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Abstract— We come up with novel quantized averaging
algorithms on synchronous and asynchronous communication
networks with fixed, switching and random topologies. The
implementation of these algorithms is subject to the realistic
constraint that the communication rate, the memory capacities
of agents and the computation precision are finite. The focus
of this paper is on the study of the convergence time of
the proposed quantized averaging algorithms. By appealing to
random walks on graphs, we derive polynomial bounds on the
expected convergence time of all the algorithms presented.

I. INTRODUCTION

Consider a network of N (mobile or immobile) agents.

The distributed averaging problem aims to design an algo-

rithm that the agents can utilize to asymptotically reach an

agreement by communicating with nearest neighbors. The

consensus value is the average of individual initial states.

In real communication networks, the capacities of com-

munication channels and the memory capacities of agents

are finite. Furthermore, the computations can only be car-

ried out with finite precision. From a practical point of

view, real-valued consensus algorithms are not feasible and

these realistic constraints motivate the problem of average

consensus via quantized information. Another motivation

for distributed quantized averaging is load balancing with

indivisible tasks [12]. Prior work on distributed quantized

averaging includes [1], [7], [8], [12], [15], [16], on fixed

communication graphs and [19] for switching communica-

tion graphs. The authors in [15] propose a class of discretized

averaging algorithms (quantized gossip algorithms) with a

convergence property on fixed graphs. Very recently, [19]

studies quantization effects on distributed averaging algo-

rithms over time-varying topologies. As in [15], we focus

on quantized averaging algorithms which preserve the sum

of the state values at each iteration. This setup has the

following properties of interest: the sum cannot be changed

in some situations, such as in load balancing [10], [12]; and

the constant sum leads to a small steady-state error with

respect to the average of individual initial states. This error

is equal to either one quantization step size or zero (when the

average of the initial states is one of the quantization levels)

and thus is independent of N . This is in contrast to the setup

in [19] where the sum of the states is not preserved, resulting

in a steady-state error of the order O(N3 log N). However,

high-precision averaging algorithms are essential to many

distributed tasks, including distributed estimation[17] and

sensor fusion [21] over networks.
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The convergence time is typically utilized to quantify the

performance of averaging algorithms. The authors in [4], [5],

[22] study the convergence time of real-valued averaging,

while the case of quantized averaging is discussed in [15],

[19]. The bounds of the expected convergence time on

fixed complete and linear graphs are derived in [15]. Very

recently, the authors in [19] give a polynomial bound on

the convergence time of a class of quantized averaging

algorithms over switching topologies.

Organization and Statement of contributions. We now

outline the reminder of the paper, and report the main contri-

butions. This paper builds on the results of [15] and proposes

novel quantized averaging algorithms on synchronous and

asynchronous communication networks with fixed, switching

and random topologies. The algorithms can be implemented

under the constraint that the capacities of communication

channels, the memory capacities of agents and the computa-

tion precision are finite. We utilize random walks on graphs

to derive polynomial bounds on the expected convergence

time of all the algorithms proposed. To the best of our

knowledge, this paper is the first step toward the treatment

of asynchronous quantized averaging, quantized averaging on

random graphs, and random walks on time-varying graphs.

In Section II, we present the problem formulation studied

in this paper along with some notation and terminology. In

Section III, we study quantized averaging on synchronous

communication networks. In Section III-A, we propose a

synchronous quantized averaging algorithm on fixed and

connected graphs. This case is discussed in [15], and our

algorithm improves that of [15] in the sense that we remove

the non-local constraint
∑

(i,j)∈E p̄ij(t) = 1, where p̄ij(t) >
0 is the probability that the edge (i, j) ∈ E is chosen at

time t ≥ 0. In this way, it is unnecessary to have global

knowledge of the number of edges in the graph and the

algorithm becomes completely distributed. We also derive

(1) bounds on the expected convergence time for the cases

of linear and complete graphs (improving those in [15] by

an order of magnitude in terms of N ), and (2) a general

polynomial bound O(N4) that is valid for any fixed graph.

In Section III-B, we propose a synchronous quantized

averaging algorithm, and show that this algorithm converges

to quantized average consensus over switching graphs which

are periodically connected with period B. We provide a

polynomial bound O(BN5 log N) on the expected conver-

gence time. This case is studied in [19], and our results are

different from [19] in the following aspects: (1) we relax

the constraint in [19] that the computations are carried out

with continuous values, and the computation precision we

need is half of one quantization step size; (2) the steady-
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state error of our algorithm is independent of N and at most

one quantization step size as opposed to a polynomial with

the order O(N3 log N) in [19].

In Section IV, we turn our attention to asynchronous

quantized averaging algorithms where we adopt the asyn-

chronous time model in [4]. In Section IV-A, an asyn-

chronous algorithm is proposed to achieve quantized average

consensus on fixed and connected topologies. In terms of

the number of clock ticks, we obtain a bound O(N5) on the

expected convergence time. In Section IV-B, we provide an

asynchronous quantized averaging algorithm for periodically

connected graphs with period B. We show this algorithm to

be convergent and have an upper bound O(BN7 log N) in

terms of the number of clock ticks.

In Section V, we briefly discuss the case of quantized

averaging on random graph G(N, p) in synchronous and

asynchronous settings. Finally, we provide simulation results

for a particular example in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

We will consider a network of N nodes, labeled 1
through N . The state of node i at time t is denoted by

xi(t) ∈ R and the network state is denoted by x(t) =
(x1(t), · · · , xN (t))T ∈ R

N . Suppose xi(t) ∈ [Umin, Umax]
for i ∈ {1, · · · , N} and all t ≥ 0. Let R denote the

number of bits per sample. The total number of quantization

levels can be represented by L = 2R and the step size

is ∆ = (Umax − Umin)/L = (Umax − Umin)/2R. The

quantization levels, {ω1, · · · , ωL}, are uniformly spaced in

the sense that ωi+1 − ωi = ∆ for i ∈ {1, · · · , L − 1}; i.e.,

the quantization levels are consecutive multiples of ∆. A

quantizer Q : [Umin, Umax] → {ω1, · · · , ωL} is adopted to

quantize the message u ∈ [Umin, Umax] in such a way that

Q(u) = ωi if u ∈ [wi, wi+1). We assume that the initial

state xi(0) is a multiple of ∆.

Problem statement. In this paper, the problem of interest

is to design distributed averaging algorithms where the

nodes update their states by communicating with neighbors

via quantized messages in a synchronous or asynchronous

setting. Ultimately, quantized average consensus is reached

in probability; i.e., for any initial state x(0), there holds

that limt→∞ P(x(t) ∈ W) = 1. The set W is dependent

on the initial state x(0) and defined as follows. If x̄(0) =
1
N

∑N

i=1 xi(0) is not a multiple of ∆, then W = {x ∈
R

N | xi ∈ {Q(x̄(0)),Q(x̄(0)) + ∆}}. If x̄(0) is a multiple

of ∆, then W = {x ∈ R
N | xi = x̄(0)}. Now it is clear that

the steady-state error with respect to x̄(0) is at most ∆ after

quantized average consensus is reached.

In the sequel, we introduce the notation and terminology

of random walks that will be used along the paper. We will

employ the undirected graph G(t) = (V, E(t)) to model the

network. Here V = {1, · · · , N} is the vertex set, and an edge

(j, i) ∈ E(t) if and only if node j can receive the message

from node i (e.g., node j is within the communication range

of node i) at time t. The neighbors of node i at time t are

denoted by Ni(t) = {j ∈ V | (j, i) ∈ E(t) and j 6= i}.

For α ∈ R, define Vα : R
N → R as Vα(x) =

∑N

i=1(xi −
α)2. Denote J = (maxi∈V xi(0) − mini∈V xi(0))/∆. The

vector ei is the ith column of the identity matrix IN×N .

Denote Θc as the complement of the set Θ = {(k, k)| k ∈
V }. We define the distribution of a vector x ∈ R

N to be

the list {(q1, m1), (q2, m2), · · · , (qk, mk)} for some k ∈ V
where

∑k

ℓ=1 mℓ = N , qi 6= qj for i 6= j and mℓ is

the cardinality of the set {i ∈ V | xi = qℓ}. In this

paper, random walks on graphs play an important role in

characterizing the convergence properties of our quantized

averaging algorithms. The following two definitions are

generalized from those defined for fixed graphs in [6] and [9].

Definition 2.1 (Natural and simple random walks):

A natural random walk on the graph G(t) under the

transition matrix P (t) = (pij(t)) ∈ R
N×N , starting from

node v at time s, is a stochastic process {X(t)}t≥s

with the state space V such that X(s) = v and

P(X(t + 1) = j | X(t) = i) = pij(t). A natural

random walk is said to be simple if for any i ∈ V ,

pii(t) = 0 for all t. •
The hitting time and meeting time are two important

notions for random walks on graphs.

Definition 2.2 (Hitting time): Consider a random walk

on the graph G(t), beginning from node i at time s and

evolving under the transition matrix P (t). The hitting time

from node i to the set Θ, denoted as H(G(t),P (t),s)(i, Θ),
is the expected time it takes this random walk to reach

the set Θ for the first time. We denote H(G(t),P (t))(Θ) =
sups≥0 maxi∈V H(G(t),P (t),s)(i, Θ) as the hitting time to

reach the set Θ. The hitting time of the pair i, j ∈ V ,

denoted as H(G(t),P (t),s)(i, j), is the expected time it takes

this random walk to reach node j for the first time. We

denote H(G(t),P (t)) = sups≥0 maxi,j∈V H(G(t),P (t),s)(i, j)
as the hitting time of going between any pair of nodes. •

Definition 2.3 (Meeting time): Consider two random

walks on the graph G(t) under the transition matrix P (t),
starting at time s from node i and node j respectively. The

meeting time M(G(t),P (t),s)(i, j) of these two random walks

is the expected time it takes them to meet at some node for

the first time. The meeting time of the graph G(t) is defined

as M(G(t),P (t)) = sups≥0 maxi,j∈V M(G(t),P (t),s)(i, j). •
For the ease of notation, we will drop the subscript s in

the hitting time and meeting time notions for fixed graphs.

III. SYNCHRONOUS QUANTIZED AVERAGING

A. Synchronous quantized averaging on fixed graphs

In this section, we propose an algorithm which can achieve

quantized average consensus on a fixed and connected

topology. The algorithm is related to that in [15], and to

characterize its expected convergence time, we use the upper

bound on the hitting time for simple random walks on fixed

and connected graphs in [6].

The synchronous quantized averaging algorithm on a fixed

and connected graph G (SF, for short) can be described

as follows. Initially, a token is assigned to a node in the

network. This token will serve to determine which node

becomes active. At time t, the active node, say node i,
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randomly chooses one of its neighbors, say node j, with

equal probability. Node i and j then execute the following

local computation. If xi(t) ≥ xj(t), then

xi(t + 1) = xi(t) − δ, xj(t + 1) = xj(t) + δ; (1)

otherwise,

xi(t + 1) = xi(t) + δ, xj(t + 1) = xj(t) − δ, (2)

where δ = 1
2 |xi(t) − xj(t)| if

|xi(t)−xj(t)|
2∆ is an integer;

otherwise, δ = Q(1
2 |xi(t) − xj(t)|) + ∆. Simultaneously,

node i passes the token to node j. Every other node k ∈
V \ {i, j} preserves its current state; i.e., xk(t + 1) = xk(t).

Remark 3.1: In the context of load balancing, the quan-

tity δ represents the load which is transferred from a heavy-

loaded node to a light-loaded one. The precision ∆
2 is

sufficient for the computations of δ and thus the update laws

(1) and (2). The sum of the state values is preserved at each

iteration, and xi(t) is a multiple of ∆ for all i and t.

If xi(t) and xj(t) are located at adjacent quantization

levels, the update laws (1) and (2) become xi(t+1) = xj(t)
and xj(t+1) = xi(t). Such update is referred to as a trivial

average. If |xi(t) − xj(t)| > ∆, the update of (1) or (2)

is referred to as a non-trivial average. Although it does not

directly contribute to the averaging, trivial averages help the

information flow over the network. •
The convergence time of SF is a random variable defined

as follows: Tcon(x(0)) = inf{t | x(t) ∈ W}, where x(t)
evolves under SF, starting from x(0). We define T1(x(0))
as the random variable of the time when the first non-trivial

average occurs starting from x(0).

Choose Vx̄(0)(x) =
∑N

i=1(xi − x̄(0))2 as a Lyapunov

function candidate for SF. One can readily see that

Vx̄(0)(x(t + 1)) = Vx̄(0)(x(t)) when a trivial average occurs

and Vx̄(0)(x) reduces at least 2∆2 when a non-trivial

average occurs. Hence, Vx̄(0)(x) is non-increasing along

the trajectories starting from x(0), and the number of

non-trivial averages is at most 1
2∆2 Vx̄(0)(x(0)). Define

Ψ = {x ∈ R
N | the distribution of x is {(0, 1), (∆, N −

2), (2∆, 1)}} and denote E[TΨ] =
maxx(0)∈Ψ E[Tcon(x(0))]. It is clear that E[T1(x(0))] ≤
E[TΨ] and we have the following estimates on E[Tcon(x(0))]:

E[Tcon(x(0))] ≤ 1

2∆2
Vx̄(0)(x(0))E[T1(x(0))]

≤ 1

2∆2
Vx̄(0)(x(0))E[TΨ] ≤ NJ2

8
E[TΨ], (3)

where the third inequality uses Lemma 4 in [15].

Lemma 3.1: For any fixed connected graph G,

E[Tcon(x(0))] of SF is upper bounded by 1
27J2N4.

Proof: Due to the space limitations, we omit the proof.

Theorem 3.1: Let x(0) ∈ R
N and suppose x(0) /∈ W .

Under SF, any evolution x(t) starting from x(0) reaches

quantized average consensus.

Proof: Denote T̃ = 2
27J2N4, and consider the first T̃

time units of evolution of SF starting from x(0). It follows

from Markov’s inequality that

P(Tcon(x(0)) > T̃ |x(0) /∈ W) ≤ E[Tcon(x(0))]

T̃
≤ 1

2
,

that is, the probability that after T̃ time units SF has not

reached quantized average consensus is less than 1
2 . Starting

from x(T̃ ), let us consider the posterior evolution of x(t) in

the next T̃ time units. We have

P(Tcon(x(T̃ )) > T̃ |x(T̃ ) /∈ W) ≤ E[Tcon(x(T̃ ))]

T̃
≤ 1

2
.

That is, the probability that after 2T̃ time units x(t) has not

reached quantized average consensus is at most (1
2 )2. By

induction, it follows that after nT̃ time units the probability

x(t) not reaching quantized average consensus is at most

(1
2 )n. Letting n → ∞, we obtain limt→∞ P(x(t) /∈ W) = 0

and this completes the proof.

The bound obtained in Lemma 3.1 is valid for any fixed

and connected graph. If we restrict our attention to some

specific graphs (e.g., the complete graph and the linear

network in [15]), a tighter bound can be obtained by using

the properties of each graph. Denote the complete graph with

N nodes as Gcom = (V, Ecom) with Ecom = {(i, j) | i 6= j}.

The linear network with N nodes is denoted as Glin =
(V, Elin) with Elin = {(i, j) | |i − j| = 1}.

Lemma 3.2 (Convergence over the complete graph):

Suppose that SF be implemented on Gcom. We have that

E[Tcon(x(0))] of SF is upper bounded by 1
4N(N − 1)J2.

Proof: The proof is omitted due to the space limit.

Lemma 3.3 (Convergence over the linear network):

Suppose that SF be implemented on Glin. We have that

E[Tcon(x(0))] of SF is upper bounded by 1
4N(N − 1)2J2.

Proof: Due to the space limit, we omit the proof.

B. Synchronous quantized averaging on switching graphs

This section introduces a synchronous quantized averaging

algorithm for switching graphs (SS, for short). The conver-

gence rate of real-valued averaging algorithms on switching

graphs in [19] will be applied to characterize the hitting time

of random walks on switching graphs.

The main steps of SS can be summarized as follows.

Initially, a token is assigned to a node in the network. This

token will serve to determine which node becomes active.

Assume that node i be active at time t. If |Ni(t)| 6= 0, node

i randomly chooses one of its neighbors, say node j, with

probability pij(t) = 1
2max{|Ni(t)|,|Nj(t)|}

. Then node i and j
execute the computation (1) or (2); and simultaneously, node

i passes the token to node j. Every other node k ∈ V \{i, j}
preserves its current state. If |Ni(t)| = 0, all nodes preserve

their current states.

In what follows, we assume that the communication graph

satisfies the following connectivity assumption also used in

[2], [14], [19], [22].
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Assumption 3.1 (Periodical connectivity): There exists

some B ∈ N>0 such that, for all t ≥ 0, the undirected

graph (V, E(t)∪E(t+1)∪· · ·∪E(t+B−1)) is connected.

The movement of the token on G(t) under SS is a natural

random walk. This is in contrast to the simple random

walk describing the token’s motion on fixed graphs under

SF. The natural random walk has an associated transition

matrix PSS(t) defined as follows. If |Ni(t)| 6= 0, then

pij(t) = 1
2max{|Ni(t)|,|Nj(t)|}

for (i, j) ∈ E(t), and pii(t) =

1 − ∑
j∈Ni(t)

pij(t) ≥ 1
2 ; otherwise, pii(t) = 1.

The following lemma considers two random walks: X
with transition matrix PSS(t), and XM with a single absorb-

ing state j and transition matrix P̄SS(t) obtained by replacing

the jth row of PSS(t) with eT
j . Define ϑi(t) = P(X(t) = i),

ϑ̄i(t) = P(XM (t) = i), and ϑ(t) = (ϑ1(t), · · · , ϑN(t))T ∈
R

N , ϑ̄(t) = (ϑ̄1(t), · · · , ϑ̄N (t))T ∈ R
N .

Lemma 3.4: Consider a network of N nodes whose com-

munication graph G(t) satisfies Assumption 3.1. Let i ∈ V
be a given node and suppose that X and XM start from node

i at time 0. Then for any j 6= i, we have ϑ̄j(t) ≥ 1
2N

for

t ≥ t1 where t1 = B(8N2(N − 1) log(2N) + 1).

Proof: We omit the proof due to the space limit.

Define the quantities Tcon(x(0)) and TΨ for SS in a similar

way to those for SF in Section III-A.

Theorem 3.2: Suppose the communication graph G(t)
satisfies Assumption 3.1. Let x(0) ∈ R

N and suppose

x(0) /∈ W . Under SS, any evolution x(t) starting from

x(0) reaches quantized average consensus. Furthermore, the

expected convergence time E[Tcon(x(0))] of SS is upper

bounded by BJ2N2(8N2(N − 1) log(2N) + 1).

Proof: Keep in mind that the movement of the token

is a natural random walk on G(t) under transition matrix

PSS(t) defined in Lemma 3.4. Similarly to Lemma 3.1, we

have E[TΨ(x(0))] < 2H(G(t),PSS(t)). Since the inequality (3)

also works for SS, it holds that

E[Tcon(x(0))] ≤ 1

4
NJ2H(G(t),PSS(t)).

We first need to find an upper bound on H(G(t),PSS(t)). To

do this, construct random walk X
[i]
M in such a way that X

[i]
M

starts from node i at time 0 and the state j (j 6= i) is the

single absorbing state of X
[i]
M . The transition matrix of X

[i]
M is

P̄SS(t) defined in Lemma 3.4. Define ϑ
[i]
k (t) = P(X

[i]
M (t) =

k), and ϑ[i](t) = (ϑ
[i]
1 (t), · · · , ϑ

[i]
N (t))T ∈ R

N . The dynam-

ics of ϑ[i](t) is given by ϑ[i](t+1) = P̄T
SS(t)ϑ[i](t), with the

initial state ϑ[i](0) = ei.

Define the function µ
[i]
ℓ : N0 → {0, 1} in such a way that

µ
[i]
ℓ (t) = 1 if X

[i]
M (t) = ℓ and µ

[i]
ℓ (t) = 0 if X

[i]
M (t) 6= ℓ.

Define n
[i]
ℓ =

∑+∞
τ=0 µ

[i]
ℓ (τ) which is the total times that

X
[i]
M is at node ℓ. Hence, the hitting time H(G(t),PSS(t),0)(i, j)

of X
[i]
M equals the expected time before X

[i]
M reaching the

absorbing state j for the first time, that is,

H(G(t),PSS(t),0)(i, j) =
∑

ℓ 6=j

E[n
[i]
ℓ ] =

∑

ℓ 6=j

E[
+∞∑

τ=0

µ
[i]
ℓ (τ)]

=
∑

ℓ 6=j

+∞∑

τ=0

E[µ
[i]
ℓ (τ)] =

+∞∑

τ=0

∑

ℓ 6=j

ϑ
[i]
ℓ (τ). (4)

It follows from Lemma 3.4 that ϑ
[i]
j (t) ≥ 1

2N
for t ≥ t1.

Since
∑

ℓ∈V ϑ
[i]
ℓ (t) = 1 for any t ≥ 0, we have

∑

ℓ 6=j

ϑ
[i]
ℓ (t1) ≤ 1 − 1

2N
. (5)

For each k 6= j, construct random walk X̃
[k]
M in such a

way that X̃
[k]
M starts from node k at time t1 and the state j

is the single absorbing state of X̃
[k]
M . The transition matrix

of X̃
[k]
M is P̄SS(t). Define ϑ̃

[k]
ℓ (t) = P(X̃

[k]
M (t) = ℓ), and

ϑ̃[k](t) = (ϑ̃
[k]
1 (t), · · · , ϑ̃

[k]
N (t))T ∈ R

N . Following the same

arguments above for X
[i]
M , we have

∑

ℓ 6=j

ϑ̃
[k]
ℓ (2t1) ≤ 1 − 1

2N
. (6)

Combining (5) and (6) gives that
∑

ℓ 6=j

ϑ
[i]
ℓ (2t1) =

∑

ℓ 6=j

∑

k 6=j

ϑ
[i]
k (t1)ϑ̃

[k]
ℓ (2t1)

=
∑

k 6=j

ϑ
[i]
k (t1)

∑

ℓ 6=j

ϑ̃
[k]
ℓ (2t1) ≤ (1 − 1

2N
)2. (7)

Repeatedly applying the arguments for (7) yields∑
ℓ 6=j ϑ

[i]
ℓ (nt1) ≤ (1 − 1

2N
)n and we obtain a strictly

decreasing sequence
∑

ℓ 6=j ϑ
[i]
ℓ (nt1) with respect to n ∈ N0.

Since node j is the single absorbing state, then∑
ℓ 6=j ϑ

[i]
ℓ (t) is non-increasing with respect to t ∈ N0.

Combining the strictly decreasing property of the se-

quence
∑

ℓ 6=j ϑ
[i]
ℓ (nt1) and the non-increasing property of

∑
ℓ 6=j ϑ

[i]
ℓ (t), we have the following estimate

∑

ℓ 6=j

ϑ
[i]
ℓ (t) ≤

∑

ℓ 6=j

ϑ
[i]
ℓ (0)(1 − 1

2N
)

t
t1

−1
= (1 − 1

2N
)

t
t1

−1
.

(8)

Substituting (8) into (4) gives that

H(G(t),PSS(t),0)(i, j) ≤
+∞∑

τ=0

(1 − 1

2N
)

τ
t1

−1

= (1 − 1

2N
)
− 1

t1 · 1

1 − (1 − 1
2N

)
1

t1

. (9)

Since t1 > 1, it holds that (1− 1
2N

)
− 1

t1 ≤ 2
1

t1 < 2. From

Bernoulli’s inequality in [18] it follows that (1− 1
2N

)
1

t1 ≤ 1−
1

2Nt1
, and thus 1

1−(1− 1

2N
)

1

t1

≤ 2Nt1. Inequality (9) becomes

H(G(t),PSS(t),0)(i, j) ≤ 4Nt1. (10)
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Since the inequality (10) holds for any starting time, any

starting node i and any end node j, we have H(G(t),PSS(t)) ≤
4Nt1 and thus

E[Tcon(x(0))] ≤ 1

4
NJ2H(G(t),PSS(t)) ≤ N2J2t1

= BJ2N2(8N2(N − 1) log(2N) + 1).

Since E[Tcon(x(0))] is bounded, the proof on the conver-

gence property of SS is analogous to Theorem 3.1.

IV. ASYNCHRONOUS QUANTIZED AVERAGING

In this section, we will employ the asynchronous time

model proposed in [4] and also used in [11]. This model

matches well the decentralized nature of peer-to-peer, sensor,

ad hoc networks. More precisely, each node has a clock

which ticks according to a rate 1 Poisson process. Hence,

the inter-tick times at each node are random variables with

rate 1 exponential distribution, independent across nodes and

independent over time.

By the superposition theorem for Poisson processes, this

set up is equivalent to a single global clock modeled as

a rate N Poisson process ticking at times {Zk}k≥0. By

the orderliness property of Poisson process, the clock ticks

do not occur simultaneously. The inter-agent communication

and the update of consensus states only occur at {Zk}k≥0.

Hence, in what follows the time instant t will be discretized

according to {Zk}k≥0 and defined in terms of the number

of clock ticks; i.e., t ∈ {Zk}k≥0. The interval [Zk, Zk+1)
corresponds to the kth time-slot.

A. Asynchronous quantized averaging on fixed graphs

In this section, we propose and analyze an asynchronous

quantized averaging algorithm on fixed and connected com-

munication graph G. Main reference for this section is [6]

on the meeting time of two simple random walks.

The asynchronous quantized averaging algorithm on a

fixed connected graph G (AF, for short) is described as

follows. Suppose node i’s clock ticks in the kth time-slot.

Node i randomly chooses one of its neighbors, say node

j, with equal probability. This pair of nodes executes the

computation (1) or (2). Every other node preserves its current

state. To study the convergence of AF, we first consider the

following problem which is a variation of that in [9].

The meeting time of two natural random walks on G:

Initially, two tokens are placed on G; at each clock tick, one

of the tokens is chosen with probability 1
N

and the chosen

token moves to one of the neighboring nodes with equal

probability. What is the meeting time for these two tokens?

The tokens move as two natural random walks with

transition matrix PAF on graph G. The matrix PAF = (p̃ij) ∈
R

N×N is given by p̃ii = 1 − 1
N

for i ∈ V , p̃ij = 1
N |Ni|

for

(i, j) ∈ E. Denote any of these two natural random walks

as XN . Correspondingly, we define a simple random walk,

say XS , with transition matrix PSF on the graph G where

PSF is defined in Lemma 3.1.

Lemma 4.1: For the problem of the meeting time of two

natural random walks on G, there holds that M(G,PAF) <
2NH(G,PSF) − N .

Proof: Since G is connected and fixed, XN and XS

are irreducible. The reminder of the proof is based on the

following claims, and we omit the details of the proof due

to the space limit.

(i) It holds that H(G,PAF)(i, j) ≥ N for any i, j ∈ V .

(ii) For any pair i, j ∈ V , we have H(G,PAF)(i, j) =
NH(G,PSF)(i, j).

(iii) For any i, j, k ∈ V , the following equality holds:

H(G,PAF)(i, j)+H(G,PAF)(j, k)+H(G,PAF)(k, i) =
H(G,PAF)(i, k) + H(G,PAF)(k, j) + H(G,PAF)(j, i).

(iv) There holds that M(G,PAF) ≤ 2H(G,PAF) − N.

The quantities Tcon(x(0)) and TΨ for AF are defined in

terms of the number of clock ticks in a similar way to those

for SF in Section III-A.

Theorem 4.1: Let x(0) ∈ R
N and suppose x(0) /∈ W .

Under AF, any evolution x(t) starting from x(0) reaches

quantized average consensus. Furthermore, E[Tcon(x(0))] is

upper bounded by N2J2

8 ( 8
27N3 − 1) in terms of the number

of clock ticks.

Proof: Note that E[TΨ] = M(G,PAF) and we have

E[Tcon(x(0))] ≤ NJ2

8
M(G,PAF) ≤

NJ2

8
(2NH(G,PSF) − N),

where we use Lemma 4.1 in the last inequality. Substituting

the bound on H(G,PSF) in [6] in the Appendix into the above

inequality gives the desired upper bound on E[Tcon(x(0))].
The reminder of the proof on the convergence property of

AF is analogous to Theorem 3.1.

B. Asynchronous quantized averaging on switching graphs

In this section, we will study an asynchronous quantized

averaging algorithm on switching graphs (AS, for short). As

in Section IV-A, we will adopt the asynchronous time model

and discretize the time instant t according to {Zk}k≥0.

The algorithm AS is described as follows. In the kth

time-slot, let node i’s clock tick. If |Ni(k)| 6= 0, node i
randomly chooses one of its neighbors, say node j, with

probability 1
max{|Ni(k)|,|Nj(k)|} , and node i and j execute

the computation (1) or (2). If |Ni(k)| = 0, node i does

nothing at this time. Before showing the convergence of AS,

we consider the following problem.

The meeting time of two natural random walks on G(t).
Initially, two tokens are placed on G(t); at each clock tick,

one of the tokens is chosen with probability 1
N

. The chosen

token at some node, say i, moves to one of its neighbors, say

node j, with probability 1
max{|Ni(k)|,|Nj(k)|} if |Ni(k)| 6= 0;

otherwise, it will not move. What is the meeting time for

these two tokens?

Clearly, the movements of two tokens are two natural

random walks, say X1 and X2, on the switching graph G(t).
Their meeting time is denoted as M(G(t),PAS(t)) where the

transition matrix PAS(t) is given as follows: if |Ni(t)| 6= 0,

then pij(t) = 1
N max{|Ni(t)|,|Nj(t)|}

for (i, j) ∈ E(t) and

pii(t) = 1−∑
(i,j)∈E(t)

1
N max{|Ni(t)|,|Nj(t)|}

; if |Ni(t)| = 0,

then pii(t) = 1.
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Lemma 4.2: Suppose the communication graph G(t) sat-

isfies Assumption 3.1. For the problem of the meeting

time of two natural random walks on G(t), we have

that M(G(t),PAS(t)) ≤ 4Nt2 where t2 = 1
2B(8N5(N −

1) log(
√

2N) + 1)
Proof: Due to space limitations, we omit the proof.

The quantities Tcon(x(0)) and TΨ in terms of the number

of clock ticks for AS are defined in a similar way to those

for SF in Section III-A.

Theorem 4.2: Let x(0) ∈ R
N and suppose x(0) /∈ W .

Assume that G(t) satisfies Assumption 3.1. Under AS, any

evolution x(t) starting from x(0) reaches the quantized aver-

age consensus. Furthermore, E[Tcon(x(0))] is upper bounded

by 1
2BJ2N(8N6 log(

√
2N) + 1) in terms of the number of

clock ticks.

Proof: Due to space limitations, we omit the proof.

V. DISCUSSION ON QUANTIZED AVERAGING OVER

RANDOM GRAPHS

The graph G(N, p), 0 < p < 1, is one of two most fre-

quently occurring random graph models [3]. The algorithm

SF can also be implemented on G(N, p). The corresponding

upper bound on expected convergence time is J2

4p

N(N−1)2

N−2 .

The algorithm AF has an upper bound J2

8p

N3(N−1)2

N(N−1)−2p
on ex-

pected convergence time when it is implemented on G(N, p).
Due to the space limit, we omit the proof.

VI. SIMULATION EXAMPLE

This section presents a simulation of AS. Consider

a network of 10 nodes. Assume that the quantization

step size ∆ = 1 and graph G(t) satisfies Assump-

tion 3.1 with B = 3. Suppose the initial state x(0) =
(5, 6, 14, 17, 0, 11, 10, 21, 10, 6)T with average x̄(0) = 10.

The worst-case upper bound on E[Tcon(x(0))] in Theo-

rem 4.2 is 1010 clock ticks. Figure 1 shows that all the

consensus states agree on x̄(0) after about 65 clock ticks.
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Fig. 1. The states of asynchronous quantized averaging algorithm on
switching graphs
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