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Abstract— In this paper we consider the problem of input
design for open loop identification of linear single input single
output finite impulse response systems, under the assumption
of full-order modeling. We provide analytic formulas for the
information matrix of the optimal input when the design is
intended to identify a scalar function of the impulse response
coefficients. In particular, we characterize the cases when the
optimal information matrix is singular and the optimal input
is necessarily a multisine signal. Our results have surprising
consequences for the robustness properties of optimal input
designs. We show that, contrary to intuition, the choice of
an optimal regular information matrix might pose robustness
problems if there exist also singular solutions.

I. INTRODUCTION

The goal of system identification is to produce or to

refine information on the dynamics of an unknown system.

In prediction error model identification, this information is

contained in the input-output data produced during the ex-

periment. On the one hand, the obtained information depends

on the experimental conditions, such as the spectrum of the

applied input signal or the controller used during a closed-

loop identification. On the other hand, the quality of the

information is measured by its utility for the intended model

application. The desire to reconcile these conditions leads to

an optimal input design problem, namely to optimally meet

the requirements posed by the intended application by choice

of the experimental conditions.

Before the appearance of powerful numerical optimization

methods this was a very challenging task, and the postulated

optimality criteria for the input design were of a general

nature, such as minimization of the volume of the confidence

ellipsoid [10],[3],[14]. However, from the beginning of this

decade an increasing number of results on application-

tailored optimal input design appeared (e.g. [4],[7]). For

an excellent overview see [2]. If the cost criterion of the

optimization problem can be chosen to be linear in the

design parameters, then the optimal input is often obtained

as the solution of a semidefinite program [6]. For more

complicated, but still convex optimality criteria it can often

also be obtained by a general-purpose convex optimization

algorithm [4]. The optimization algorithms usually yield the

optimal input in the form of an optimal information matrix.

It is a standard task to convert this information matrix to an

actual input signal, see e.g. [4],[6].

Such a numerical algorithm is sufficient to obtain reliable

optimal designs for concrete problem instances, but does

not permit the qualitative and quantitative study of the

dependence of the optimal input design on the problem
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parameters. However, the parameters of the optimal input

design problem are in general determined by the unknown

system itself. Thus knowledge of this dependence would be

extremely helpful, for instance, for the robustification of the

solution against uncertainties in these problem parameters.

Robust input design is a challenging task which is still at

the beginnings of its development.

In [13] a game-theoretic approach to robust input design

was initiated, which consists essentially of a worst-case

optimization, assuming that the problem parameters can vary

in a fixed set. While this approach benefits from the use of

tools known from game theory, it bears the usual drawbacks

of a worst-case setup. For instance, one cannot account for

different likelihoods of different regions of the fixed set to

contain the true parameter vector. A related approach was

adopted in [1], but here the role of the fixed set is assumed

by the uncertainty set resulting from the identification, and

depends itself of the input used during the identification.

The most straightforward way to study the dependence of

the optimal design on the problem parameters is by means of

an analytic formula for the optimal solution. Naturally, such

a formula is out of reach except for the most simple modeling

setups. In [5, Theorem 3.1], an analytic solution for the

optimal input design for full-order open loop identification

of single input single output (SISO) finite impulse response

(FIR) systems was given in the case of an input power

constraint, where the goal of the experiment was to identify

a scalar function of the system parameters. The solution

was claimed to be valid under the assumption of a special

condition [5, Condition 3.1]. This condition yields also the

regularity of the information matrix. A regular information

matrix can be obtained by a continuum of different input

spectra, which leaves room, for instance, for robustification

of the input design [5].

Unfortunately, the main result of [5] is not correct. The

goal of the present paper is to provide the correct optimality

conditions for a large class of input design problems for

the identification of SISO FIR systems, which include the

problems studied in [5] as a special case. Our conditions

have a number of surprising consequences.

We provide a necessary and sufficient condition for the

regularity of the optimal information matrix and show that

in many cases the optimal solution is defined by a singular

information matrix. If this singular solution is unique, then

the optimal input is determined to be a unique multi-sine

signal (up to phase shifts of the components) [8], which

a priori leaves no room for robustification by the methods

proposed in [5]. In these cases, other ways to robustify the

input design have to be looked for.
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It is a common belief that if the information matrix cor-

responding to the optimal input design has full rank, then it

must be a continuous function of the problem parameters, at

least in the neighbourhood of the considered point. However,

in this paper we will show that this is false. Moreover, we

provide necessary and sufficient conditions under which the

regularity itself of the optimal information matrix is unstable.

By this is meant that in the neighbourhood of the considered

point the set of problem parameters corresponding to a

regular optimal information matrix is of zero measure. We

illustrate this situation on a concrete example.

The remainder of the paper is organized as follows. In the

next section we describe the general setup of the identifi-

cation procedure, give other necessary definitions and prove

some preliminary results. In Section 3 we consider the goal

of identifying a scalar function of the system parameters and

discuss the results of [5]. In Section 4 we provide examples

illustrating the described phenomena. In the last section we

draw some conclusions.

II. DEFINITIONS AND PRELIMINARIES

The SISO system to be identified is modelled by a FIR

model structure

y(t) =

n
∑

k=0

θku(t − k) + e(t), (1)

where u is the input signal, y the output signal, and e is zero

mean white noise of variance σ2. We assume the true system

is represented by the parameter vector θ0 = (θ0
0 , . . . , θ

0
n)T .

The input signal u is assumed to be quasistationary with

power spectrum Φu(ω) and moments

µk =
1

2π

∫ +π

−π

ejkωΦu(ω) dω

=
1

2π

∫ +π

−π

cos(kω)Φu(ω) dω ∈ R.

Denote by µ ∈ R
n+1 the vector of the first n + 1 moments

and let T (µ) be the symmetric Töplitz matrix which has µ
as its first column. Note that

T (µ) � 0,

and this condition is also sufficient for a real vector µ ∈
R

n+1 to be the moment vector of some power spectrum [8,

Chapter VI, Theorem 4.1].

Recall that the cone of positive semidefinite real symmet-

ric Töplitz matrices is the conic convex hull of the moment

curve

{Re π(z)π∗(z) = T (µω) | z = ejω , ω ∈ [−π, +π]},

where π(z) = (1, z, z2, . . . , zn)T is the vector of powers of z
and µω = (1, cosω, . . . , cos(nω))T is the moment vector of

the power spectrum concentrating all power at the frequency

ω [8]. We will denote this cone by T+ and its interior, that

is the cone of positive definite Töplitz matrices, by T++.

For any vector v ∈ R
n+1, define the linear operator Lv

from the space T of real symmetric Töplitz matrices of size

(n + 1) × (n + 1) to R
n+1 by

Lv : T 7→ Tv.

Note that the dimensions of the initial and target space of

Lv coincide. Hence, after choosing coordinate systems in

these spaces, we can define the determinant of Lv . This

determinant will be a homogeneous form of degree n + 1 in

the elements of v. If v is the first orthonormal basis vector

e0 = (1, 0, . . . , 0)T , then Lv maps every Töplitz matrix to

its first column and is hence regular. Thus the determinant

of Lv is not identically zero as a function of v, and its zero

set

Z = {v | |Lv| = 0}

is of measure zero.

Now let p(ω) =
∑n

k=0 ak cos(kω) be an even trigonomet-

ric polynomial. We will say that a matrix Mp is representing

the polynomial p if 〈T (µ), Mp〉 =
∑n

k=0 akµk for all vectors

µ ∈ R
n+1. By 〈·, ·〉 we denote the usual scalar product in

matrix spaces, i.e. the one generated by the Frobenius norm.

If p is positive (semi-)definite, then there exists a positive

(semi-)definite matrix Mp representing p [8]. This matrix

is in general not unique. Moreover, if q(z) =
∑n

k=0 vkzk

(vk ∈ R) is a spectral factor of the non-negative polynomial

p(ω) (i.e. p(ω) = |q(ejω)|2 for all ω), then the rank 1 matrix

vvT is representing p. On the other hand, from any positive

semidefinite rank 1 matrix vvT representing p we can obtain

a spectral factor.

We identify the system (1) in open loop with a prediction

error method to obtain an estimate θ̂ of the parameter vector.

Then the covariance of the estimate is given by [9]

E(θ̂ − θ0)(θ̂ − θ0)T = σ2N−1T−1(µ) + o(N−1),

where N is the number of input-output data, and µ is the

moment vector of the input power spectrum used for the

identification. As stated the formula is valid only for regular

matrices T (µ).

III. IDENTIFICATION OF A SCALAR QUANTITY

Suppose the purpose of the identification is to estimate

some scalar quantity J0 = J(θ0), which can be expressed

as a smooth function of the system parameters. Then the

variance of the estimate Ĵ = J(θ̂) is given by [5]

E(Ĵ − J0)
2 =

= ∇J(θ0)E(θ̂ − θ0)(θ̂ − θ0)T∇J(θ0)T + o(N−1)

= ∇J(θ0)σ2N−1T−1(µ)∇J(θ0)T + o(N−1).

An asymptotically (in the number of input-output data)

optimal input design will thus have to minimize the quantity

∇J(θ0)T−1(µ)∇J(θ0)T (2)

under given constraints on the input power spectrum Φu. In

this paper we consider constraints of the form

1

2π

∫ +π

−π

p(ω)Φu(ω) dω =
n
∑

k=0

akµk ≤ c,
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where p(ω) =
∑n

k=0 ak cos(kω) is a positive definite

trigonometric polynomial. This condition can be rewritten

as

〈T (µ), Mp〉 ≤ c,

where Mp is a positive definite matrix representing p.

Thus the optimal input design reduces to the optimization

problem

inf
µ
{gT T−1(µ)g : T (µ) ≻ 0, 〈T (µ), Mp〉 ≤ c}, (3)

where g ∈ R
n+1 is a given nonzero vector, Mp ≻ 0 a given

matrix and c > 0 a given constant. This problem is equivalent

to the problem

min
α,µ

α :

(

α gT

g T (µ)

)

� 0, 〈T (µ), Mp〉 = c. (4)

The role of the problem parameters is now assumed by the

vector g, which inherits the information on the true parameter

vector θ0 and depends on it. Note that we dropped the

condition T (µ) ≻ 0, which enlarged the set of feasible

moment matrices by including also positive semidefinite

ones, but allowed to replace the infimum by a minimum. The

condition that the infimum is actually attained is secured by

the compactness of the set {µ |T (µ) � 0, 〈T (µ), Mp〉 = c}.

Instead of minimizing (2) under a constraint on

〈T (µ), Mp〉, we can also minimize 〈T (µ), Mp〉 under a

constraint on (2). These problems are actually equivalent,

as is shown by the following lemma.

Lemma 3.1: Let X ⊂ R
n be a set which is invariant with

respect to multiplication by nonnegative scalars. Let f, h :
X → R be homogeneous nonnegative functions, such that

h is upper-semicontinuous, the level sets of f are compact,

and there exists x∗ ∈ X such that f(x∗) > 0, h(x∗) > 0.

For constants c, γ > 0, consider the two problems

min{f(x) |h(x) ≥ γ−1}, max{h(x) | f(x) ≤ c}.

Then the solutions of these problems exist and are equivalent

in the sense that there exists a constant α > 0 such that the

solution set of the first problem is equal to the solution set

of the second problem, multiplied by α.

Proof: The set {h(x) | f(x) = 0} is invariant with

respect to multiplication by nonnegative scalars and bounded

from above, because upper-semicontinous functions attain

their maxima on compact sets. It follows that f(x) = 0
implies h(x) = 0. The set {x | f(x) = 1} is compact and

contains the point x∗/f(x∗). Let rmax be the maximum of

h on this set. For every x ∈ X such that f(x) > 0 we have

f( x
f(x)) = 1 and hence h(x)/f(x) = h( x

f(x)) ≤ rmax. In

particular, rmax ≥ h(x∗)/f(x∗) > 0. Define X1 = {x ∈
X | f(x) = 1, h(x) = rmax}.

Let now x ∈ X be such that h(x) ≥ γ−1. Then f(x) > 0
and hence f(x) ≥ h(x)/rmax ≥ γ−1/rmax. Here equality is

attained if and only if h(rmaxγx) = rmax and f(rmaxγx) =
1, i.e., rmaxγx ∈ X1. Therefore the solution set of the first

problem is exactly γ−1

rmax

X1.

On the other hand, let x ∈ X be such that f(x) ≤ c.

Then either f(x) = 0, and hence h(x) = 0, or f(x) > 0 and

h(x) ≤ rmaxf(x) ≤ rmaxc. Equality is attained if and only

if f(x/c) = 1 and h(x/c) = rmax, i.e., x/c ∈ X1. Therefore

the solution set of the second problem is exactly cX1.

This proves the assertion of the lemma with α = γ−1

rmaxc .

In our case X is the cone of possible moment vectors,

〈T (µ), Mp〉 plays the role of the function f , and the inverse

of (2) plays the role of the function h. It is not hard to see

that this inverse can be expressed as h(µ) = max{β |T (µ)−
βggT � 0} and hence fulfills the conditions of the lemma.

In [5], the input power was minimized under a constraint

on the quantity (2). In the above sense this is equivalent to the

minimization of (2) under a constraint µ0 ≤ c on the input

power, where c > 0 is a given constant. In this case p(ω) ≡
1 and the matrix Mp can be chosen as 1

n+1In+1, where

In is the n × n identity matrix. Taking above equivalence

into account, we could use Theorem 3.1 in [5] to provide

an analytical solution to the input design problem (3) for

Mp = 1
n+1In+1. The theorem requires a certain condition

([5, Condition 3.1]) on the vector g (λ in the notation of

[5]), and under this condition guarantees regularity of the

optimal information matrix. The condition amounts to the

membership of g in the image of a Hankel matrix constructed

of the first 2n + 1 moments of a positive definite power

spectrum (Φλ in the notation of [5]). Theorem 3.1 in [5]

then states that this power spectrum is proportional to an

optimal input power spectrum. In particular, regardless of

g, any positive definite power spectrum producing a regular

Hankel matrix will be proportional to an optimal input power

spectrum. As a consequence, Theorem 3.1 in [5] implies

that every properly normalized positive definite input power

spectrum with a regular Hankel moment matrix of size (n+
1)× (n + 1) is optimal for the identification of every scalar

quantity, which is certainly not true.

Next we give the correct answer to the questions posed in

[5]. Moreover, we generalize this result in several directions.

Firstly, we show that the correct version of [5, Condition 3.1]

is not only sufficient for regularity of the optimal information

matrix, but also necessary, and give a simple interpretation

of this condition. Secondly, we elaborate when exactly the

regularity of the optimal information matrix is stable under

perturbations of the system parameters. Our results hold not

only for the case Mp = 1
n+1In+1, but for the case of general

positive definite matrices Mp. In the following we stick to

our formulation (4) of the problem, which is equivalent to

the formulation in [5] in the above sense.

Theorem 3.2: Consider optimization problem (4). A mo-

ment vector µ̂ is an optimal solution to this problem with

optimal cost α̂ if and only if there exist a vector v̂ ∈ R
n+1

and a real symmetric (n + 1)× (n + 1) matrix M̂ such that

the following conditions hold.

P (α̂, µ̂) =

(

α̂ gT

g T (µ̂)

)

� 0,

D(v̂, M̂) =

(

1 v̂T

v̂ M̂

)

� 0,

〈P (α̂, µ̂), D(v̂, M̂)〉 = 0, (5)
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and there exists a constant κ̂ such that κ̂〈T (µ), Mp〉 =
〈T (µ), M̂〉 for all µ ∈ R

n+1.

Moreover, conditions (5) ensure that the quantities v̂, κ̂, M̂
are an optimal solution to the optimization problem

min 2vT g + κc :

(

1 vT

v M

)

� 0,

κ〈T (µ), Mp〉 = 〈T (µ), M〉 ∀ µ ∈ R
n+1. (6)

Proof: The theorem is a simple consequence of convex

programming duality theory [12, Section 30].

First note that (4) is a semi-definite program and its dual

is given by (6). Both primal and dual program are strictly

feasible. Namely, choosing µ0 = c/tr Mp, µk = 0 for k >
0, and α > ||g||2/µ0 ensures P (α, µ) ≻ 0, and choosing

v = 0, M = Mp, κ = 1 ensures D(v, M) ≻ 0. Hence [11,

Section 4.2] the optimal values of both the primal and the

dual problem are attained, and a primal-dual pair of feasible

solutions is an optimal pair of solutions if and only if the

sum of the optimal values of (4) and (6) is zero. This is

equivalent to the complementarity condition (5).

Theorem 3.3: Consider optimization problem (4). This

problem has an optimal solution with regular information

matrix if and only if there exists a spectral factor q(z) =
∑n

k=0 vkzk of the polynomial p(ω) such that the vector

v = (v0, . . . , vn)T satisfies the condition

g ∈ Lv[T++].

Proof: Let µ̂ be an optimal moment vector satisfy-

ing T (µ̂) ≻ 0. Then the optimal cost is given by α̂ =
gT T−1(µ̂)g and the matrix P (α̂, µ̂) has rank n. It follows

by Theorem 3.2 that the dual optimal solution v̂, κ̂, M̂ yields

a rank 1 matrix D(v̂, M̂). In particular, M̂ = v̂v̂T , and the

complementarity condition yields g + T (µ̂)v̂ = 0, which is

equivalent to g = L−v̂(T (µ̂)). This proves one direction of

the equivalence relation.

Let now v be the vector of coefficients of a spectral

factor of p such that g = Lv(T (µ)) for some moment

vector µ with positive definite matrix T (µ). Let further

κ = c/〈T (µ), Mp〉 > 0 and α = κ−1gT T−1(µ)g. Then

(α, κµ), (−κ−1v, κ−2vvT ) is a primal-dual feasible pair

satisfying the complementarity condition, and hence must

be optimal.

Theorem 3.4: Let v ∈ R
n+1 be a spectral factor of a

strictly positive polynomial p(ω) and let k be the rank of Lv.

Then Lv[T+] ⊂ R
n+1 is a pointed (that means, containing

no lines) closed convex cone of dimension k. For any point

x ∈ Lv[T++] there exists a subset of dimension n + 1 − k
of positive definite Töplitz matrices T such that x = Lv(T ).

If v, v′ are two different spectral factors of p, then the

cones Lv[T++],Lv′ [T+] are disjoint.

Proof: The assertions of the first paragraph of the

theorem, with exception of the pointedness of Lv[T+], are

obtained by application of elementary linear algebra. Let us

prove the pointedness by assuming the contrary. Namely, let

there exist positive semidefinite Töplitz matrices T1, T2 such

that Lv(T1) = −Lv(T2) 6= 0. Then T1 + T2 � 0 must

lie in the kernel of Lv . It follows that 〈T1 + T2, vvT 〉 =
〈T1 + T2, Mp〉 = 0, where Mp is any positive definite

matrix representing p. Hence T1 + T2 = 0, which leads to a

contradiction.

Let v, v′ be two different spectral factors of p. Assume

that there exist Töplitz matrices T ≻ 0, T ′ � 0 such that

Lv(T ) = Lv′(T ′), i.e. Tv = T ′v′. Since vvT , v′(v′)T rep-

resent the same polynomial, we have also vT Tv = (v′)T Tv′

and vT T ′v = (v′)T T ′v′. Hence we have

(v − v′)T T (v − v′)

= (v′)T Tv′ + vT Tv − (v′)T Tv − vT Tv′

= 2(v′)T Tv′ − 2(v′)T T ′v′

= 2(v′)T (T − T ′)v′ = 2vT (T − T ′)v.

Likewise we obtain (v′ − v)T T ′(v′ − v) = 2vT (T ′ − T )v.

Adding these equalities, we obtain (v − v′)T (T + T ′)(v −
v′) = 0, which leads to a contradiction.

Note that the number of spectral factors of a positive poly-

nomial is finite. Hence above theorems state that problem (4)

has a regular optimal information matrix if and only if the

vector g is contained in the union of a finite number of some

disjoint pointed convex cones with open relative interior. The

dimension of the cone Lv[T++] corresponding to the spectral

factor v depends on the rank of the operator Lv .

If g happens to lie in a cone Lv[T++] such that Lv is rank

deficient, then the optimal regular information matrix is not

unique, and there exist also singular solutions. Moreover,

in this situation for any spectral factor v′ other than v we

have g 6∈ Lv′ [T+]. Hence there exists a neighbourhood U
of g such that U ∩ Lv′ [T+] = ∅ for all spectral factors

v′ 6= v of p. It follows that for almost all points of g′ ∈ U
the corresponding optimal input design problem (4) has no

regular solution. In other words, the property of existence of

a regular solution is not stable in g.

This behaviour is common for convex optimization prob-

lems over cones or bodies with non-trivial facial structure.

A. Input power constraint

Let us consider the special case of an input power con-

straint, i.e. when p(ω) ≡ 1 and Mp can be chosen equal

to 1
n+1In+1. This is the case studied in [5]. In this case we

have exactly 2(n+1) different spectral factors, corresponding

to the vectors v = ±ek, where ek, k = 0, . . . , n are the

orthonormal basis vectors of R
n+1. The rank of the operator

L±ek
is equal to the number of different elements in the

(k+1)-th column of a generic real symmetric Töplitz matrix,

that is n/2 + 1 + |n/2 − k|. We obtain the following result.

Theorem 3.5: Consider optimization problem (4) with an

input power constraint. Then there exists a regular optimal

information matrix if and only if g is collinear with a column

of some positive definite Töplitz matrix. Some multiple of

this Töplitz matrix is an optimal moment matrix. If g is

collinear with the first or the last column, then the optimal

information matrix is unique and is a continuous function of

the problem parameters in some neighbourhood of g. If this
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column is not the first or the last one, then the optimal in-

formation matrix is not unique and the property of existence

of a regular solution is not stable under perturbations of g.

�

In [5] a special case of above theorem is proven, namely

when the spectral factor corresponds to the basis vector e0.

Above theorem does not provide the optimal solution if g
is not a column of a positive definite Töplitz matrix. How-

ever, from Theorem 3.2 it follows that if g is proportional

to a column of a positive semidefinite Töplitz matrix, then

some multiple of this matrix must also be optimal.

Let us analyze the set of optimal solutions of problem (4)

independently of the conditions of Theorem 3.5. Since the

cone T+ is the convex conic hull of the moment curve, we

can factorize any matrix T ∈ T+ as T = ΠDΠ∗, where

D = diag(d1, . . . , dm) is a positive definite diagonal matrix,

and Π = (π(ejω1), . . . , π(ejωm)) for some number m and

some frequencies ω1, . . . , ωm. Note that since T is real, for

any frequency ω appearing in the list the frequency −ω must

also appear, and its weight in the matrix D must be identical

to the weight of ω (except for the case ω = ±π). The optimal

solution to (4) must then factorize as
(

α gT

g T (µ)

)

=

(

a∗D−1/2

ΠD1/2

)(

a∗D−1/2

ΠD1/2

)∗

for some complex vector a. Here again, elements of a
corresponding to a frequency pair ±ω must be complex

conjugates of each other. Hence problem (4) transforms to

min a∗D−1a : g=Πa, tr (ΠDΠ∗)=(n+1)tr D=(n+1)c,

and subject to above restrictions on the pairwise appearance

of the elements of D, a, and ωl. Now note that we can

determine D as a function of a by partial minimization over

the group of variables dl. It is not hard to see that diag D
has to be proportional to the vector of absolute values of the

elements of a, and a∗D−1a = (
∑m

k=1 |ak|)
2/c. Note also

that for any complex number w = rejϕ and any frequency

ω ∈ (0, π) we have

π(ejω)w + π(e−jω)w̄ = 2Re(π(ejω)w)

= 2r(cosϕ, cos(ω + ϕ), . . . , cos(nω + ϕ))T

= 2rπϕ,ω = rπϕ,ω + rπ−ϕ,−ω,

where the vector πϕ,ω is defined accordingly. Let now ak =
rkejϕk . Then the problem is equivalent to

min c−1

(

m
∑

k=1

rk

)2

: g =

m
∑

k=0

rkπϕk,ωk
.

Finally, let C ⊂ R
n+1 be the convex hull of the set C =

{πϕ,ω |ω ∈ [0, π], ϕ ∈ (−π, π]}. Then we finally obtain the

formulation

min
R2

c
: g ∈ RC.

In other words, the optimal value of program (4) is de-

termined by the largest constant β such that βg is still in

the compact set C. Any representation of the corresponding

boundary point of C as convex combination of points πϕk,ωk

Fig. 1. Intersections of cones K1 − K5 with hyperplane θ0

1
= 1

yields an optimal information matrix. Let us formalize this

result.

Theorem 3.6: Define the sets C,C and the constant β
as above and consider problem (4). Then the optimal cost

is given by α̂ = 1
β2c . Let now βg =

∑m
k=1 λkπϕk,ωk

,

λk > 0,
∑m

k=1 λk = 1 be a representation of the boundary

point βg ∈ ∂C as a convex combination of points of the

surface C. Then the Töplitz matrix T = c
∑m

k=1 λkT (µωk
)

is an optimal moment matrix and µ = c
∑m

k=1 λkµωk
is an

optimal moment vector. �

IV. EXAMPLE

Let us illustrate above results on the example of L2-gain

estimation for a 2nd order FIR system. In this case the

derivative g = ∇J(θ0) is proportional to the true parameter

vector θ0. The set of parameter vectors θ0 for which a regular

optimal information matrix exists is the union of 6 convex

cones, namely

K1 = {θ0 | |θ0
1 | < θ0

0 , θ0
2 ∈ (−(θ0

0 − 2(θ0
1)

2/θ0
0), θ

0
0)},

K2 = −K1,

K3 = {θ0 | |θ0
1 | < θ0

2 , θ0
0 ∈ (−(θ0

2 − 2(θ0
1)

2/θ0
2), θ

0
2)},

K4 = −K3,

K5 = {θ0 | θ0
0 = θ0

2 , θ0
1 > |θ0

0|},

K6 = −K5.

The first two cones correspond to the situation when θ0
0 is

proportional to the first column of a positive definite 3 × 3
Töplitz matrix, the next two cones to proportionality to the

last column and the last two cones to proportionality to the

second column. In [5] it was shown that for θ0 ∈ K1 there

exists a regular solution. Figure 1 shows the intersections of

the cones K1 to K5 with the hyperplane θ0
1 = 1. The cone

K6 has an empty intersection with this hyperplane.
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If θ0 is in one of the cones K1 to K4, then the optimal

solution is regular and unique. Let us now consider a point

in the cone K5. Let a > |b| and θ0 = (b, a, b)T . Then the

moment vector µ is optimal if and only if

T (µ) =





c bc/a x
bc/a c bc/a
x bc/a c



 (7)

and x is chosen such that T (µ) � 0, i.e. x/c ∈ [−(1 −
2(b/a)2), 1]. For x in the interior of this interval the matrix

T (µ) is regular, for x at an endpoint T (µ) is singular. A

similar situation holds if θ0 ∈ K6.

If θ0 is not contained in one of the cones K1 to K6, then

the set of optimal solutions can be described by Theorem

3.6. It is not hard to check that in this case the one-

dimensional linear subspace generated by the vector θ0 in

R
3 intersects the boundary of the set C in two opposite

points of the generating surface C, and there exist supporting

planes to C at these points that intersect C only at the points

themselves. Therefore there exists a unique representation of

these boundary points as a convex combination of points of

C, namely that putting all weight in the point itself. As a

consequence, the optimal information matrix is unique and

singular. The optimal moment vector is proportional to µω,

where the frequency ω is determined by the condition

θ0 = β





cosϕ
cos(ϕ + ω)
cos(ϕ + 2ω)





for some constants β > 0 and ϕ. It is not hard to check

that this yields cosω =
θ0

0
+θ0

2

2θ0

1

if the generic case θ0
1 6= 0,

θ0
0 6= θ0

2 holds.

Let us now return to the case θ0 = (b, a, b)T ∈ K5.

From the above it can be seen that if the parameter vector

approaches this particular value from outside of the cone

K5, then the optimal solution will tend to expression (7)

with x/c = −(1 − 2(b/a)2), that is to a singular matrix,

which is an endpoint of the interval of optimal solutions

for θ0. This means that the choice of an input signal based

on a regular optimal information matrix is not robust. We

have to stress that we mean robustness here in the sense of

stability of the optimal solution to problem (4) with respect

to perturbations of the true parameter values. A choice of

a singular information matrix might of course have other

undesirable consequences, for instance due to second order

terms in the Taylor expansion of the quantity to be identified.

V. CONCLUSIONS

In this contribution we considered the problem of optimal

input design for FIR system identification. The input design

is tailored to identify a scalar function of the system param-

eters under the constraint that the convolution of the input

power spectrum with some positive trigonometric polynomial

is bounded. Constraints on the total energy of the input signal

fall into this category. We provided a necessary and sufficient

optimality condition (Theorem 3.2), which generalizes the

optimality condition in [5] and can be interpreted as the

complementarity condition of convex duality. Using this

optimality condition, we provided descriptions of the sets of

optimal solutions in dependence of the problem parameters.

In particular, we characterized the cases when a regular

optimal information matrix exists (Theorem 3.3), when it

is unique, and computed the dimension of the solution set

(Theorem 3.4). These results were specialized to the case of

an input power constraint in Theorem 3.5. For this special

case we gave a description of the set of optimal solutions

for arbitrary parameter vectors (Theorem 3.5).

Our results revealed a number of surprising phenomena.

Namely, if for some instance of the input design problem

there exists a regular optimal information matrix, then it

might cease to exist if the problem parameters are perturbed.

This happens if and only if the regular solution is not unique.

This has consequences for the robustness properties of the

optimal input design. So we showed in an example that the

choice of an optimal regular information matrix might pose

robustness problems if there exist also singular solutions,

however paradox this might seem.
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