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Abstract— Multi-step prediction error identification methods
are preferred over plain one-step ahead prediction error ones
in application contexts (e.g., predictive control) where model
accuracy is required over a wide horizon. For sufficiently
high prediction horizons, their properties can be shown to be
conveniently related to those of output error methods, for which
several important issues (e.g., uniqueness of estimation, robust-
ness with respect to the noise model) have been characterized
in the literature. The convergence properties of such criteria
with respect to the prediction horizon are analyzed.

I. INTRODUCTION

The prediction error minimization (PEM) approach is the

core of black-box identification [16], [8], in view of the

availability of simple identification algorithms for many

model classes and of a significant wealth of theoretical

results (e.g., the characterization of bias and variance of the

model estimation). Exact correspondence both of the input-

output model and of the noise model to the data generating

mechanism is necessary for unbiased estimation. In addition,

in non ideal conditions, long-term prediction accuracy is

not generally achieved by PEM methods and usage of

models identified with this approach is not recommended

for simulation, system analysis, or control design purposes.

On the other hand, simulation error minimization (SEM)

methods1, while computationally costly, display several de-

sirable properties that overcome the mentioned problems.

Most notably the SEM approach can provide unbiased es-

timates of the input-output model, regardless of the real

system noise model structure [15], [16]. Also it is generally

capable of obtaining more accurate simulation models. From

a numerical minimization standpoint, the shape of the PEM

cost function is found to be flatter than the corresponding

SEM one near the global minimum [2], [10], which may

negatively affect the convergence properties of gradient-

based identification algorithms.

An intermediate step between the PEM and the SEM ap-

proach is represented by k-steps ahead single-step (SSPEM)

and multi-step (MSPEM) prediction error minimization

methods, that improve the simulation accuracy by extending

the prediction horizon and, at the same time, are less costly

from the computational side. These approaches are only

seldom used, and often confined to specific application
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1In the model identification context, the SEM approach is more frequently
denoted output error minimization (OEM) [16]. In the neural networks
community it is instead referred to as parallel (output error) training, as
opposed to series-parallel (equation error) [9]. Note also that simulation is
sometimes denoted free-run model simulation or model prediction.

contexts. For example, SSPEM methods are sometimes used

in time-series analysis (see [1], [7] for some recent works)

and in the predictive control context2 [5], [13], [11] for better

long-range prediction performance.

In this paper we first review some major properties of

the SEM estimator. Briefly, SEM identification guarantees

correctness and consistency of the estimation of the process

model, given standard persistence of excitation conditions

on the input signal and in the case of matching structure

of the process model. The SEM approach also results in a

more balanced frequency weighting of the estimation in the

under-parameterized case, as opposed to PEM. Secondly, we

consider the properties of the SSPEM and MSPEM criteria

as the prediction horizon is extended. In this regard, [3],

[4] have shown that in the MSPEM estimation of an under-

parameterized process model the bias generally shifts from a

strong weighting in the high frequency range (in PEM case)

to a more uniform frequency weighting, so that MSPEM

methods should help obtaining process models that are more

accurate in the low and mid frequency ranges. This can be

now more clearly interpreted in view of the relation between

the MSPEM and SEM criteria. In fact, we prove that, as the

prediction horizon increases, both the SSPEM and MSPEM

criteria tend to SEM one. This has the important implication

that, for sufficiently high prediction horizons, the multi-step

approaches are expected to inherit the properties of the SEM,

e.g., the unbiasedness even in the absence of a noise model.

The different convergence properties of the two criteria are

also discussed. In this regard, the SSPEM approach is shown

to tend to the SEM estimates more quickly but less smoothly

than the MSPEM one (see also [5]). For this reason, a

weighted version of the MSPEM (briefly denoted WM-

SPEM) is also introduced, on the grounds that by suitably

modulating the weighting function one can achieve both

smooth and rapid convergence. These results may provide

the basis for the development of computationally viable

methods for SEM identification, as an alternative to direct

minimization of the simulation error and iterating over the

prediction horizon.

2In that context, multi-step ahead prediction methods are also denoted
MRI (Model predictive control Relevant Identification) [3], [4], [6] and
LRPI [14], [12] (long range prediction identification) methods.
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II. PRELIMINARY NOTATION AND DEFINITIONS

A. Linear external representation systems

Let the data generating system S be defined by a linear

discrete-time equation, in the conventional form:

y(t) = ỹ(t)+n(t), where (1a)

ỹ(t) = G(z)u(t) and (1b)

n(t) = H(z)e(t) (1c)

denote the process and noise model, respectively. Here,

G(z) and H(z) are suitable transfer functions in the domain

of the complex variable z (i.e. z−1x(t) ≡ x(t − 1)), and

e(·) ∼ WN(0,λ 2) is a white noise process. Notice that (1)

encompasses the well known FIR, ARX, ARMAX and OE

model classes. In this work, we assume that the objective

of the identification process is the estimation of the process

model alone. In this respect:

G(z) =
NG(z)

DG(z)
=

bo
0 +bo

1 z−1 + ...+bo
nb

z−nb

1+ao
1 z−1 + ...+ao

na
z−na

,

where the polynomials NG(z) and DG(z) are assumed to be

coprime. The estimator model is expressed as:

ŷ(t/0) = Ĝ(z)u(t), where (2)

Ĝ(z) =
N̂G(z)

D̂G(z)
=

b0 +b1 z−1 + ...+bn̂b
z−n̂b

1+a1 z−1 + ...+an̂a z−n̂a

Remark that in general n̂a 6= na and n̂b 6= nb. In the sequel, it

is assumed that both G(z) and Ĝ(z) are asymptotically stable

transfer functions. Models (1b) and (2) are deterministic

systems, whose output can be computed by iteration of their

recursive equations, given the appropriate initial conditions

on past output values (the input signal is known):

Ỹ0 =







ỹ(−na +1)
...

ỹ(0)






, Ŷ0 =







ŷ(−n̂a +1)
...

ŷ(0)







The system and model parameters are synthetically ex-

pressed in vector form as θ = [a1 ...an̂a b0 ...bn̂b
]T and θ o =

[ao
1 ...ao

na
bo

0 ...bo
nb

]T , respectively.

B. Criteria and algorithms

In the following, the mentioned PEM, SEM, SSPEM,

MSPEM and WMSPEM identification criteria are defined

and compared. For notation purposes, we denote as ŷ(tF/tI)
the predictor of y at time tF , given the values of u(·) and

y(·) up to time tI (dependent on θ ). The estimation error is

defined as follows:

ε(tF/tI) = y(tF)− ŷ(tF/tI) = ỹ(tF)− ŷ(tF/tI)+n(tF). (3)

Mean square error cost functions are used throughout the

paper. The k-steps ahead SSPEM cost function is defined as

JN
P (k) =

1

N − k +1

N

∑
t=k

ε(t/t − k)2. (4a)

N denotes the number of data available. The PEM criterion

is JN
P (1). Similarly, the SEM cost function is defined as

JN
S =

1

N

N

∑
t=1

ε(t/0)2. (4b)

The multi-step PEM (MSPEM) criterion with maximum

prediction horizon k is defined as the average of the first

k SSPEM cost functions:

JN
MP(k) =

1

k

k

∑
i=1

JN−k+i
P (i). (4c)

We also define a weighted version of the multi-step PEM

(WMSPEM) criterion, with maximum prediction horizon k

and “forgetting factor” λ , such that 0 < λ < 1:

JN
WMP(k) =

1−λ

1−λ k

k

∑
i=1

λ k−iJN−k+i
P (i). (4d)

In (4d), the multiplicative term 1−λ
1−λ k is introduced for nor-

malization reasons.

Asymptotic versions of such criteria are also defined. Assum-

ing that signal u(t) is quasi-stationary [8], the asymptotic

SSPEM, SEM, MSPEM (the MRI criterion used in [3], [4])

and WMSPEM cost functions are:

JP(k) = E
[

ε(t/t − k)2
]

, (5a)

JS = E
[

ε(t/0)2
]

, (5b)

JMP(k) =
1

k

k

∑
i=1

JP(i), (5c)

JWMP(k) =
1−λ

1−λ k

k

∑
i=1

λ k−iJP(i), (5d)

respectively, where the operator E[·] is defined as:

E[ f (t)] = lim
N→∞

1

N

N

∑
t=1

E[ f (t)],

and E[·] denotes the statistical expectation value operator.

Provided that both system (1) and model (2) are asymptoti-

cally stable, and that u(t) and y(t) are jointly quasi-stationary,

the following statements hold [15], [16], [8]:

JN
P (k)

N→∞−→ JP(k), (6a)

JN
S

N→∞−→ JS. (6b)

These properties, in turn, trivially imply:

JN
MP(k)

N→∞−→ JMP(k), (6c)

JN
WMP(k)

N→∞−→ JWMP(k). (6d)

III. PROPERTIES OF THE SEM APPROACH

The properties of the SEM identification approach have been

widely investigated in the literature, see, e.g., [15], [16], [8].

In this section we recall some major known results.

In the case of perfect process model matching, the parameter

estimate θN which minimizes the sampled criterion (4b) con-

verges to θ o as N → ∞, under suitable excitation conditions.

This can be derived by recalling (6b) and by proving that θ ,
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minimizing (5b), is equal to θ o. In fact, the simulation error

ε(t/0) is computed as:

ε(t/0) = ỹ(t)− ŷ(t/0)+n(t), (7)

where ỹ(t) is the generic response of system (1b). Given

the uncorrelation of n(·) and ỹ(·) (since n(·) and u(·) are

uncorrelated), the SEM criterion is reformulated as

JS =J̃S +E
[

n(t)2
]

, where (8)

J̃S =E
[

(ỹ(t)− ŷ(t|0))2
]

. (9)

Remark that J̃S is the component of JS which depends on the

unknown parameters, i.e., the parameterizations minimizing

J̃S are also optimal for JS. Now, observe that:

J̃S = E

[

(

(G(z)− Ĝ(z))u(t)
)2

]

. (10)

Therefore, it is apparent that, in the studied case of model

and system structures matching, J̃S(θ
o) = 0, so that θ o ∈ Θ,

where Θ = {θ |θ =argmin
θ

JS =argmin
θ

J̃S}.

In [15] it is shown that the only stationary point of JS is θ o

if u(t) is a white noise or an ARMA signal of “sufficiently”

low order, compared with the order of G(z). More in general,

the exact parameterization is actually obtained as a result of

the identification process if u(t) is persistently exciting of

order na +nb +1, see [8]. In that case, θ = θ o.

Regarding the uncertainty of the estimates, see [16]:

√
N(θN −θ o)

N→∞−→ N (0,PSEM),

where PSEM is the related covariance matrix.

Finally, the under-parameterized case is also of practical

interest, and has been studied in the framework of MPC

relevant identification criteria, see [4], [13], [14]. It turns out

that the model identified by the SEM approach is the “best

model” in the frequency range of the input signal bandwidth.

In fact, the frequency domain equivalent of expression (10),

obtained by means of Parceval’s theorem, is

J̃S =
1

2π

∫ π

−π

∣

∣G(e jω)− Ĝ(e jω)
∣

∣

2
Φu(ω)dω (11)

where Φu(ω) denotes the spectrum of the input signal u(t).
Notice that in this case the estimation error is weighted only

by the frequency characteristics of the input signal, whereas

in the PEM case it is affected by the noise model as well.

IV. CONVERGENCE PROPERTIES OF THE SSPEM,

MSPEM AND WMPEM CRITERIA

It is of major interest in practical applications to analyze

the estimation correctness properties of the employed criteria

when the noise structure is unknown. Unlike the SEM, the

PEM approach does not yield unbiased estimates if the noise

model does not match that of the system. Here we show that

the SSPEM, MSPEM and WMPEM criteria provide unbiased

estimates as k → ∞. Therefore, any of them could be used

for robust input/output model identification. The choice is

mainly a matter of computational efficiency of the respective

algorithms. In this respect there is a significant difference

between the SSPEM, MSPEM and WMPEM criteria (all

basically involving the same set of predictor models, thus

having comparable computational complexity for a given k,

but different convergence properties), and the SEM, which

requires a lengthy iterative optimization procedure.

A. Calculation of the estimation error

Let ỹ(t +k/t) be the value of ỹ(t +k) computed by iterating

k times the recursive equation (1b), as a function of data ỹt

(values of ỹ up to time t) and ut+k (values of u up to time

t + k). One can obtain:

ỹ(t + k/t) = Rk(z) ỹ(t)+Ek(z)NG(z)u(t + k)

where Rk(z) and Ek(z) solve the diophantine equation:

1 = DG(z)Ek(z)+Rk(z)z−k

Analogously, the k-steps predictor of y(·) can be expressed

as a function of the data yt and ut+k as:

ŷ(t + k/t) = R̂k(z)y(t)+ Êk(z) N̂G(z)u(t + k)
= R̂k(z) ỹ(t)+ Êk(z) N̂G(z)u(t + k)+ v(t),

where v(t) = R̂k(z)n(t), and R̂k(z) and Êk(z) solve

1 = D̂G(z)Êk(z)+ R̂k(z)z−k. (12)

Remark that, being n(t) a zero mean stochastic process, v(t)
is a zero mean stochastic stationary process as well.
Lemma 1: Polynomials Êk(z) and R̂k(z) can be reformulated,
in matrix notation, as:

Êk(z) = C
k−1

∑
i=0

Ai Bz−i (13a)

R̂k(z) = CAk







z−na+1

...
1






(13b)

where C =
[

0 ... 0 1
]

, B = CT and

A=









0
...
0

−an̂a

In̂a−1

−an̂a−1 ... −a1









.

Proof: Consider the linear model of the form:

x(t +1) = Ax(t)+Bu(t +1)
y(t) = Cx(t)

where x ∈ Rna . The transfer function C(I −Az−1)−1B of
such system equals 1/D̂G(z). Furthermore, since x1(t) =
y(t −na +1), ..., xn(t) = y(t), it holds that:

(I −Az−1)−1B = C(I −Az−1)−1B







z−na+1

...
1






=

1

D̂G(z)







z−na+1

...
1







(14)

Now, observing that

C(I −Az−1)−1B = C ∑∞
i=0 Ai Bz−i

= C ∑k−1
i=0 Ai Bz−i +CAkz−k(I −Az−1)−1B

= C ∑k−1
i=0 Ai Bz−i +CAkz−k 1

D̂G(z)





z−na+1

...
1





= Êk(z)+
R̂k(z)

D̂G(z)
z−k
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equation (12) is verified.
In view of eq. (13b), v(t) can be reformulated as follows:

v(t) =
na

∑
i=1

CAk ei n(t −na + i) (15)

where ei represents the i-th canonical basis vector. The k-

steps prediction error is therefore:

ε(t + k/t) =ε̃(t + k/t)+n(t + k)− v(t), where

ε̃(t + k/t) =(Rk(z)− R̂k(z)) ỹ(t)+

+(Ek(z)NG(z)− Êk(z) N̂G(z))u(t + k)

= (G(z)− Ĝ(z))Êk(z)D̂G(z)u(t + k) (16a)

B. Convergence results

The following result shows the convergence of the asymp-

totic SSPEM criterion to the asymptotic SEM criterion and

yields a bounding function for the convergence transient.

Theorem 1: Let S be a linear external representation system

with additive noise model of type (1). Let M be a model

of structure (2). Let JP(k) be the SSPEM criterion (5a) and

let JS be the asymptotic SEM criterion (5b). Assume that

e(·) is uncorrelated with input signal u(·). Then, there exist

constants MP > 0 and 0 < α < 1 such that:
∣

∣JP(k)− JS

∣

∣

JS

≤ MPαk, (17)

Proof: Since u(t) and e(t) are uncorrelated and observ-

ing that E [n(t)] = 0, the cost function JP(k) (4a) is:

JP(k) = J̃P(k)+∆N
k , (18)

where J̃P(k) = E
[

ε̃(t + k/t)2
]

and ∆N
k = E

[

(n(t + k)− v(t))2
]

.

Furthermore, since n(t) is a stationary stochastic process the

last term can be rewritten as:

∆N
k = E

[

n(t + k)2
]

+∆
(1)
k +∆

(2)
k (19a)

∆
(1)
k = E

[

v(t)2
]

(19b)

∆
(2)
k = −2E [n(t + k)v(t)] (19c)

Recalling (8), by (18) and (19a):

∣

∣JP(k)− JS

∣

∣ ≤
∣

∣J̃P(k)− J̃S

∣

∣+
∣

∣∆N
k −E

[

n(t)2
]∣

∣

≤
∣

∣J̃P(k)− J̃S

∣

∣+
∣

∣

∣
∆

(1)
k

∣

∣

∣
+

∣

∣

∣
∆

(2)
k

∣

∣

∣
(20)

Recall the equation (12). Using Parceval’s theorem, (11) and
(16a), the first term of (20) can be reformulated as:

∣

∣J̃P(k)− J̃S

∣

∣ =
1

2π

∫ π

−π

∣

∣

∣

∣

∣

∣

∣
Êk(e

jω )D̂G(e jω )
∣

∣

∣

2
−1

∣

∣

∣

∣

×

×
∣

∣

∣
G(e jω )− Ĝ(e jω )

∣

∣

∣

2
Φu(ω)dω

≤ 1

2π

∫ π

−π

[

∣

∣

∣
R̂k(e

jω )
∣

∣

∣

2
+2

∣

∣

∣
R̂k(e

jω )
∣

∣

∣

]

×

×
∣

∣

∣
G(e jω )− Ĝ(e jω )

∣

∣

∣

2
Φu(ω)dω. (21)

Observe that, by equation (13b),

|R̂k(e
jω )| ≤ ‖CAk‖∞ ≤ ‖Ak‖∞,

where the infinity norm of a matrix M ∈ R
h×k is given by:

‖M‖∞ = max
i=1,...,h

k

∑
j=1

∣

∣Mi, j

∣

∣ .

Since matrix A is Shur, there exists a constant β∞ such that:

‖Ak‖∞ ≤ β∞ αk (22)

and α is the spectral radius of matrix A. Therefore:

|J̃P(k)− J̃S| ≤ (β 2
∞ αk +2β∞) J̃S αk. (23)

Then, by (15) and (19b),

|∆(1)
k

| =
∣

∣

∣

∣

∣

E

[

na

∑
i=1

CAk ei n(t −na + i)
na

∑
j=1

n(t −na + j)eT
j (CAk)T

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

CAk
na

∑
i=1

na

∑
j=1

eie
T
j E [n(t −na + i)n(t −na + j)] (CAk)T

∣

∣

∣

∣

∣

≤ |CAk
na

∑
i=1

na

∑
j=1

eie
T
j (CAk)T | γn(0)

≤ ‖CAk‖2
∞γn(0) ≤ ‖Ak‖2

∞γn(0) ≤ β 2
∞α2kγn(0) (24)

where expression (22) has been used again, and γn(τ) is the
covariance function of n(t). On the other hand, expression
(19c) can be reformulated as:

∆
(2)
k

=−2
na

∑
i=1

CAkei γn(k +na − i)

Its absolute value is

|∆(2)
k

| ≤ 2 |
na

∑
j=1

CAke j|γn(0)

≤ 2‖CAk‖∞γn(0) ≤ 2‖Ak‖∞γn(0)

≤ 2γn(0)β∞αk. (25)

From equations (20), (23), (24) and (25):
∣

∣JP(k)− JS

∣

∣ ≤ (β 2
∞ αk +2β∞)(J̃S + γn(0))αk

≤ (β 2
∞ +2β∞)JS αk

which proves (17) with MP = β 2
∞ +2β∞.

Corollary 1: Let S be a linear external representation sys-

tem with additive noise model, of type (1). Let M be a

model of structure (2). Let JMP(k) and JWMP(k) be the

asymptotic MSPEM and WMSPEM criteria (5c) and (5d)

respectively and let JS be the SEM one (5b). Assume that

e(·) is uncorrelated with input signal u(·). Then there exist

constants MP > 0 and 0 < α < 1 such that:
∣

∣JMP(k)− JS

∣

∣

JS

≤ 1

k

α

1−α
MP, (26a)

∣

∣JWMP(k)− JS

∣

∣

JS

≤ α
(λ k −αk)

λ −α
MP, (26b)

λ being the “forgetting factor” appearing in criterion (5d).
Proof: From (17):

∣

∣JMP(k)− JS

∣

∣ ≤
∣

∣

∣

∣

∣

1

k

k

∑
i=1

JP(i)− JS

∣

∣

∣

∣

∣

≤ 1

k

k

∑
i=1

∣

∣JP(i)− JS

∣

∣

≤ 1

k

k

∑
i=1

MPJSα i ≤ 1

k

α(1−αk)

1−α
MPJS

≤ 1

k

α

1−α
MPJS.
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Similarly:

∣

∣JWMP(k)− JS

∣

∣ ≤ 1−λ

1−λ k

∣

∣

∣

∣

∣

k

∑
i=1

λ k−i(JP(i)− JS)

∣

∣

∣

∣

∣

≤
k

∑
i=1

λ k−i
∣

∣JP(i)− JS

∣

∣

≤ λ k
k

∑
i=1

MP(
α

λ
)iJS ≤ α

λ k −αk

λ −α
MPJS

and we obtain the statement (26b).

The previous results guarantee that, for sufficiently long

prediction horizons k, the SSPEM, MSPEM and WMSPEM

criteria lead to “sufficiently good” identification results, re-

gardless of the noise structure. Notice that the real parameter

vector θ o minimizes JS, whereas, in general, it does not

minimize any multi-stage criteria if k is finite. Furthermore,
∣

∣JP(k)− JS

∣

∣/JS and
∣

∣JWP(k)− JS

∣

∣/JS have an exponential

decay, whereas
∣

∣JMP(k)− JS

∣

∣/JS has an hyperbolic decay

(see Figure 1). The SSPEM yields a faster convergence (with

respect to k) than both the MSPEM and WMSPEM criteria.

However, choosing suitable values for λ , the convergence of

the WMSPEM criterion can be significantly enhanced. This

can be exploited to obtain a much smoother convergence

than the SSPEM without sacrificing the rate of convergence.

Figure 1 compares the bounding functions appearing in

equations (17), (26a) and (26b), for different values of the

“forgetting factor” λ , and assuming MP = 1 and α = 0.3.
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Fig. 1. Bounding functions for the convergence of the SSPEM, MSPEM
and WMSPEM (λ = 0.2,0.4,0.7,0.8) criteria to SEM.

V. EXAMPLE

Consider the data generation mechanism S :

ỹ(t) =−aoỹ(t −1)+bo
0u(t)+bo

1u(t −1) (27a)

y(t) =ỹ(t)+n(t) (27b)

where ao = −0.8, bo
0 = 1, and bo

1 = 0.3.

Assume that the noise term n(t) is generated according to

three different model structures resulting in an overall model

of type OE, ARMAX(1,2,1), ARARX(1,2,1), respectively:

OE : n(t) = e1(t)−0.8e1(t −1), e1(·) ∼ (0, σ 2

1.64 )

ARMAX : n(t) = e2(t)−0.5e2(t −1), e2(·) ∼ (0, σ 2

1.25 )
ARARX : n(t) = −0.5n(t −1)+ e3(t), e3(·) ∼ (0,0.75σ2)

(28)

The values of the variances of the white noise terms e1(·),
e2(·), e3(·) have been assigned in order to enforce a noise

variance E
[

n(t)2
]

= σ2 in all the three cases. An ARX model

M is used in the identification process with a process model

structure matching that of system S (27):

y(t) = −ay(t −1)+b0u(t)+b1u(t −1)+ ε(t) (29)

Despite the model matching condition, it can be shown that

least squares estimation minimizing the PEM criterion yields

biased estimation for all cases (OE, ARMAX, ARARX).

Consider now the minimization of the SEM criterion, the

system being excited by a white noise input signal u(t) ∼
WN(0,λ 2

u ). According to the results in Section III this

criterion is minimized if and only if a = ao, b0 = bo
0 and b1 =

b1
0. This can be evidenced by computing (with Monte-Carlo

simulation) the sampled probability distribution functions of

the parameter estimates obtained with the SEM approach.

For this purpose, the data generated according to equations

(27), using the three noise structures in (28) with σ2 = 1, are

considered. The estimation is performed on 1000 realizations

for each of the different processes (OE, ARMAX, ARARX).

To test the consistency and correctness properties of the SEM

estimator, the simulation experiment is repeated for different

values of the number of samples, see Figure 2. In accordance

with [15], there is no bias for any noise model structure

and the estimation uncertainty decreases as the number of

samples grows.
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Fig. 2. Probability density functions of the estimates a, b0, b1 (first, second
and third column respectively) obtained by the SEM criterion computed
by Monte Carlo simulation in the three noise model cases (OE, ARMAX,
ARARX, shown in the first, second and third row respectively) computed
for different values of N (100, 250, 500, 1000, 5000, 10000).

Next, we test the SSPEM, MSPEM and WMSPEM ap-

proaches on the same example to show that they lead to

unbiased estimates as the prediction horizon k increases. For

this purpose we concentrate on a single realization of the

ARARX model structure, and perform parameter estima-

tion based on the SEM, SSPEM, MSPEM and WMSPEM

(λ = 0.8) criteria, for k = 1, ...,50. Here N = 1000, and

the noise variance equals σ2 = 1. Apparently, (see Figure
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3), the SSPEM, MSPEM and WMSPEM estimates tend to

the SEM ones as k increases. Since the SEM estimates are

asymptotically unbiased, the same applies to the SSPEM and

MSPEM estimates for k → ∞. Figure 3 also illustrates the

convergence properties of the criteria for increasing k. More

precisely, MSPEM has a slower but smoother convergence

(with respect to the maximum prediction horizon k) than

SSPEM, thanks to its inherent averaging of predictions at

different horizons, see (17), (26a) and (26b).
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Fig. 3. Estimates of ao, bo
0, bo

1 (first, second and third row respectively)
obtained by the SEM criterion (dotted line), by SSPEM (continuous line),
by MSPEM (dash-dot line) and by WMSPEM (continuous line with circles),
computed on a single realization of the process in the ARARX model case

A test is performed on the extended horizon prediction

criteria, aimed at analyzing the estimation uncertainty as

a function of k. The sampled probability density functions

of the parameter estimates obtained with the SSPEM and

MSPEM criteria, for k = 1,5,10 are computed. The usual

Monte-Carlo method is employed for this purpose, with 1000

realizations of system (27) with an OE noise structure and

N = 1000. As expected, the uncertainty for both the SSPEM

and MSPEM criteria tends towards the uncertainty related to

SEM estimation as k increases (see Figure 4).

VI. CONCLUSIONS

In this paper the properties of multi-step identification cri-

teria are analyzed. Indeed, criteria with extended prediction

horizon are shown to inherit the correctness and consistency

properties of the output error minimization (or simulation

error minimization) approach, for sufficiently high values

of the prediction horizon. The convergence properties of

these criteria are investigated and a weighted version of the

multi-step ahead prediction criterion is formulated to achieve

the best compromise in terms of smoothness and rapidity

of convergence. An example is provided to illustrate the

stated results. An identification approach based on multi-step

criteria is envisaged as an iterative method for output error

estimation.
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[15] T. Söderström and P. Stoica. Some properties of the output error
method. Automatica, 18(1):93–99, 1982.
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