra

i + ∑ j≤K rd
j r+

ji = rd
i + rs

i +

∑ j≤K rd
j r−ji , which is usually called the heavy traffic con-

dition. This condition tells us that for large n, the rate of

customers joining a queue in the network is very close to

the rate of customer leaving this queue.

The next assumption will be on the reflection directions

and they will become more clear throughout the development

of the proof of Theorem 3.3. Define the following matrices

in R
K×K :

Ir
△
= diag(rd

i + rs
i )i=1,...,K Θi j

△
= rd

i (r+
i j − r−i j )

RS △
=
(

Ir −Θ′ +ΩS
)

R
△
= R /0

ΩS △
= diag

(

∑ j∈Z\S∪{i} r−jir
d
j

)

i=1,...,K
(2)

where S ⊆ Z
△
= {1, ...,K}, and diag(ai)i=1,...,m ∈ R

m×m is a

diagonal matrix with entries ai.

Assumption 3.2: (a) For any S ⊆ {1, ...,K}, with |S| ≥ 2,

there exists an α = (α1, ...,α|S|)
′ 6= 0, where |S| denotes the

number of elements of S, such that αi ≥ 0 and

R{i∈S}α = RS
{i∈S}e, with e = (1, ...,1)′.

The subscript {i ∈ S} on any matrix A indicates that A{i∈S} ∈
R

K×|S| is formed by the columns of A with indices in S.

(b) The matrix R satisfies the completely-S condition (see

[40], pg. 121).

We are now able to present the heavy traffic limit in the

theorem below.

Theorem 3.3: Let xn(0) converge weakly to x(0). With

assumptions 2.1, 3.1 and 3.2, {xn(·)} is tight and any weakly
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convergent subsequence satisfies

x(t) = x(0)+
∫ t

0
b(x(s))ds+M(t)+ z(t), (3)

z(t) = Ry(t)−u(t),

where 0 ≤ xi(t) ≤ Bi, i ∈ {1, ...,K}, and

bi(x) = f a
i (x)− f d

i (x)− f s
i (x)

+
K

∑
j=1

[

f d
j (x)(r+

ji − r−ji)+ rd
j ( f +

ji (x)− f−ji (x))
]

, (4)

Mi(t) = Ma
i (t)−Md

i (t)−Ms
i (t)

+
K

∑
j=1

[

(r+
ji − r−ji)M

d
j (t)+M+

ji (t)−M−
ji (t)

]

.

The Mα
i , α ∈ {a,d,s,r}, i ∈ {1, ...,K}, are mutually

independent Wiener processes, where Mr
i (t)

△
=

(M+
i1(t), ...,M+

iK(t),M−
i1(t), ...,M−

iK(t))′. Mα
i has variances rα

i ,

for α ∈ {a,d,s}, and Mr
i has covariance matrix

(Σi) jk = rd
i ·
(

(Σ+
i ) (Σ+−

i )
(Σ+−

i )′ (Σ−
i )

)

with (Σα
i ) jk =

{

(1− rα
i j)r

α
i j if j = k

−rα
i jr

α
ik otherwise,

for α ∈ {+,−}, and (Σ+−
i ) jk = −r+

i j r
−
ik , where Σ+−

i , Σα
i ∈

R
K×K .

The process z(·) is the reflection term (yi(0) = 0, yi(·) are

continuous, nondecreasing, and can increase only at t where

xi(t) = 0. Similarly, if Bi < ∞, ui(0) = 0, ui(·) are continuous,

nondecreasing and increase only when xi(t) = Bi).

Proof: See [44] for details.

IV. NETWORKS SATISFYING CONDITION 3.2A

Conditions 2.1, 3.1 and 3.2b are usual assumptions in

heavy traffic approximations for state-dependent queueing

systems [40]. Loosely speaking, that is also true for condition

3.2a, that essentially requires that any reflection direction

appearing on the edge or corner of the state-space be a

positive linear combinations of the reflections at the adjacent

boundaries. In fact, if we consider a network where queues

can receive signals from outside but not from within the

network, the condition is automatically satisfied. However, it

is not valid for any G-network. In this section, it is shown

two types of network topologies that satisfy assumption 3.2a.

A. Two queues in tandem

Consider two queues in tandem where each queue may

send regular or negative customers to each other, as seen in

figure 1(a). Both queues receive customers and signals from

exogenous sources, and there is no feedback, in the sense

that a customer that has just left queue i may not be routed

immediately to queue i.

For this case, the matrices Ir, Θ, ΩS and R are defined as

follows:

Ω /0 =

(

r−21rd
2 0

0 r−12rd
1

)

Ω{1,2} = 0

Ir =

(

rd
1 + rs

1 0

0 rd
2 + rs

2

)

Θ =

(

0 rd
1(r+

12 − r−12)
rd

2(r+
21 − r−21) 0

)

R =

(

rd
1 + rs

1 + r−21rd
2 −rd

2(r+
21 − r−21)

−rd
1(r+

12 − r−12) rd
2 + rs

2 + r−12rd
1

)

R{1,2} =

(

rd
1 + rs

1 −rd
2(r+

21 − r−21)
−rd

1(r+
12 − r−12) rd

2 + rs
2

)

.

Hence, the condition is verified if there is an α = (α1,α2)
′

with positive components such that Rα = R{1,2}e, which is

true as long as rd
1 ,rd

2 > 0.

B. Two layer feedforward network

Let us now consider a feedforward network with two

layers, in the sense that the queues on the first layer may

send customers to queues in the second layer, but not the

converse, see figure 1(b) for reference. Each queue can also

receive regular and negative exogenous arrivals and there is

no feedback. Suppose that there are K1 queues on the first

layer and K2 on the second. Define K = K1 +K2. We index

the queues starting on the first layer in such a way that if

K1 < i ≤ K, the ith queue is in the second layer.

Define Z1 = {1, ...,K1}. For this scenario, the matrix RS is

given by

RS =

(

diag(rd
i + rs

i )i=1,...,K1
0

−Θ̃′ Ψ

)

where Θ̃ ∈ R
K1×K2 and Ψ ∈ R

K2×K2 are defined as

Θ̃ =







r1(r
+
1(K1+1)

− r−
1(K1+1)

) ... r1(r
+
1K − r−1K)

...
...

rK1
(r+

K1(K1+1)
− r−

K1(K1+1)
) ... rK1

(r+
K1K − r−K1K)






,

Ψ = diag

(

rd
i + rs

i + ∑
j∈Z1\S

r−jir
d
j

)

i=K1+1,...,K

.

In order to verify the assumption 3.2a, let S ⊆ {1, ...,K} be

an ordered set, with |S| ≥ 2. Define S1 ⊆{1, ...,K1} and S2 ⊆
{K1 + 1, ...,K} as ordered sets such that S1 ∪ S2 = S. Then

choose α = (α1, ...,α|S1|,β1, ...,β|S2|)
′ such that αi = 1, for

i = 1, ..., |S1|, and

β j =
rd

k + rs
k +∑l∈Z1\S1

r−lkrd
l

rd
k + rs

k +∑l∈Z1
r−lkrd

l

, for j = 1, ..., |S2|,

where k is the jth element of S2. Now we can verify that

R{i∈S}α = RS
{i∈S}e. Since this works for any choice of S,

assumption 3.2a is satisfied.
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Fig. 1. (a) Two queues in tandem. The symbols + and − indicates the arrival of regular or negative customers, respectively. (b) Two
layer feedforward network. (c) Switching curves for the optimal controls with varying values for c .

V. NUMERICAL EXPERIMENTS

In order to illustrate an application of the theorem, let us

suppose that we have the system of subsection IV-A, given

by figure 1(a). It will be assumed that every customer leaving

queue 1 joins queue 2 as a regular customer, and queue 2

does not receive exogenous clients. Also, both queues have

finite buffers. Suppose that queue 2 needs to reduce customer

loss due to buffer overflow and it does that by sending signals

to queue 1. Hence, every time queue 2 has its buffer almost

full, it will start sending signals to the first queue. In this

example, it will be shown how one can use the result derived

here to choose the optimal routing strategy for a system

operating under heavy traffic.

As it is common in application (e.g., [43], [42], [40]), we

do not have a sequence of queues indexed by the parameter

n. Rather, we have one queueing system that we want to

approximate. Hence, we need to choose a large n such that

the rates for our problem satisfy

Λα
i (
√

nx) = λ α,n
i (x) ≈ rα

i + f α
i (x)/

√
n, α = a,d,s

Q
β
i j(
√

nx) = q
β ,n
i j (x) ≈ r

β
i j + f

β
i j (x)/

√
n, β = +,−

and the heavy traffic condition holds (i.e., assumption 3.1b).

Now, we can approximate the number of customers in each

queue at time t, X(t), by X(nt) ∼√
nx(t), where x(·) is the

limit process given by (3).

For our example, let us suppose that

λ a,n
1 (x) = λ λ a,n

2 (x) = 0 λ s,n
1 (x) = 0 λ s,n

2 (x) = 0

and that λ d,n
1 (x) = µ1 and λ d,n

2 (x) = µ2, where µ1, µ2 and λ
are positive constants. By the heavy traffic assumption, there

exist (“small”) constants b1 and b2 such that b1 =
√

n(µ1−λ )
and b2 =

√
n(µ2−µ1). That is, the rate of customers entering

each queue is close to the rate of departing customers. Hence,

λ d,n
1 (x) = λ +b1/

√
n and λ d,n

2 (x) = λ +(b1 +b2)/
√

n. Also,

we suppose that

q
+,n
12 (x) = 1 q

+,n
21 (x) = 0

q
−,n
12 (x) = 0 q

−,n
21 (x) = g(x)/

√
n,

where g : R
2 → [0,1], and that the size of the (unscaled)

buffers are
√

nB1 for the first queue and
√

nB2 for the second.

The heavy traffic limit is given by

dx(t) =

(

−b1 −λg(x(t))
−b2

)

dt +

(

2λ −λ
−λ 2λ

)1/2

dW (t)

+

(

1 0

−1 1

)

dy(t) −du(t),

where A1/2(A1/2)′ = A. It is perhaps noteworthy to mention

that the function g(·) only acts upon the first component of

x(·), even though we are interested in controlling the second.

However, the second queue will be affected indirectly by the

control through the reflection term.

We can now find the optimal choice of g(·) with respect to

a cost function. For this example, we will use the following

discounted cost:

W (x,g) = E
g
x

[

∫ ∞

0
e−β t [cg(x(t))dt + vdu2(t)]

]

,

where c and v are constants associated with the cost of

routing negative customers (or losing customers at the first

queue) and the cost of losing customers due to buffer

overflow at queue 2, respectively.

We use the Markov chain approximation method [41], [38]

to find the optimal control numerically. We set β = 0.01, and

the discretization parameter is set to h = 0.1. Figure 1(c)

plots the control for different choices of c and v set to 200.

Notice that the optimal control is of the switching type (i.e.,

after a given threshold, the control is used at maximum rate).

This type of optimal control has also been found in different

situations for the control of queueing systems [43].

It is interesting to see the shape of these switching curves.

Notice that the curves move upwards at the right side of the

state space. This can be explained by the delay of the control

action since the control at queue 2 is done indirectly. When

queue 1 and queue 2 are almost full, there most likely will

be buffer overflow loss at queue 2 even if it sends signals to

queue 1.

VI. CONCLUSIONS

We have presented heavy traffic limits for a class of state-

dependent G-networks which satisfy assumption 3.2a. Two

examples are given which satisfy this condition. Our current

work concentrates in extending the results to any class of G-

networks, and for networks with different kinds of signals.
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