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Abstract— We define the concept of approximate domain
optimizer for deterministic and expected value optimization
criteria. Roughly speaking, a candidate optimizer is an ap-
proximate domain optimizer if only a small fraction of the
optimization domain is more than a little better than it. We
show how this concept relates to commonly used approximate
optimizer notions for the case of Lipschitz criteria. We then
show how random extractions from an appropriate probabil-
ity distribution can generate approximate domain optimizers
with high confidence. Finally, we discuss how such random
extractions can be performed using Markov Chain Monte Carlo
methods.

I. INTRODUCTION

For continuous domains, most of the popular optimization

methods perform a local gradient-based search and in general

converge to local optimizers; in some cases, for example

convex optimization problems, it may also be possible to

guarantee convergence to a global optimizer [1]. By con-

trast, random search methods such as simulated annealing

perform a global search and can therefore be considered as

a powerful complement to local search methods. Moreover,

under certain assumptions it can be shown that simulated

annealing algorithms converge to a global optimizer as

the number of steps grows to infinity even for continuous

optimization domains [2], [3], [4], [5]. Little is known about

the rate of convergence and the finite-time properties of these

algorithms, however, unless the domain is finite [6], [7], [8],

[9].

To overcome this shortcoming, in this paper we introduce

an approximate optimizer concept, motivated by the concept

of finite-time learning with known accuracy and confidence

used in statistical learning theory [10], [11]. In general,

optimization algorithms for problems defined on continu-

ous variables can only find approximate solutions in finite

time [12]. Here we consider three levels of approximation:

Domain approximation (what fraction of the optimization

domain is better than our candidate optimizer), value approx-

imation (how much better are these points), and confidence

(if the candidate optimizer is random, how confident are

we about its domain and value properties). We show that
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under very weak assumptions on the optimization domain

and optimization criterion this three way approximation can

be used to obtain finite-time performance guarantees for

simulated annealing algorithms over continuous domains.

Moreover, under some additional (but still quite weak)

regularity conditions we demonstrate how our approximate

optimizer concept can be related to more standard approx-

imate optimizers considered in the stochastic programming

literature. This link provides theoretical support for the use of

simulated annealing and Markov chain Monte Carlo methods

for that have been proposed in, for example, [13], [14], [15]

for solving stochastic programming problems.

In Section II we introduce the approximate domain op-

timizer concept and show how it relates to approximate

optimizer concepts in the stochastic programming literature

(Theorem 1). In Section III we define an appropriate sense

in which random variables can be thought of as approximate

domain optimizers and establish a family of probability

distributions that can be used to generate approximate do-

main optimizers with high confidence (Theorem 2). Then in

Section IV we present a method for performing extractions

from this family of probability distributions using Markov

Chain Monte Carlo (MCMC) methods. Proofs are omitted

in the interest of space. Detailed proofs of all facts can be

found in [16]; a proof of Theorem 2 was reported in [17].

II. APPROXIMATE DOMAIN OPTIMIZERS

Let λ denote the Lebesgue measure on R
n. The 2-norm

will be used throughout for R
n and the total variation norm

will be used for measures. Probability densities are given

with respect to the Lebesgue measure. Various Greek letters

will be used to denote approximation parameters. To avoid

repeatedly stating the range in which they take values, from

now on we assume that α ∈ (0, 1), γ ∈ (0, 1), δ > 0,

ǫ ∈ (0, 1), ρ ∈ (0, 1), and σ ∈ (1/2, 1). We also assume that

J ≥ 0.

Consider the optimization criterion U : Θ → R with Θ ⊆
R

n. Let

U∗ = sup
θ∈Θ

U(θ). (1)

U can be either a deterministic or an expected value op-

timization criterion. In the former case for every θ ∈ Θ
the value of U(θ) can be computed directly. In this case

the optimization problem (1) is a standard programming

problem. In the latter case, U(θ) is given as an expected value

over a random variable whose probability distribution may

also depend on θ. More formally, we assume the existence

of a random variable x taking values in a set X , according to
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a family of probability measures P (dx; θ) parameterized by

θ ∈ Θ. We further assume that U(θ) for each value of θ ∈ Θ
can be written as an expected value over the corresponding

probability measure

U(θ) =

∫

x∈X

u(x, θ)P (dx; θ)

for some function u : X × Θ → R. In this case the opti-

mization problem (1) is a stochastic programming problem.

We assume throughout that u(x, θ) and P (dx; θ) are such

that the expected value U(θ) is well defined for all θ ∈ Θ.

In such problems it is usually not possible to compute U(θ)
directly, either because evaluation of the integral requires

too much computation, or because an analytical expression

for P (dx; θ) is not available; for example, [18], [19] present

applications in air traffic management and systems biology

where P (dx; θ) can only be sampled by simulation. In the

particular case that P (dx; θ) does not depend on θ, the

optimization task is often called “empirical risk minimiza-

tion”, and is studied extensively in statistical learning theory

[10], [11]. The results of this paper apply equally to the

optimization of deterministic and expected-value criteria.

We will consider the optimization problem (1) under two

separate sets of assumptions.

Assumption 1: Θ is Lebesgue measurable and bounded

(i.e. λ(Θ) < ∞). U is Lebesgue measurable and bounded.

This very weak assumption will be a standing assumption for

all results. The approximate domain optimizer results will

hold vacuously if λ(Θ) = 0 so we will mostly be interested

in the case λ(Θ) > 0. Without loss of generality we will

assume that U(θ) ∈ [0, 1] for all θ ∈ Θ.

For some results a somewhat stronger assumption will be

needed.

Assumption 2: Θ is compact and Lebesgue measurable.

U is L−Lipschitz continuous.

Conditions on u(x, θ) and P (dx; θ) to ensure that U(θ)
is Lipschitz can be found in [20]. It is easy to see that

Assumption 2 implies Assumption 1 and also the existence

of a global optimizer.

Definition 1 (Approximate domain optimality): θ̂ ∈ Θ is

called an approximate domain optimizer (with respect to the

Lebesgue measure) with value imprecision ǫ and residual

domain α if and only if

λ{θ ∈ Θ | U(θ) > U(θ̂) + ǫ} ≤ αλ(Θ).
In words, this optimality concept provides a bound on the

Lebesgue measure of the set of points that are ǫ better than

our candidate as a fraction of the Lebesgue measure of the

entire domain Θ. This notion of optimality is motivated by

the work of Vidyasagar on statistical learning theory [10],

[11] and especially its application to automatic control prob-

lems [21], [22]. The main difference is that in the work of

Vidyasagar measures other than the Lebesgue measure are

allowed (typically probability measures used to sample the

space Θ). We will only consider the Lebesgue measure here,

hence will drop the phrase “with respect to the Lebesgue

measure” whenever we refer to this optimality concept. We

will use

Θ(ǫ, α) = {θ̂ ∈ Θ | λ{θ ∈ Θ | U(θ) > U(θ̂)+ǫ} ≤ αλ(Θ)}

to denote the set of approximate domain optimizers with

value imprecision ǫ and residual domain α. Note that for

all ǫ and all α, if Θ∗ 6= ∅ then Θ∗ ⊆ Θ(ǫ, α); moreover,

Θ(ǫ, α) 6= ∅ even if Θ∗ = ∅.

A more common notion of approximate optimizer is the

following.

Definition 2 (Approximate value optimality): A point θ̂ ∈
Θ is called an approximate value optimizer with imprecision

ǫ if and only if U(θ) ≤ U(θ̂) + ǫ for all θ ∈ Θ.

This notion is commonly used in the stochastic programming

literature (see, for example, [20], [23]) and provides a direct

bound on the optimal value. We will use

Θ∗(ǫ) = {θ̂ ∈ Θ | ∀θ ∈ Θ, U(θ) ≤ U(θ̂) + ǫ}

to denote the set of approximate value optimizers with

imprecision ǫ. Once again, for all ǫ > 0, if Θ∗ 6= ∅ then

Θ∗ ⊆ Θ∗(ǫ), but Θ∗(ǫ) 6= ∅ even if Θ∗ = ∅.

One can see that approximate value optimality is a stronger

concept than approximate domain optimality, in the sense

that for all ǫ and α, Θ∗(ǫ) ⊆ Θ(ǫ, α). Conversely, however,

given an approximate domain optimizer it is in general not

possible to draw any conclusions about the approximate

value optimizers. A relation between domain and value

approximate optimality can, however, be established under

Assumption 2. Let Γ denote the gamma function.

Theorem 1: Under Assumption 2, if θ̂ is an approximate

domain optimizer with value imprecision ǫ and residual

domain α then it is also an approximate value optimizer

with imprecision ǫ + L√
π

[

n
2 Γ
(

n
2

)]
1
n [αλ(Θ)]

1
n .

III. RANDOM DOMAIN OPTIMIZERS

We now examine how random θ̂ ∈ Θ extracted according

to some probability distribution θ̂ ∼ π(dθ) can be thought

of as domain optimizers. The natural interpretation is to try

to ensure that the probability with which the extracted θ̂ are

approximate domain optimizers with value imprecision ǫ and

residual domain α is high enough; in other words, establish

a lower bound on the measure of the set Θ(ǫ, α) with respect

to the probability measure π(dθ).

A. Proposed distribution family

We consider a family of probability distributions

π(dθ; J, δ) parameterized J ≥ 0 and δ > 0.

Theorem 2: Consider the distribution π(dθ; J, δ) ∝
[U(θ) + δ]

J
λ(dθ) with J ∈ N and δ > 0. For all ǫ, α we

have that

π(Θ(ǫ, α); J, δ) ≥
1

1 +
[

1+δ
ǫ+1+δ

]J [
1
α

1+δ
ǫ+δ

− 1
]

1+δ
δ

For a proof of the theorem and a discussion of its impli-

cations see [17]. Notice that, by construction, π(dθ; J, δ) is

absolutely continuous with respect to the Lebesgue measure

with density p(θ; J, δ) ∝ [U(θ) + δ]
J

. Intuitively, parameter

J determines how concentrated the distribution π(dθ; J, δ)
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Fig. 1. Example of the effect of exponent J . The top left plot shows U(θ).
The remaining plots show [U(θ) + δ]J for δ = 0.5 and J = 3 (top right)
6 (bottom left) and 20 (bottom right) respectively.

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

δ
δ

δ

ǫǫ

αα

σσ

J
J

J

Fig. 2. Variation of the “optimal” δ and the corresponding J with respect
to ǫ, α, and σ. Two of the three parameters ǫ, α, σ are kept constant for
each row, set to ǫ = 0.1, α = 0.01, σ = 0.99. Notice the rapid growth of
J as ǫ → 0 and the mild growth as α → 0 and σ → 1.

will be around the global optima of U(θ) (see Figure 1). The

parameter δ can be thought of as the amount of Lebesgue

measure (uniform distribution) one adds to U(θ) before

sampling. The presence of at least some uniform distribution

is required for technical reasons in the proof of Theorem 2.

Exactly how much is up to the designer, however. To obtain

some insight on this choice it is instructive to turn the bound

of Theorem 2 around, to provide a lower bound on J to

ensure that θ̂ ∈ Θ(ǫ, α) with high enough probability.

Corollary 1: Consider σ ∈ (1/2, 1). π(Θ(ǫ, α); J, δ) ≥ σ

as long as

J ≥
1 + ǫ + δ

ǫ

[

log
σ

1 − σ
+ log

1

α
+ 2 log

1 + δ

δ

]

.

It turns out that the bound given for J in Corollary 1

admits a unique minimum for δ as a function of α, σ and

ǫ [16]. Figure 2 shows this value of δ and the value of the

corresponding bound.

If the optimization criterion is Lipschitz continuous,

Corollary 1 can be used together with Theorem 1 to derive

bounds on the probability that a θ̂ extracted according to

π(dθ; J, δ) is an approximate value optimizer with a given

imprecision.

B. Related methods

M. Vidyasagar [11], [21] proposed a fully randomized

algorithm for obtaining approximate domain optimizers with

respect to a general probability measure π(dθ) (not just the

Lebesgue measure considered here). The idea is to extract

N independent samples θ1, . . . , θN according to π(dθ) and

K independent samples x1, . . . , xK according to P (dx) and

set

θ̂V = arg min
i=1,...,N

1

K

K
∑

j=1

u(xj , θi). (2)

Notice that θ̂V is again a random variable, due to the random

extractions for θ and x. Under minimal assumptions (close

to our Assumption 1) it can be shown that if

N ≥
log 2

1−σ

log 1
1−α

and K ≥
1

2ǫ2
ln

4N

1 − σ
, (3)

then

π{θ ∈ Θ | U(θ) > U(θ̂) + ǫ} ≤ α (4)

with probability at least σ. Here “probability” is taken with

respect to the product measure πN ×PK for the independent

extractions θ1, . . . , θN , x1, . . . , xK . The total computation

necessary to obtain θ̂V is proportional to N + K plus the

amount of time needed to solve the optimization problem (2),

which is linear in NK . Similar (potentially tighter) bounds

can be obtained if the family of functions {u(·, θ) | θ ∈ Θ}
has the Uniform Convergence of Empirical Means property.

This approach is clearly related to the approach proposed

here, but it is much simpler to implement and much easier

to analyze from a computational complexity point of view.

Notice, however, that the measure of the set of points which

are ǫ better than the candidate optimizer is taken with

respect to π in (4) as opposed to the Lebesgue measure

in Definition 1. Since the search distribution π is arbitrary

(design choice), this makes it difficult to prove results like

Theorem 1, linking approximate domain optimizers with

approximate value optimizers, even in the case of Lipschitz

criteria. More importantly, because π(dθ) is used both to

sample from Θ and to assess the measure of the set of points

that are better than the obtained solution, one runs the risk

of (4) becoming a self fulfilling prophecy. A myopic search

strategy that samples only a small part of the space may end

up looking good from the point of view of equation (4), but
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would leave large parts of Θ with potentially high values of

U(θ) unexplored.

In terms of the necessary computation, the bound in

Corollary 1 scales more slowly than (3) with respect to ǫ
(1/ǫ as opposed to 1/ǫ2). The growth with respect to σ
and α is comparable. Note, however, that the bounds of (3)

effectively include all the necessary computations, since the

cost of solving (2) is small. By contrast, the bounds on J only

tell part of the story, since the cost of extracting a sample

from the distribution π(dθ; J, δ) is not included. We address

this issue in the next section.

In the stochastic programming literature, several other

methods have been proposed for obtaining approximate value

optimizers. Most of these methods [24], [20], [25], [23] rely

on random extractions from P (dx; θ) which are used to esti-

mate either U or its gradients, followed by a structured search

over the space Θ. Drawing a direct comparison between

these methods and methods based on randomly sampling the

parameter space is not straightforward, however, since some

methods require solving an additional optimization prob-

lem [24], [20], others require computing sub-gradients [25],

[23], others require extracting from complex distributions,

etc. The above discussion can lead to some insights about the

relative merits of the different approaches [16]. See also [26]

for a different class of randomized optimization methods,

geared primarily toward deterministic, convex problems.

In terms of applicability, the approach based on extractions

from π(dθ; J, δ) and the approach of Vidyasagar apply to

very general optimization criteria, provided one is willing

to live with approximate domain optimizers. The approach

of [24], [20] applies only to Lipschitz criteria. It does,

however, also require one to solve an additional optimiza-

tion problem constructed through Monte Carlo extractions,

which is likely to be generally feasible only under convexity

assumptions. The same is roughly true for the approach

of [25], [23]. These approaches (as well as the approach

of [11], [21]) also appear to be limited to the case where

P (dx; θ) does not depend on θ, though in some cases the

extension to more general P (dx; θ) is straightforward, at

least conceptually. Our approach can deal with the general

case P (dx; θ) by construction, as we will see in the next

section; being able to deal with this case is crucial in certain

applications, including those presented in [18], [19]. Another

subtle difference is that the approach proposed here and the

approach of Vidyasagar require one to sample both θ ∈ Θ
and x ∈ X , whereas the stochastic programming approaches

of [24], [20], [25], [23] only require sampling x ∈ X . This

may cause additional complication for the former methods,

depending on the shape of the set Θ and the distribution

used to sample from it. However, similar problems may

be encountered when solving the follow-on optimization

problem with the approach of [24], [20] or when computing

sub-gradients with the approach of [25], [23].

Algorithm 1 (MCMC for deterministic criteria)

initialization

Select θ0 ∈ Θ
Set k = 0

repeat

Extract θ̃ ∼ g(θ|θk)

Set ρ = min
{

1,
g(θk|θ̃)[U(θ̃)+δ]J

g(θ̃|θk)[U(θk)+δ]J

}

Set θk+1 =

{

θ̃ w.p. ρ
θk w.p. 1 − ρ

Set k = k + 1
until True

TABLE I

IV. GENERATION OF RANDOM DOMAIN OPTIMIZERS

USING MCMC

Now let us turn to the question of how to generate random

extractions according to the distribution required by Theo-

rem 2. This can be done using Markov Chain Monte Carlo

(MCMC) methods, by coding the desired distribution as the

stationary distribution of a Markov chain. Algorithms I and II

allow one to generate samples from the resulting chain for

deterministic and expected value criteria respectively; notice

that (unlike Theorem 2) Algorithm II only applies to the case

where J ≥ 1 and integer. Much more efficient algorithms for

sampling the desired distributions are of course available,

Algorithms I and II are listed here only to illustrate how this

can be done and because they lead to simple statements of

the subsequent results.

Algorithm I is the Metropolis-Hastings algorithm for gen-

erating a Markov chain with stationary distribution whose

density function is proportional to [U(θ) + δ]J . The same

property for Algorithm II was shown for expected value

criteria in [13], [14], [15]. Both algorithms maintain as (part

of the) state a value θk ∈ Θ; in addition, Algorithm II

also keeps track of an estimate, Uk, of the value of U at

θk. At each loop they make use of a proposal distribution

with density g(θ|θk) to extract a new candidate θ̃ ∈ Θ.

The candidate is then accepted or rejected with a probability

that relates to the relative value of U(θ̃) and U(θk) and the

relative likelihood of θ̃ and θk with respect to g(·|·). Notice

that for implementation purposes, densities need to be known

only up to a constant.

Let πk(dθ) denote the probability distribution of the kth

step of the Markov chain and recall that the stationary dis-

tribution of the chain has density p(θ; J, δ) ∝ [U(θ) + δ]J .

The following fact [17] is immediate from the definition of

the total variation norm.

Theorem 3: Let θk with distribution πk(dθ) be the state

of the chain generated by Algorithm I or II and assume

J respects the bound of Corollary 1. Then the statement

“θk is an approximate domain optimizer of U with value

imprecision ǫ and residual domain α” holds with probability

at least σ − ‖πk(dθ) − p(θ; J, δ)‖.

Standard results in the theory of Markov chains [27], [28],

[29], [30], [31] allow one to establish conditions under which

a Markov chain converges to its stationary distribution. In
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Algorithm 2 (MCMC for expected value criteria)

initialization

Select θ0 ∈ Θ
Extract independent xi ∼ P (dx, θ0), i = 1, 2, . . . , J

Set U0 =
∏J

i=1[u(xi, θ0) + δ]
Set k = 0

repeat

Extract θ̃ ∼ g(θ|θk)

Extract independent xi ∼ P (dx, θ̃), i = 1, 2, . . . , J

Set Ũ =
∏J

i=1[u(xi, θ̃) + δ]

Set ρ = min
{

1,
g(θk|θ̃)Ũ

g(θ̃|θk)Uk

}

Set (θk+1, Uk+1) =

{

(θ̃, Ũ) w.p. ρ
(θk , Uk) w.p. 1 − ρ

Set k = k + 1
until True

TABLE II

this case, the last term in Theorem 3 will tend to 0 as k
tends to infinity. Therefore, after an initial burn in period,

Algorithms I and II will approximately generate approximate

optimizers. In some cases it is also possible to determine

the rate of convergence. The simplest such case is when

the proposal distribution, g(θ|θk), used in the algorithms is

independent of the current state θk; in this case we simply

denote its probability density function by g(θ). The following

is taken from [32].

Theorem 4: Assume that there exists M > 1 such that for

all θ ∈ Θ, p(θ; J, δ) > 0, g(θ) > 0, and p(θ; J, δ) ≤ Mg(θ).

Then ‖π(·; J, δ) − πk(·)‖ ≤
(

1 − 1
M

)k
.

The following fact follows immediately.

Theorem 5: Assume that there exists M > 1 such that for

all θ ∈ Θ, p(θ; J, δ) > 0, g(θ) > 0, and p(θ; J, δ) ≤ Mg(θ).
Then

πk[Θ(ǫ, α)] ≥
1

1 +
[

1+δ
ǫ+1+δ

]J [
1
α

1+δ
ǫ+δ

− 1
]

1+δ
δ

−

(

1 −
1

M

)k

The conditions of Theorem 4 are easy to meet in our case.

We can select the proposal distribution such that g(θ) >
0 and, by construction, we also have that p(θ; J, δ) > 0.

Moreover, because U is assumed to be bounded, if we select

g to be the uniform distribution over Θ, then the condition

of Theorem 4 will be met for an appropriately large M .

This suggests a simple strategy for obtaining an approximate

domain optimizer with a given value imprecision ǫ, a given

residual domain α with a high enough probability ρ:

1) Select σ and γ such that (1 − γ)σ ≥ ρ.

2) Select δ and J using Corollary 1.

3) Run the Markov chain with g the uniform distribution

over Θ for k ≥ log(γσ)

log(1− 1
M )

steps.

Then the subsequent states of the Markov chain will be

approximate domain optimizers with value imprecision ǫ and

residual domain α with probability at least (1 − γ)σ ≥ ρ.

Notice that we have introduced one more design parameter,

γ, to determine how much of the probability of obtaining an

approximate domain optimizer is attributed to the selection

of J (σ above) and how much to the convergence of the

Markov chain (γσ above).

In some cases this strategy can produce approximate

domain optimizers very efficiently. One such case is when

the optimization criterion U(θ) has a “flat top”.

Proposition 1: Assume that λ(Θ∗) ≥ βλ(Θ) > 0 for

some β ∈ (0, 1). If K ≥ log(γσ)
log(1−β) and

J ≥
1 + ǫ + δ

ǫ

[

log
σ

1 − σ
+ log

1

α
+ 2 log

1 + δ

δ

]

then πk(Θ(ǫ, α)) ≥ (1 − γ)σ for all k ≥ K .

It is interesting to note that the “flat top” assumption also

ensures that, under weak regularity conditions on U (ef-

fectively Assumption 1 above), the distribution generated

by simulated annealing algorithms (π(·; J, δ) in our case)

converges asymptotically (as J → ∞ in our case) to the

uniform distribution over the set of global optimizers Θ∗ [2].

With the bound of Proposition 1 in place we can do a

rudimentary complexity analysis for the computational effort

necessary to obtain approximate domain optimizers using

Algorithms I and II. In particular we will count the number

of random extractions necessary. In this sense, generating the

next state of the Markov chain for Algorithm I is roughly

the same cost for all J (two random extractions necessary,

one for θ̃ and one for the accept-reject step). Therefore, the

total amount of work one needs to obtain an approximate

domain optimizer for a deterministic criterion is proportional

to K , and hence logarithmic with respect to σ and β. The

cost appears to be independent of ǫ and α, but these two

parameters will enter in the power J to which we need to

raise U(θ̃) in the calculations.

For an expected value criterion, the computational cost for

generating the next state of the Markov chain in Algorithm II

is proportional to J+2 (one extraction for θ, J for the x, and

one for the accept-reject step). Therefore the total amount of

computation needed is of the order of K(J+2), which scales

rather well (the worst growth rate is 1/ǫ with respect to the

value imprecision).

If the “flat top” condition is not met, however, it can be

easily seen that the above strategy based on the uniform

proposal distribution g(θ) can lead to very slow convergence

of the Markov chain as the following proposition suggests.

Proposition 2: Let πk denote the distribution of the

Markov chain at step k. If

k ≥

(

1 + δ

δ

)J

log
1

γσ

then ‖π(·; J, δ) − πk(·)‖ ≤ γσ.

Even though this is only a sufficient condition it suggests

that the number of steps that the Markov chain needs to

converge to within γσ of the desired stationary distribution

grows exponentially in J . In particular, if we use the value of

J established in Corollary 1 and assume that all logarithms

are taken with base (1 + δ)/δ to simplify the formula, the

sufficient condition becomes

k ≥

(

σ

α(1 − σ)

(

1 + δ

δ

)2
)

1+ǫ+δ

ǫ

log
1

γσ
.
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The problem here is the implicit dependence of the conver-

gence rate on the exponent J . This is due to the fact that if

λ(Θ∗) = 0 then the stationary distribution of the chain not

only becomes “sharper” as J increases, but the peak of its

density function also goes to infinity. Hence the mismatch

(encoded by M above) between the stationary distribution

of the chain and the uniform proposal distribution used

for searching the domain Θ also goes to infinity. It is

also interesting to note that in this case the asymptotic

convergence (J → ∞) of simulated annealing algorithms

can be proven only under additional regularity assumptions

(typically differentiability) on U [2], [3], [4], [5].

V. CONCLUDING REMARKS

We presented a series of results aiming to provide the-

oretical support for the use of randomized methods for

optimization, both in a deterministic and a stochastic setting.

Our main results allow us to provide finite sample guarantees

for simulated annealing type algorithms for optimization over

continuous domains (Theorem 2) and link these bounds to

the computation of approximate optimizers in a stochastic

programming context (Theorem 1). We also discussed how

extractions from the necessary distributions can be generated

using MCMC methods (Theorem 5).

For certain combinatorial optimization problems (where

the optimization domain is finite) it has been shown that

allowing the value of J to increase along the computation

(simulated annealing) leads to better performance than keep-

ing it constant [33]. In our case this would imply designing

an “annealing schedule” to change Jk as the computation

progresses. Current work concentrates on the development

of such annealing schedules. In addition to general pur-

pose schedules that can operate under weak assumptions

(like Assumptions 1 and 2 above) we are also looking to

exploit any available structure (for example differentiability

or convexity) to improve the computational performance of

the methods. The extension of the results to unbounded

optimization domains is another area of current research.
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