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Abstract— In the paper reachability property for positive
switched systems which commute among n single-input n-
dimensional systems is investigated. Starting from a (hard
to check) necessary and sufficient condition for reachability
[6], and by introducing some new algebraic tools, sufficient
reachability conditions which are easy to test are derived.

I. INTRODUCTION

Modeling of physical phenomena comes as the result of
a weighted balance among different, and often conflicting,
needs. In particular, accuracy typically brings the drawback
of computational complexity. For this reason, general com-
plex models are often replaced by simpler and possibly linear
models, each of them suitable for describing the system
evolution under specific working conditions. This simple
fact stimulated, in the last fifteen years, a long stream of
research concerned with the analysis and design of “switched
linear systems”, by this meaning systems whose describing
equations change, according to some switching law, within a
(possibly infinite) family of (linear) subsystems. Reachability
and controllability properties for these systems have been
investigated in [4], [11], [12].

On the other hand, positive linear systems naturally arise in
various fields such as bioengineering (compartmental mod-
els), economic modelling, and stochastic processes (Markov
chains), where the state variables represent quantities that
have no meaning unless nonnegative [3].

In this perspective, switched positive systems are mathe-
matical models which keep into account two different needs:
the need for a system model which is obtained as a family of
simple subsystems, each of them accurate enough to capture
the system laws under specific operating conditions, and
the nonnegativity constraint on the system variables. This
is the case when trying to describe certain physiological and
pharmacokinetic processes, as, for instance, the insulin-sugar
metabolism. Of course, the need for this class of systems
in specific research contexts has stimulated an interest in
theoretical issues related to them, and, in particular, structural
properties of continuous-time positive switched systems have
been recently investigated in [5], [6], [7]. In detail, necessary
conditions for reachability have been investigated in [5]
(monomial reachability) and in [6] (pattern reachability),
while necessary and sufficient conditions for the reachability
of continuous-time positive switched systems of dimension
n, which commute among n single-input subsystems, have
been investigated in [7]. These conditions, even though valu-
able from a theoretical point of view, appear quite difficult to
check. This difficulty has stimulated research interests in the
detailed analysis of the dominant modes of the exponential
of a Metzler matrix [8]. By relaying on these results, we

derived some sufficient conditions for reachability which are
easy enough to check [9]. This contribution aims at further
exploring this interesting and fruitful direction, by providing
new conditions.

Before proceeding, we introduce some notation. For every
k ∈ N, we set 〈k〉 := {1, 2, . . . , k}. The (i, j)th entry of a
matrix A is [A]i,j . If A is block partitioned, block(i,j)[A]
denotes its (i, j)th block. In the special case of a vector v,
we let [v]i denote its ith entry and blocki[v] its ith block.
R+ is the semiring of nonnegative real numbers. A matrix A
with entries in R+ is a nonnegative matrix (A ≥ 0); if A ≥ 0
and A 6= 0, A is a positive matrix (A > 0), while if all its
entries are positive it is a strictly positive matrix (A � 0).
The same notation is adopted for nonnegative, positive and
strictly positive vectors. A Metzler matrix is a real square
matrix, whose off-diagonal entries are nonnegative. Every
Metzler matrix has a real eigenvalue λmax(A) satisfying
λmax(A) > Re(λ) for every other λ ∈ σ(A).

Given any matrix A ∈ Rq×r, by the nonzero pattern of A
we mean the set of index pairs corresponding to its nonzero
entries, namely ZP(A) := {(i, j) : [A]i,j 6= 0}. Conversely,
the zero pattern ZP(A) is the set of indices corresponding
to the zero entries of A. The adaptation of these concepts to
the vector case is straightforward. We let ei denote the ith
vector of the canonical basis in Rn. A vector v ∈ Rn+ is an
ith monomial vector if ZP(v) = ZP(ei) = {i}. For any set
S ⊆ 〈n〉, we set eS :=

∑
i∈S ei and we let PS be the n×|S|

selection matrix that singles out the columns of the identity
matrix corresponding to the indices in S. Consequently, for
any vector v ∈ Rn+, with ZP(v) = S, vS := PTS v is the
restriction of v to its positive components.

To every n × n Metzler matrix A we associate [2],
[10] a directed graph G(A) with vertices indexed by
1, 2, . . . , n. There is an arc (j, i) from j to i if and only
if [A]ij 6= 0. We say that vertex i is accessible from j
if there exists a path (i.e., a sequence of adjacent arcs
(j, i1), (i1, i2), . . . , (ik−1, i)) in G(A) from j to i (equiv-
alently, ∃ k ∈ N such that [Ak]ij 6= 0). Two distinct
vertices are said to communicate if each of them is accessible
from the other. By definition, each vertex communicates
with itself. The concept of communicating vertices allows to
partition the set of vertices 〈n〉 into communicating classes,
say C1, . . . , C`. To any class Ci we associate two index sets:

A(Ci) := {j : the class Cj has access to the class Ci}
D(Ci) := {j : the class Cj is accessible from the class Ci}.

Each class Ci is assumed to access to itself. If i is a vertex
in G(A), we denote by C(i) the class i belongs to.

The reduced graph R(A) [10] associated with A (with
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G(A)) is the (acyclic) graph having the classes C1, C2, . . . , C`
as vertices. There is an arc (j, i) in R(A) if and only if i ∈
D(Cj). Any (acyclic) path (i1, i2), (i2, i3), . . . , (ik−1, ik) in
R(A) identifies a chain of classes (Ci1 , Ci2 , . . . , Cik), having
Ci1 as initial class and Cik as final class.

An n × n Metzler matrix A is reducible if there exists a
permutation matrix P such that

PTAP =
[
A11 A12

0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, other-
wise it is irreducible. It follows that 1×1 matrices are always
irreducible. In general, given a square Metzler matrix A, a
permutation matrix P can be found such that

PTAP =


A11 A12 . . . A1`

A22 . . . A2`
. . .

...
A``

 , (1)

where each Aii is irreducible. (1) is usually known as
Frobenius normal form of A [2]. Clearly, the irreducible
matrices A11, A22, . . . , A`` correspond to the communicating
classes C1, C2, . . . , C` of G(PTAP ) (coinciding with those
of G(A), after a suitable relabelling). Consequently, we will
refer to the dominant eigenvalue of the block Akk as to the
dominant eigenvalue of the class Ck.

When dealing with the graph of a matrix in Frobenius
normal form (1), for every i ∈ 〈`〉, A(Ci) ⊆ {i, i+1, . . . , `},
while D(Ci) ⊆ {1, 2, . . . , i} = 〈i〉, so that A(Ci) ∩ D(Ci) =
{i}. A class Ci is final if D(Ci) = {i}, and distinguished
[10] if λmax(Aii) > λmax(Ajj) for every j ∈ D(Ci), j 6= i.

Basic definitions and results about cones may be found,
e.g., in [1]. We recall here only a couple of useful results.
A cone K is said to be polyhedral if it can be expressed as
the set of nonnegative linear combinations of a finite set of
generating vectors. This amounts to saying that k ∈ N and
C ∈ Rn×k can be found, such that K coincides with the set
of nonnegative combinations of the columns of C (for short,
K := Cone(C)). A polyhedral cone K in Rn is simplicial if
it admits n linearly independent generating vectors, i.e. K =
Cone(C) for some nonsingular matrix C. When so, a vector
v belongs to the boundary of the simplicial cone K if and
only if v = Cu for some u > 0, with ZP(u) 6= 〈n〉.

II. REACHABILITY PROPERTY

A single-input continuous-time positive switched system is
described by the following equation

ẋ(t) = Aσ(t)x(t) + bσ(t)u(t), t ∈ R+, (2)

where x(t) and u(t) denote the n-dimensional state variable
and the scalar input, respectively, at the time instant t, and σ
is a switching sequence, taking values in a finite set P . In this
paper, we steadily address the case P = 〈n〉 = {1, 2, . . . , n}.

We assume that the switching sequence is piece-wise
constant, and hence in every time interval [0, t] there is a
finite number of discontinuities, which corresponds to a finite
number of switching instants 0 = t0 < t1 < . . . < tk < t.

Also, we assume that, at the switching time t`, σ is right
continuous. For each i ∈ P , the pair (Ai, bi) represents a
continuous-time positive system, which means that Ai is an
n× n Metzler matrix and bi ∈ Rn+.

As a first step, we recall the definition of reachability for
positive switched systems.

Definition 1: [6], [7] A state xf ∈ Rn+ is said to be
reachable if there exist some time instant t > 0, a switching
sequence σ : [0, t[→ P and an input u : [0, t[→ R+ that
lead the state trajectory from x(0) = 0 to x(t) = xf . The
positive switched system (2) is said to be reachable if every
state xf ∈ Rn+ is reachable.

As shown in [5], if system (2) is reachable, there exists a
relabeling of the subsystems (Ai, bi), i ∈ 〈n〉, such that

Aiei = αiei and bi = βiei, (3)

for suitable αi ≥ 0 and βi > 0. This will be a steady
assumption in the following. For this specific class of systems
every reachable state can be reached by resorting to a piece-
wise constant nonnegative input signal. To prove this, we
recall that the state at the time t, starting from the zero
initial condition, under the action of the soliciting input
u(τ), τ ∈ [0, t[, and of the switching sequence σ : [0, t[,
with switching instants 0 = t0 < t1 < . . . < tk < t and
switching values i0, i1, . . . , ik, can be expressed as follows:

x(t) = eAik
(t−tk)...eAi1 (t2−t1)

∫ t1

t0

eAi0 (t1−τ)bi0u(τ)dτ +

+ eAik
(t−tk)...eAi2 (t3−t2)

∫ t2

t1

eAi1 (t2−τ)bi1u(τ)dτ +

+ . . .+
∫ t

tk

eAik
(t−τ)biku(τ)dτ. (4)

Proposition 1: Consider a continuous-time positive
switched system (2), which switches among n single-input
subsystems (Ai, bi), i ∈ 〈n〉, satisfying (3) for suitable
αi ≥ 0 and βi > 0. Given a time instant t > 0, a
positive vector v ∈ Rn+, k ∈ Z+, k + 1 time instants
0 = t0 < t1 < . . . < tk < t and k + 1 indices
i0, i1, . . . , ik ∈ 〈n〉, the following facts are equivalent ones:
i) there exists a nonnegative input u(·) such that (4) holds
for x(t) = v;
ii) there exists a piece-wise constant input u(·), taking
some suitable constant value ui ≥ 0 in every time interval
[ti, ti+1), such that

v = eAik
(t−tk) . . . eAi1 (t2−t1)

∫ t1

t0

eAi0 (t1−τ)bi0dτ · u0

+ . . .+
∫ t

tk

eAik
(t−τ)bikdτ · uk; (5)

iii) v ∈ Cone[eAik
(t−tk)bik |eAik

(t−tk)eAik−1 (tk−tk−1)bik−1 |
. . . |eAik

(t−tk) . . . eAi1 (t2−t1)eAi0 (t1−t0)bi0 ].
Proof: We preliminarily notice that, by the assumption

on the pairs (Ai, bi), i ∈ 〈n〉, eAitbi = eαitβiei, ∀ t ∈ R+.
i) ⇔ ii) Under the proposition’s assumptions,∫ ti+1

ti

eAi(ti+1−τ)biu(τ)dτ =
∫ ti+1

ti

eαi(ti+1−τ)βieiu(τ)dτ
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=
[∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ
]
· βiei,

where the term inside the square brackets is nonnegative. But
then, ui ≥ 0 can always be found such that∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ =
∫ ti+1

ti

eαi(ti+1−τ)dτ · ui.

This proves that i) ⇒ ii), the converse being obvious.
ii) ⇔ iii) It suffices to notice that∫ ti+1

ti

eAi(ti+1−τ)bidτ =
[∫ ti+1

ti

eαi(ti+1−τ)dτ

]
· βiei =

= eαi(ti+1−ti)ciβiei = eAi(ti+1−ti)bici,

for some suitable ci > 0.
Remark 1: Proposition 1 shows that, when dealing with

an n-dimensional single-input system, commuting among n
subsystems and satisfying (3), a vector v > 0 is reach-
able if and only if there exist k ∈ Z+, switching values
i0, i1, . . . , ik ∈ 〈n〉 and positive time intervals τ0, τ1, . . . , τk,
such that v belongs to

Cone[eAik
τkbik |eAik

τkeAik−1τk−1bik−1 |...|eAik
τk ...eAi0τ0bi0 ]

= Cone[eik |eAik
τkeik−1 |...|eAik

τk ...eAi1τ1ei0 ]

When so (see Lemma A.2 in [7]), once we set S := ZP(v),
we have ZP(eAik eS) = S and v = eAik

τkBk, for some
vector Bk > 0 with ZP(Bk) ⊆ S. So, if we introduce

IS := {i ∈ 〈n〉 : ZP(eAieS) = S}, (6)

a necessary condition for a vector v, with ZP(v) = S, to be
reachable is that IS 6= ∅.

We now recall the main result about the reachability of
this class of positive switched systems.

Proposition 2: [6] Given an n-dimensional continuous-
time positive switched system (2), commuting among n
single-input subsystems (Ai, bi), i ∈ 〈n〉, satisfying (3), the
following facts are equivalent:
i) the switched system (2) is reachable;
ii) for every set S ⊂ 〈n〉, with 1 < |ZP(S)| < n, IS 6= ∅
and either
iia) ∃ j(S) ∈ IS such that ZP(bj(S)) ⊂ S,
or
iib) for every v ∈ Rn+, with ZP(v) = S, there exist m ∈ N,

(τ1, . . . , τm) ∈ Rm+ and i1, . . . , im ∈ IS , such that v
can be obtained as the nonnegative combination of no
more than |S|−1 columns of eAi1τ1 . . . eAimτmPS , with
PS the n× |S| selection matrix corresponding to S .

Condition iib) provided in Proposition 2 cannot be easily
verified. Specifically, there is no obvious way of testing
whether indices i1, . . . , im and positive time intervals τ1, . . . ,
τm can be found, such that a given positive vector v, with
ZP(v) = S, belongs to Cone(eAi1τ1 . . . eAimτmPS) and
it can be obtained by combining less than |S| columns
of eAi1τ1 . . . eAimτmPS . This would require trying all in-
dex sequences, of increasing length, meanwhile varying the

lengths of the switching intervals τi. Of course, as there is
no result about what it may be convenient to do (increasing
or decreasing the τi’s) and when one should give up (is there
a maximum number of indices m after which no successful
result can be obtained, unless it has been obtained earlier?),
we need to explore alternative means for solving this problem
and find sufficient conditions for the problem solvability.

If we assume that the set S ⊂ 〈n〉 and the indices
i1, i2, . . . , im ∈ IS are given, the problem one has to address
can be equivalently stated as follows.

PROBLEM STATEMENT: Given any positive vector v ∈
Rn+, with ZP(v) = S, find conditions ensuring that vS =
PTS v belongs to the boundary of the simplicial cone,
Cone[PTS e

Ai1τ1 . . . eAimτmPS ] for some τi ≥ 0.
This restatement allows to address our problem in an

apparently restrictive, but in fact equivalent, formulation (just
set S = 〈n〉, IS = P and, consequently, vS = v).

NEW PROBLEM STATEMENT: we search for conditions
ensuring that v ∈ Rn+,v� 0, can be obtained as

v = eAi1τ1 . . . eAimτmu, ∃ τi ≥ 0,u > 0 with ZP(u) 6= ∅.

The goal of this contribution is to find sufficient conditions
for the solvability of this new problem, for m = 1 and
m = 2, which will lead, through Proposition 2, to sufficient
conditions for system reachability.

III. ASYMPTOTIC EXPONENTIAL CONES

Definition 2: [7], [8] Given an n × n Metzler matrix A,
we define its asymptotic exponential cone, Cone∞(eAt), as
the polyhedral cone generated by the vectors v∞i , which
represent the asymptotic directions of the columns of eAt:

v∞i := lim
t→+∞

eAtei

‖eAtei‖
, i = 1, 2, . . . , n.

Cone∞(eAt) always exists, is a polyhedral convex cone in
Rn+, and is never the empty set. Cone(eAt) is simplicial for
every t ≥ 0, while Cone∞(eAt) is typically not. A first result
about asymptotic exponential cones was obtained in [8]:

Lemma 1: Given an n×n Metzler matrix A and a strictly
positive vector v ∈ Rn+, the following facts are equivalent:

i) there exists τ > 0 such that v belongs to ∂Cone(eAτ );
ii) v 6∈ Cone∞(eAt).
A powerful characterization of Cone∞(eAt) was obtained

in [8]. This characterization may be further refined. To this
end we need a result describing the dominant mode of each
single column of the exponential eAt of a Metzler matrix
A ∈ Rn×n. If we assume that A is in Frobenius normal
form (1), then [8], at every time instant t > 0

eAt =: A(t) =


A11(t) A12(t) . . . A1`(t)

A22(t) . . . A2`(t)
. . .

...
A``(t)

 ,
where Aii(t) is strictly positive for every i, while for i 6= j
the matrix Aij(t) is either strictly positive or zero. Even
more, all entries of each nonzero block Aij(t) exhibit the
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same dominant mode (of exponential type) weighted by a
positive coefficient. In detail,

Proposition 3: [8] Let A be an n × n Metzler matrix in
Frobenius normal form (1). Then there exist (not necessarily
distinct) positive eigenvectors of A, ṽj ∈ Rn+, of unit norm,

and real modes mj(t) =
tm̄j

m̄j !
eλ
∗
j t, with λ∗j ∈ R and m̄j ∈

Z+, and strictly positive row vectors ci ∈ R1×ni
+ , j ∈ 〈`〉,

such that

A(t) = eAt = [ ṽ1 . . . ṽ` ]

264 m1(t)
. . .

m`(t)

375
·

24 c1

. . .
c`

35 +Alc(t),

and ∀ i ∈ 〈n〉 if we let Cj be the class of vertex i, then

lim
t→+∞

Alc(t)ei
mj(t)

= 0.

Moreover, λ∗j = max{λmax(Akk) : k ∈ D(Cj)}, and m̄j + 1
is the maximum number of classes Ck with λmax(Akk) = λ∗j
that lie in a single chain in R(A) having Cj as initial class.
Also, ṽj is a positive eigenvector of A corresponding to λ∗j
and it exhibits the following zero pattern properties:
• k(j) := max{k : blockk[ṽj ] > 0} ≡

max{k ∈ D(Cj) : λmax(Akk) = λ∗j , and there is
a chain from Cj to Ck including other m̄j classes Ch

with λmax(Ahh) = λ∗j};
• for every k ≤ k(j), blockk[ṽj ] = 0 if k 6∈ D(Cj), and

blockk[ṽj ]� 0 otherwise.
Remark 2: The first part of the previous result has been

proved in [8] (see Proposition 6.1). The second part, con-
cerning the zero pattern properties of the vectors ṽj’s can
be derived from Theorem 5.4 and Proposition 4.4 in [8].
Notice that {ṽ1, ṽ2, . . . , ṽ`} = {v∞1 ,v∞2 , . . . ,v∞n }: in the
former case we pick up a single vector for each class, while
in the latter we consider each single column independently.
Consequently, Cone∞(eAt) = Cone(ṽ1, ṽ2, . . . , ṽ`).

Lemma 2: Given an n×n Metzler matrix A in Frobenius
normal form (1), let V := {ṽ1, ṽ2, . . . , ṽ`} be the set of
the asymptotic directions of the columns of eAt, ordinately
corresponding to the classes C1, . . . , C`, as they are defined
in Proposition 3. Then the set V ′ of all vectors in V which
correspond to a distinguished class is linearly independent
and Cone(V ′) = Cone(V ) = Cone∞(eAt).

Proof: We know from Proposition 3 that each ṽj is a
positive eigenvector of A, corresponding to some eigenvalue
λ∗j and to some class Cj . Since eigenvectors corresponding
to distinct eigenvalues are linearly independent, V is linearly
dependent if and only if there exists some eigenvalue λ such
that the set of (not necessarily distinct) eigenvectors in V
which correspond to λ, say Vλ := {ṽi1 , . . . , ṽis}, s ≤ `, is
linearly dependent. Express Vλ as the union of two disjoint
subsets Vλ := Vdist ∪ Vrem, with Vdist containing those
eigenvectors of Vλ which correspond to some distinguished
class Ci, and Vrem including those eigenvectors of Vλ which
do not correspond to a distinguished class.

Since the asymptotic direction of a column corresponding
to a distinguished class Cj always exhibits a strictly positive
jth block, and from any distinguished class corresponding
to λ it is not possible to access another distinguished class
corresponding to the same eigenvalue, it follows that if ṽj ∈
Vdist, then blockj [ṽh] = 0 for every other ṽh ∈ Vdist (see
[8] for further details). This ensures that the vectors in Vdist

are all linearly independent. So, if Vλ is a set of linearly
dependent vectors, then it must be Vrem 6= ∅.

Choose ṽj ∈ Vrem, and let Cj be the communicating class
corresponding to ṽj . Clearly, Cj must access at least one
distinguished class whose dominant eigenvalue is λ. If m̄j+1
is the maximum number of distinguished classes with domi-
nant eigenvalue λ which can be encountered along a chain of
classes starting from Cj and there exist k such chains, then
by Proposition 3, ṽj is necessarily a linear combination of
the k linearly independent eigenvectors (belonging to Vdist)
which correspond to λ and to those k distinguished classes.

Now, since each vector in Vdist, as previously observed,
has one strictly positive block which is zero in all the
other vectors of Vdist, in order for ṽj to be positive such
a linear combination must have only positive coefficients.
By applying this reasoning to all vectors in Vrem, we can
claim that the cone generated by the vectors in Vλ is equal
to the cone generated by the vectors in Vdist alone.

By the previous lemma, Cone∞(eAt) is the polyhedral
cone generated by the full column rank positive matrix whose
columns are the coordinate vectors of the elements of V ′. In
the following, we will refer to such a matrix as to

V∞ = [ v̂∞1 v̂∞2 . . . v̂∞r ] . (7)

We recall that each v̂∞i is a positive eigenvector of unit
norm corresponding to a distinguished class. Notice, also,
that every final class Ci, by accessing no other class, is surely
distinguished, and the corresponding dominant eigenvector
(of unit norm) has only zero blocks, except for the ith
which is strictly positive. We now address the special case
when all generating vectors of Cone∞(eAt) are (positive)
eigenvectors of A corresponding to the same eigenvalue.

Lemma 3: Let A ∈ Rn×n be a Metzler matrix in Frobe-
nius normal form (1), and let V∞ ∈ Rn×r be the pos-
itive full column rank matrix, described as in (7), such
that Cone∞(eAt) = Cone(V∞). The following facts are
equivalent ones:

i) all vectors in Cone(V∞) are eigenvectors of A;
ii) all generating vectors of Cone(V∞) are (positive) eigen-

vectors of A corresponding to the same eigenvalue λ;
iii) all distinguished classes of A have the same dominant

eigenvalue λ = λmax(A);
iv) all distinguished classes of A are final and they exhibit

the same dominant eigenvalue λ.
Proof: i) ⇔ ii) If i) holds, then all generating vectors

of Cone(V∞), namely all columns of V∞, are (positive)
eigenvectors of A corresponding to the same eigenvalue.
If not, by summing up two positive eigenvectors in V∞
corresponding to two distinct eigenvalues we would get a
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vector in Cone(V∞) which is not an eigenvector of A. The
converse is obvious.
ii) ⇒ iii) Since we have already shown that the columns of
V∞ are the positive eigenvectors of unit norm corresponding
to the distinguished classes of A, all distinguished classes of
A have the same dominant eigenvalue. On the other hand,
since there is at least one distinguished class whose dominant
eigenvalue is λmax(A), the result follows.
iii) ⇒ iv) Suppose that there exists a distinguished class
Ci which is not final and let λmax(Aii) be the corre-
sponding dominant eigenvalue. Clearly, Ci has access to
some final class Ck with dominant eigenvalue λmax(Akk).
By the assumption that Ci is distinguished, it follows that
λmax(Aii) > λmax(Akk), but by the assumption that all
distinguished classes have the same dominant eigenvalue
(and all final classes are distinguished) it follows that
λmax(Aii) = λmax(Akk), a contradiction. Consequently, all
distinguished classes must be final.
iv) ⇒ ii) As the generating vectors of Cone(V∞) are (pos-
itive) eigenvectors of A corresponding to the distinguished
classes of A, the result follows.

In the remaining part of this section we aim to provide
conditions for the solvability of the new problem, stated at
the end of section II, assuming that v� 0 has been assigned
and m is either 1 or 2. From Lemma 1, we deduce that
there exists an index i ∈ 〈n〉 such that v ∈ ∂Cone(eAiτ )
for some τ > 0 if and only if v 6∈ ∩ni=1Cone∞(eAit).
So, we consider now strictly positive vectors v belonging
to ∩ni=1Cone∞(eAit) and we search for conditions ensuring
that v belongs to the boundary of Cone(eAi1τ1eAi2τ2), for
suitable indices i1, i2 ∈ 〈n〉 and positive time intervals
τ1, τ2 > 0. Notice that we can always assume that v is not an
eigenvector of Ai1 . Indeed, if this is the case, then we can
also ensure that e−Ai1τ1v = e−λtv = eAi2τ2u, for some
λ ∈ R, and hence v ∈ ∂Cone(eAi2 t), thus ensuring that
v 6∈ Cone∞(eAi2 t), a contradiction. As a consequence, we
may always exclude as first matrix Ai1 any matrix which
satisfies the equivalent conditions of Lemma 3, since in
that case every vector in Cone∞(eAi1 t) is necessarily an
eigenvector of Ai1 . Clearly, if v is a common eigenvector of
all matrices Ai, i ∈ 〈n〉, no choice is available for Ai1 .

In the following, for the sake of notational simplicity, we
will replace the indices i1 and i2 with 1 and 2. For the afore-
mentioned reasons, we will assume that the distinguished
classes of A1 correspond to at least two distinct eigenvalues
and we will not consider strictly positive eigenvectors of A1.

Proposition 4: Let A1, A2 ∈ Rn×n be two Metzler ma-
trices. If each positive eigenvector of A1 does not belong to
Cone∞(eA2t), then for every v ∈ Rn+,v � 0, there exists
τ1, τ2 ≥ 0 such that v ∈ ∂Cone(eA1τ1eA2τ2).

Proof: Let V1∞ = [ v̂∞1 v̂∞2 . . . v̂∞r ] be a full
column rank matrix such that Cone∞(eA1t) = Cone(V1∞),
and each vector v̂∞i is a (positive) eigenvector of unit norm
corresponding to some eigenvalue λi, with λ1 ≤ λ2 ≤ . . . ≤
λr. We already know from Lemma 1 that the result is true
for every v 6∈ Cone∞(eA1t) ∩ Cone∞(eA2t), by setting
either τ1 or τ2 equal to zero. Pick now v ∈ Cone∞(eA1t)∩

Cone∞(eA2t). For two positive time instants τ1, τ2 to exist,
having the desired properties, it must be v = eA1τ1eA2τ2u
for some u ∈ ∂Rn+. But this amounts to saying that a time
instant τ1 > 0 must exist such that the vector w(τ1) :=
e−A1τ1v does not belong to Cone∞(eA2t). Of course, this is
not the case when τ1 = 0, since w(0) = v ∈ Cone∞(eA2t).
However, since v ∈ Cone∞(eA1t), v can be expressed as the
nonnegative combination of the columns of V1∞, namely as
v =

∑r
i=1 civ̂

∞
i , ci ≥ 0. As a consequence, for τ1 → +∞,

the vector w(τ1) =
∑r
i=1 civ̂

∞
i e
−λiτ1 will converge to some

eigenvector w(+∞) of A1. Specifically, w(τ1) will align to
the eigenvector

∑
i∈I civ̂

∞
i , where I := {i ∈ 〈r〉 : λi =

λimin} and imin := min{i ∈ 〈r〉 : ci 6= 0}.
But then w(+∞) 6∈ Cone∞(eA2t), and since

Cone∞(eA2t) is a closed set, it is possible to find some
0 < τ̄1 < +∞ such that for every τ1 > τ̄1, w(τ1) 6∈
Cone∞(eA2t). So, by Lemma 1, for every such τ1 it will
be possible to find some τ2 > 0 such that w(τ1) ∈
∂Cone(eA2τ2), and hence v ∈ ∂Cone(eA1τ1eA2τ2).

The result of Proposition 4 can be generalized. Indeed,
in order to ensure that when τ1 is sufficiently large, we
can always find τ2 > 0 such that v ∈ ∂Cone(eA1τ1eA2τ2),
we are not specifically interested in constraining all positive
eigenvectors of A1 not to belong to Cone∞(eA2t), but only
those eigenvectors of A1 the vector w(τ1) := e−A1τ1v
asymptotically align with. In order to explore this issue, we
preliminary need a technical lemma.

Lemma 4: Let A1 ∈ Rn×n be a Metzler matrix in Frobe-
nius normal form (1), and let V∞ = [v̂∞1 . . . v̂∞r ] ∈ Rn×r
be the positive full column rank matrix, described as in (7),
such that Cone∞(eA1t) = Cone(V∞). We assume that v̂∞i ,
i ∈ 〈r〉, is the positive eigenvector corresponding to the
dominant eigenvalue λmax(Aji ji) of the distinguished class
Cji , i ∈ 〈r〉, and we do not introduce any specific ordering
within the set of indices {j1, . . . , jr}. Suppose that the s ≤ r
distinct eigenvalues the previous eigenvectors correspond to
are ordered as λ1 < λ2 < . . . < λs, and define, for every
k ∈ 〈s〉, the following sets:
• Ik := {i ∈ 〈r〉 : v̂∞i is an eigenvector

corresponding to λk} = {i ∈ 〈r〉 : λmax(Ajiji) = λk};
• Dk :=

⋃
i∈Ik
D(Cji);

• V := {k ∈ 〈s〉 :
⋃
j≥k Dj = 〈`〉}.

Then, for any k ∈ 〈s〉, there exists c ∈ Rr+ such that
• V∞c is strictly positive;
• k = min{i : ZP(c) ∩ Ii 6= ∅}.

if and only if k ∈ V .
Proof: Notice, first, that since v̂∞i , i ∈ 〈r〉, is the

eigenvector corresponding to the dominant eigenvalue of
the distinguished class Cji , its nonzero pattern obeys the
following rules (see Proposition 3):

blockk[v̂∞i ] =
{
� 0, if k ∈ D(Cji);
0, otherwise.

(8)

For any index k ∈ 〈s〉, the set Dk represents the set of
indices of those classes that are reached by (at least) one
distinguished class corresponding to λk. Clearly, as Ik is
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the set of indices i in 〈r〉 such that v̂∞i is an eigenvec-
tor corresponding to λk, then, by (8), ZP(

∑
i∈Ik

v̂∞i ) =
∪q∈Dk

Cq . Finally, V represents the set of all indices k ∈
〈r〉 for which ZP(

∑
i∈Ik∪Ik+1∪...∪Ir

v̂∞i ) = 〈n〉, namely∑
i∈Ik∪Ik+1∪...∪Ir

v̂∞i is strictly positive.
As a consequence, if k 6∈ V , then there is no way of

finding some c ∈ Rr+ such that V∞c� 0 and k := min{i :
ZP(c) ∩ Ii 6= ∅}. Conversely, if k ∈ V , there exists c ∈ Rr+
such that k = min{i : ZP(c) ∩ Ii 6= ∅} and V∞c� 0 (e.g.
eS , with S = ∪q∈Dk

Cq).
Proposition 5: Let A1, A2 ∈ Rn×n+ be two Metzler ma-

trices, and adopt the same notation as in Lemma 4, with all
the symbols v̂∞1 , . . . , v̂

∞
r , λ1, . . . , λs, Ik and V referring to

the matrix A1, and assume λ1 < . . . < λs. Set

Kk := Cone({v̂∞i , i ∈ Ik}).

If Kk∩Cone∞(eA2t) = {0} for every k ∈ V , then for every
strictly positive vector v ∈ Cone∞(eA1t) ∩ Cone∞(eA2t)
there exists τ∗1 > 0 such that for every τ1 > τ∗1 there exists
τ2 > 0 such that v ∈ ∂Cone(eA1τ1eA2τ2).

Proof: If v is a strictly positive vector in
Cone∞(eA1t) ∩ Cone∞(eA2t), then, in particular, v ∈
Cone∞(eA1t) = Cone(V∞), and hence v = V∞c =∑r
i=1 civ̂

∞
i , ∃ c > 0. So, if k := min{i : ZP(c) ∩ Ii 6= ∅}

then k ∈ V . Also, once we set w(τ1) := e−A1τ1v, we easily
notice that ZP(w(τ1)) = ZP(v) and hence w(τ1) � 0 for
every τ1 ≥ 0. Moreover, if we express v as

v =
∑
i∈Ik

civ̂∞i +
∑
i∈Ik+1

civ̂∞i + . . .+
∑
i∈Is

civ̂∞i ,

then w(τ1) =
∑s
m=k

(∑
i∈Im

civ̂∞i
)
e−λmτ1 . As τ1 goes

to +∞, w(τ1) will align to the eigenvector w(+∞) :=∑
i∈Ik

ci v̂∞i , corresponding to the eigenvalue λk, k ∈ V ,
and belonging to Kk. But then, by the assumption, w(+∞)
does not belong to Cone∞(eA2t), and since Cone∞(eA2t)
is a closed set, it is possible to find some 0 < τ∗1 < +∞
such that for every τ1 > τ∗1 , w(τ1) 6∈ Cone∞(eA2t). So, by
Lemma 1, for every such τ1 there exists τ2 > 0 such that
w(τ1) ∈ ∂Cone(eA2τ2), and hence v ∈ ∂Cone(eA1τ1eA2τ2).
This proves i).

IV. SUFFICIENT CONDITIONS FOR REACHABILITY

By resorting to the technical results of Section III, we
derive sufficient conditions for reachability. Specifically,
Proposition 4 immediately leads to the following condition.

Proposition 6: Consider an n-dimensional positive
switched system (2), commuting among n single-input
subsystems (Ai, bi), i ∈ 〈n〉, satisfying (3) for suitable
αi ≥ 0 and βi > 0. If for every set S ⊂ 〈n〉, with
1 < |S| < n, we have |IS | ≥ 2 and there exist
i, j ∈ IS , i 6= j, such that each positive eigenvector of
PTS AiPS does not belong to the asymptotic exponential
cone of PTS AjPS , then the system is reachable.

Proof: We prove the result by induction of the cardi-
nality of S := ZP(v), v being the vector to be reached.
By assumption (3), all vectors v with |S| = |ZP(v)| = 1
are reachable. Suppose now that every positive vector u,

such that |ZP(u)| < r, is reachable. Let v be a positive
vector whose nonzero pattern ZP(v) = S has cardinality
|S| = r. By the assumption and by Proposition 4, there exist
τi, τj > 0 such that vS = eP

T
S AiPSτieP

T
S AjPSτjuS , with

uS ∈ R|S|+ ,ZP(uS) 6= ∅. Consequently, there exist τi, τj > 0
such that v = eAiτieAjτju, with u ∈ Rn+,ZP(u) ( S. By
the inductive assumption, u is reachable and hence v is.

Similarly, from Proposition 5 one may deduce the follow-
ing result, whose proof strictly reminds the previous one and
hence is omitted.

Proposition 7: Consider an n-dimensional positive
switched system (2), commuting among n single-input
subsystems (Ai, bi), i ∈ 〈n〉, satisfying (3) for suitable
αi ≥ 0 and βi > 0. Define for each set S ⊂ 〈n〉 and
each matrix PTS AiPS the index sets Vi,S and the cones
K(i,S)
k , as in Lemma 4 and Proposition 5. If for every set
S ⊂ 〈n〉, with 1 < |S| < n, we have |IS | ≥ 2 and there exist
i, j ∈ IS , i 6= j, such that K(i,S)

k ∩Cone∞(eP
T
S AjPSt) = {0}

for every k ∈ Vi,S , then the system is reachable.
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