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Abstract— Prediction error identification requires that data
be informative with respect to the chosen model structure.
Whereas sufficient conditions for informative experiments have
been available for a long time, there were surprisingly no results
of necessary and sufficient nature. With the recent surge of
interest in optimal experiment design, it is of interest to know
the minimal richness required of the externally applied signal
to make the experiment informative. We provide necessary and
sufficient conditions on the degree of richness of the applied
signal to generate an informative experiment, both in open loop
and in closed loop. In a closed-loop setup, where identification
can be achieved with no external excitation if the controller is
of sufficient degree, our results provide a precisely quantifiable
trade-off between controller degree and required degree of
external excitation.

I. INTRODUCTION

This paper takes a new look at informative experiments
for linear time-invariant systems, both in open-loop and
in closed-loop identification. The generation of data that
are informative with respect to a chosen model structure,
together with the identifiability of that model structure, are
the two essential ingredients for a well-defined Prediction
Error Identification (PEI) problem [6]. These two concepts
will be recalled in Section III.

Some readers might think that everything has been written
about these concepts, which were much studied in the 1970’s.
We shared the same view . . . until recently. The motivation
for our renewed interest into these fundamental questions
is the recent surge of interest in experiment design, itself
triggered by the new concept of least costly identification
experiment for robust control [2], [3], [5], [4]. In this context,
questions like the following become relevant:

1) what is the smallest amount of external excitation that
is required to generate informative data?

2) assuming that the system operates in closed-loop, when
can the noise by itself generate informative data?

3) if noise excitation is not sufficient, then how much
additional reference excitation is required?
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4) assuming that excitation can be applied at different
entry points of a multi-input system operating in closed
loop, is it necessary to excite each input?

Sufficient conditions for informativity using noise excita-
tion only (question 2) have been given, under different sets
of assumptions, in [7], [8], [3]. The key condition is in terms
of the complexity of the controller. Question 4 has been
addressed in [1] where it is shown that, when informative
data cannot be generated using noise excitation only, this
does not imply that all reference inputs must be excited.

In attempting to address questions 1 and 3 above, we
discovered that these questions do not seem to have been
solved before. As is well-known, besides the choice of
an identifiable model structure, the key ingredient for a
unique global minimum of the identification criterion is the
informativity of the experiment. In open-loop identification,
and in all closed-loop identification experiments where the
noise excitation by itself does not make the experiment infor-
mative, informativity is achieved by applying a sufficiently
rich external signal: see Section III for definitions. Whereas
the literature abunds with sufficient conditions on input signal
richness, there appear to be no result on the smallest possible
degree of richness that delivers informative data in a given
identification setup. In other words, necessary conditions on
input richness that will guarantee an informative experiment
are strangely lacking. The recent resurgence of interest in
optimal experiment design makes this question all the more
relevant, because optimal solutions are most often expressed
as multisines. It is then important to know how many
different frequencies are required to ensure that these optimal
inputs produce informative data.

The purpose of this contribution is to find the smallest
possible degree of richness of the excitation signal that makes
an experiment informative with respect to a chosen model
structure, both in open-loop and in closed-loop identification.
We address the following two questions:

• assuming open-loop identification, what is the smallest
degree of input signal richness that is necessary to
achieve an informative experiment with respect to a
chosen model structure?

• assuming closed-loop identification with a controller
that is not sufficiently complex to yield informative data
using noise excitation only, what is then the smallest
degree of reference signal excitation that is necessary
to achieve an informative experiment with respect to a
chosen model structure?

The results of this paper provide necessary and sufficient
conditions for informativity of the experiment, in open loop
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and in closed loop, for all commonly used single-input
single-output model structures (ARMAX, ARX, BJ and
OE). While the results for open-loop experiments are to be
expected, our results for closed-loop experiments provide
a remarkable and quantifiable trade-off between controller
complexity and required degree of richness of the external
excitation.

The paper is organized as follows. In Section II we set
up the notations and the key tools of the prediction error
identification framework. In Section III, we recall the basic
concepts of identifiability, informative experiments, and the
degree of richness of a signal. The body of our results is in
Section IV where we derive the minimal degree of richness
required of the external signal to provide informative data,
in both an open-loop and a closed-loop setup. In line with
common practice, we conclude with conclusions.

II. PREDICTION ERROR IDENTIFICATION SETUP

Consider the identification of a linear time-invariant
discrete-time single-input single-output process

S : y(t) = G0(z)u(t) +H0(z)e(t), (1)

where z is the forward-shift operator, G0(z) and H0(z) are
the process transfer functions, u(t) is the control input and
e(t) is white noise with variance σ2

e . Both G0(z) and H0(z)
are rational and proper; furthermore, H0(∞) = 1, i.e. the
impulse response h(t) of the filter H0(z) satisfies h(0) =
1. This true system may be under feedback control with a
proper rational stabilizing controller K(z):

u(t) = K(z)[r(t)− y(t)]. (2)

The system (1) is identified using a model structure
parametrized by a vector θ ∈ Rd:

M(θ) : y(t) = G(z, θ)u(t) +H(z, θ)e(t). (3)

It is assumed that the loop transfer function G(z)K(z) has
a non-zero delay, both for G0(z) and for all G(z, θ). The
set of models M(θ), for all θ in some set Dθ ∈ Rd, defines
the model set M , {M(θ) | θ ∈ Dθ}. The true system
belongs to this model set, S ∈ M, if there is a θ0 such that
M(θ0) = S. In a PEI framework, a model [G(z, θ) H(z, θ)]
uniquely defines the one-step-ahead predictor of y(t) given
all input/output data up to time t:

ŷ(t|t− 1, θ) = Wu(z, θ)u(t) +Wy(z, θ)y(t), (4)

where Wu(z, θ) and Wy(z, θ) are stable filters obtained from
the model [G(z, θ) H(z, θ)] as follows:

Wu(z, θ) = H−1(z, θ)G(z, θ), Wy(z, θ) =[1−H−1(z, θ)].

Since there is a 1 − 1 mapping between [G(z, θ), H(z, θ)]
and [Wu(z, θ), Wy(z, θ)], the model M(θ) will in future re-
fer indistinctly to either one of these equivalent descriptions.
For later use, we introduce the following vector notations:

W (z, θ) , [Wu(z, θ) Wy(z, θ)], z(t) ,

[
u(t)
y(t)

]
(5)

We consider throughout this paper that the process z(t)
is quasistationary [6], so that the spectral density matrix
Φz(ω) is well defined. The one-step-ahead prediction error
is defined as:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ) = y(t)−W (z, θ)z(t)
= H−1(z, θ) [y(t)−G(z, θ)u(t)] . (6)

Using a set of N input-output data and a least squares
prediction error criterion yields the estimate θ̂N [6]:

θ̂N = arg min
θ∈Dθ

1
N

N∑
t=1

ε2(t, θ). (7)

Under reasonable conditions [6], θ̂N
N→∞−→ θ∗ ,

arg minθ∈Dθ V̄ (θ), with V̄ (θ) , Ē[ε2(t, θ)] where

Ē[f(t)] , lim
N→∞

1
N

N∑
t=1

E[f(t)]. (8)

If S ∈ M and if θ̂N
N→∞−→ θ0, then

√
N(θ̂N − θ0) N→∞−→

N(0, Pθ), with

Pθ = [I(θ)]−1 |θ=θ0 , (9)

I(θ) =
1
σ2
e

Ē
[
ψ(t, θ)ψ(t, θ)T

]
, (10)

ψ(t, θ) = −∂ε(t, θ)
∂θ

=
∂ŷ(t|t− 1, θ)

∂θ
= ∇θW (z, θ)z(t), (11)

where ∇θW (z, θ) , ∂W (z,θ)
∂θ . The matrix I(θ0) is called the

information matrix.

III. IDENTIFIABILITY, INFORMATIVITY AND
RICHNESS

Several concepts of identifiability have been proposed in
the scientific literature. Here we adopt a uniqueness-oriented
definition proposed in [6], which deals with the injectivity of
the mapping from parameter vector to model.

Definition 3.1: (Identifiability) A parametric model
structure M(θ) is locally identifiable at a value θ1 if ∃δ > 0
such that, for all θ in || θ − θ1 ||≤ δ:

W (z, θ) = W (z, θ1) ∀z ⇒ θ = θ1.

The model structure is globally identifiable at θ1 if the same
holds for δ → ∞. Finally, a model structure is globally
identifiable if it is globally identifiable at almost all θ1.

Identifiability is a property of the parametrization
[G(z, θ), H(z, θ)] or, equivalently, [Wu(z, θ), Wy(z, θ)]. If
the model structure is globally identifiable at some θ1, then
there is no other parameter value θ 6= θ1 that yields the
same predictor as M(θ1). However, it does not guarantee
that the minimum, say θ1, of the asymptotic criterion
V̄ (θ) is unique. This requires, additionally, that the data
set is informative enough to distinguish between different
predictors, which leads us to the definition of informative
data with respect to a model structure.
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Definition 3.2: (Informative data) [6] A quasistationary
data set z(t) is informative with respect to a parametric
model set {M(θ), θ ∈ Dθ} if, for any two models W (z, θ1)
and W (z, θ2) in that set,

Ē{[W (z, θ1)−W (z, θ2)]z(t)}2 = 0 (12)

implies

W (eω, θ1) = W (eω, θ2) for almost all ω. (13)

The definition of informative data is with respect to a
model set, not with respect to the true system. In an iden-
tification experiment, one first selects a globally identifiable
model structure; this is a user’s choice. Experimental condi-
tions must then be selected that make the data informative
with respect to that structure; this is again a user’s choice.
But the data are generated by the true system, in open or in
closed loop. Thus, the conditions that make a data set z(t)
informative with respect to a model structure depend on the
true system and on the possible feedback configuration.

Convergence of an identification algorithm to the exact
θ0 when S ∈ M rests on the simultaneous satisfaction of
two different conditions: (i) the use of a model structure
that is identifiable, at least at the global minimum θ0 of the
asymptotic criterion V̄ (θ); (ii) the application of experiments
that are informative with respect to the model structure
used. This paper focuses on the latter condition, and is not
restricted to the case where the system is in the model set.

In order to examine the requirements on the excitation sig-
nals that generate informative data, we recall the definitions
of a persistently exciting regression vector and of richness
of a signal.

Definition 3.3: (Persistently Exciting regressor) A qua-
sistationary vector signal ψ(t) is called persistently exciting
(PE) if Ē[ψ(t)ψT (t)] > 0.

Definition 3.4: (Richness of a signal) A quasistationary
scalar signal u(t) is sufficiently rich of order n (denoted
SRn) if the following regressor is PE:

φ1,n(t) ,


u(t− 1)
u(t− 2)

...
u(t− n)

 =


z−1

z−2

...
z−n

u(t) (14)

For future use, we introduce the notation:

Bk,n(z) ,
[
z−k z−k−1 . . . z−n

]T
, for k ≤ n. (15)

Observe that, by our assumption of quasistationarity, u(t) is
SRn if Bk+1,k+n(z)u(t) is PE for any k. We denote by
Un the set of all SRn signals. Equivalent definitions of
sufficient richness are given by the following proposition.

Proposition 3.1: [6], [8] A scalar quasistationary signal
u(t) is SRn if
• its spectral density is nonzero in at least n frequency points
in the interval (−π, π].
• it cannot be filtered to zero by a FIR filter α1z

−1 + . . .+
αnz

−n of degree n− 1.

The equivalence comes by observing that

αT Ē[φ1,n(t)φT1,n(t)]α

=
1

2π

∫ π

−π
|α1e

−jω + . . .+ αne
−jnω|2Φu(ω)dω.

The main contribution of this paper is to describe the
weakest possible richness conditions on the external signal
u(t) (in open-loop identification) or r(t) (in closed-loop
identification) that make the data informative with respect
to a given model structure.

IV. INFORMATIVITY OF THE DATA SET FOR
ARMAX AND BJ MODEL STRUCTURES

In this section we derive necessary and sufficient condi-
tions for the informativity of the data set for ARMAX and
BJ model structures, as well as for the special cases of ARX
and OE model structures.

A. Open-loop identification
Recall Definition 3.2 for informative data. We introduce

the following shorthand notation (see (5)):

4Wu , Wu(z, θ1)−Wu(z, θ2)
4Wy , Wy(z, θ1)−Wy(z, θ2). (16)

For open loop data, it follows from (5) and (1) that:

[W (z, θ1)−W (z, θ2)]z(t)
= [4Wu +4WyG0]u(t) +4WyH0e(t). (17)

Given the independence between u and e, condition (12) is
therefore equivalent with the following set of conditions:

Ē{[4Wu +4WyG0]u(t)}2 = 0 (18)
Ē{4WyH0e(t)}2 = 0 (19)

We now seek the smallest degree of richness of u for which
the conditions (18)-(19) imply 4Wu ≡ 0 and 4Wy ≡ 0.
Since (19) implies 4Wy ≡ 0, this is equivalent with finding
necessary and sufficient conditions on the richness of u such
that

E{[4Wu]u(t)}2 = 0 =⇒ 4Wu ≡ 0 (20)

ARMAX model structure
Consider first the ARMAX model structure

A(z−1)y(t) = B(z−1)u(t) + C(z−1)e(t) (21)

where A(z−1) = 1 + a1z
−1 + . . . + anaz

−na ,
B(z−1) = b1z

−1 + . . . + bnbz
−nb , and C(z−1) =

1 + c1z
−1 + . . .+ cncz

−nc . For ARMAX model structures,
one must consider as generic the possible existence of
common roots between the polynomials A and B, as well
as between A and C. However, the three polynomials A, B
and C must be coprime at any identifiable θ. We then have
the folllowing result.

Theorem 4.1: For the ARMAX model structure (21), the
data set is informative if and only if u(t) is SRk, where
k = nb + min{na, nc}.
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Proof: Since 4Wy ≡ 0 it follows that

C(z, θ1)
A(z, θ1)

=
C(z, θ2)
A(z, θ2)

for any pair of values θ1 and θ2. Let U(z) be the greatest
common factor of A(z, θ1) and C(z, θ1):

A(z, θ1) = A1(z, θ1)U(z), C(z, θ1) = C1(z, θ1)U(z),

with U(z) = 1 + u1z
−1 + . . . + unuz

−nu . Then 4Wy ≡ 0
is equivalent with

A(z, θ2)C1(z, θ1)− C(z, θ2)A1(z, θ1) = 0 (22)

with A1(z, θ1) and C1(z, θ1) coprime. The general solution
of (22) is

A(z, θ2) = A1(z, θ1)T (z), C(z, θ2) = C1(z, θ1)T (z),

where T (z) is an arbitrary monic polynomial of the same
degree as U . For this ARMAX model structure, the left hand
side of (20), expressed at θ1 and θ2, is equivalent with:

Ē{[A(z, θ2)B(z, θ1)−A(z, θ1)B(z, θ2)]u(t)}2 = 0, (23)

which is equivalent with

Ē{[T (z)B(z, θ1)− U(z)B(z, θ2)]u(t)}2 = 0. (24)

This implies

T (z)B(z, θ1)− U(z)B(z, θ2) ≡ 0 (25)

if and only if u(t) ∈ Unb+nu . Since U(z) cannot have a
common factor with B(z, θ1), the general solution of (25) is

B(z, θ2) = M(z)B(z, θ1), T (z) = M(z)U(z).

However, since T (z) and U(z) have the same degree, nu,
and since both are monic, the only solution is M(z) = 1,
which implies that θ1 = θ2. We conclude that the predictor
at θ1 is identical to the predictor at any other value θ2 if
and only if u(t) ∈ Unb+nu where nu is the number of
common roots between A(z, θ) and C(z, θ) at θ1. For the
data to be informative with respect to the ARMAX model
structure, this must hold at all values of θ1. The stated result
then follows, since the maximum number of common roots
between A(z, θ) and C(z, θ) is min{na, nc}.

The result for an ARX model structure follows immedi-
ately.

Corollary 4.1: For the ARX model structure A(z−1)y(t)
= B(z−1)u(t) + e(t) with A and B as above, the data set
is informative if and only if u(t) ∈ Unb .

BJ model structure
Consider now the BJ model structure:

y(t) =
B(z−1)
F (z−1)

u(t) +
C(z−1)
D(z−1)

e(t) (26)

where B(z−1) and C(z−1) are as above, with
F (z−1) = 1 + f1z

−1 + . . . + fnf z
−nf and

D(z−1) = 1 + d1z
−1 + . . . + dndz

−nd . We have the
following result.

Theorem 4.2: For the BJ model structure (26) operating
in open loop, the data are informative if and only if u(t) is
SRk, where k = nb + nf .

Proof: It follows from (19) that C(z,θ1)
D(z,θ1)

= C(z,θ2)
D(z,θ2)

.

Therefore, (20) is equivalent with Ē{D(z,θ1)
C(z,θ1)

[B(z,θ1)
F (z,θ1)

−
B(z,θ2)
F (z,θ2)

]u(t)}2 = 0, or equivalently,

Ē{[F (z, θ2)B(z, θ1)− F (z, θ1)B(z, θ2)]u(t)}2 = 0. (27)

Since the degree of the polynomial that filters u(t) in (27)
is nb + nf , the result then follows immediately.

Corollary 4.2: For the OE model structure y(t) =
B(z−1)
F (z−1)u(t)+e(t), the richness condition on u(t) is identical
to that for the BJ model structure.

B. Closed-loop identification
For closed-loop data, it follows from (5), (1) and (2) that

[W (z, θ1)−W (z, θ2)]z(t) = (28)
KS[4Wu +4WyG0]r(t) +H0S[4Wy −K4Wu]e(t)

Given the independence between r and e, condition (12) is
therefore equivalent with the following set of conditions:

Ē{KS[4Wu +4WyG0]r(t)}2 = 0 (29)
Ē{H0S[4Wy −K4Wu]e(t)}2 = 0 (30)

These conditions, in turn, are equivalent with the following:

4Wy ≡ K4Wu, (31)
Ē{K4Wur(t)}2 = 0, (32)

where the second expression follows by substituting the first
in (29) and using S = (1 + KG0)−1. Note that, given the
first condition, the second is equivalent with

Ē{4Wyr(t)}2 = 0. (33)

For the controller K(z) of (2) we shall consider
a coprime factorization K(z) = X(z−1)

Y (z−1) , with
X(z−1) = x0 + x1z

−1 + . . . + xnxz
−nx and

Y (z−1) = 1 + y1z
−1 + . . .+ ynyz

−ny .

ARMAX model structure
We first consider the ARMAX model structure (21) under
feedback control with the stabilizing controller K(z) =
X(z−1)
Y (z−1) . For simplicity, we consider only parameter values
θ at which the following assumption holds.

Assumption 1: The polynomials A(z−1)Y (z−1) +
B(z−1)X(z−1) and C(z−1) are coprime.

Notice that the subset of θ values at which these polyno-
mials have a common root has measure zero in the parameter
space. They correspond to parameter values that cause a pole-
zero cancellation between the closed-loop poles of the model
and the zeros of the noise model. We then have the following
result.
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Theorem 4.3: Consider the ARMAX model structure
(21) under feedback control with the stabilizing controller
K(z) = X(z−1)

Y (z−1) , with Assumption 1 holding.
(i) Let r(t) ≡ 0. Then the data are informative if and only
if

max(nx − na, ny − nb) ≥ 0. (34)

(ii) Let max(nx − na, ny − nb) < 0. Then the data are
informative for almost all r(t) ∈ Uk if and only if

k ≥ min(na − nx, nb − ny). (35)
Proof: For the ARMAX model structure (21), the

identity (31) is equivalent with1

(A2Y +B2X)C1 = (A1Y +B1X)C2, (36)

where the pairs of polynomials C1 and A1Y + B1X , as
well as C2 and A2Y +B2X are coprime by Assumption 1.
Therefore, the general solution of (36) is

A2Y +B2X = M(A1Y +B1X), C2 = MC1, (37)

where M(z) is an arbitrary polynomial. But since C1(z) and
C2(z) are monic with the same degree, the only solution is
M(z) = 1, i.e.

C1 = C2 and (A1 −A2)Y + (B1 −B2)X = 0. (38)

Since X and Y are coprime, the general solution of this last
equality is given by

4A = TX, 4B = −TY, (39)

where T (z) = t1z
−1 + . . . + tntz

−nt is again an arbitrary
polynomial with deg T (z) = nt , min{na − nx, nb − ny}.
T (z) = 0 is the only solution of (39), and hence the data
are informative without any external excitation if and only
if condition (34) holds.

Now consider the case where max(nx − na, ny − nb) <
0, i.e. min{na − nx, nb − ny} ≥ 1. It then follows from
C1 = C2 and 4B = −TY that condition (32) is equivalent
with Ē{XTr(t)}2 = 0. This implies T (z) ≡ 0, and hence
the informativity of the data, if and only if r(t) ∈ Uk with
k ≥ min(na − nx, nb − ny) provided the points of support
of r(t) do not coincide with possible zeroes of X on the unit
circle. This proves part (ii) of the Theorem.

Comment. An ARMAX model identified in closed loop is
identifiable from noise information only if the controller is
sufficiently complex with respect to the model structure, in
a way that is made precise by condition (34); this condition
is known and can be found in [8]. What is novel and,
we believe, remarkable in Theorem 4.3 is that, when that
complexity condition is not satisfied by the controller, then
the degree of richness required of the reference signal is
precisely determined by how much that condition is violated.
In other words, the degree of richness required of r(t) is
precisely equal to the difference between the complexity
required by expression (34) and the actual complexity of
the controller.

1To keep notations simple, we drop the z argument here.

Corollary 4.3: For the ARX model structure
A(z−1)y(t) = B(z−1)u(t) + e(t) under feedback control
with the stabilizing controller K(z) = X(z−1)

Y (z−1) , the richness
conditions are identical to those given in Theorem 4.3 for
the ARMAX model structure.

Proof: The proof follows immediately by setting
C(z−1) = 1 everywhere in the proof of Theorem 4.3.

BJ model structure
We now consider the BJ model structure (26) under feedback
control with the stabilizing controller K(z) = X(z−1)

Y (z−1) . For
simplicity, we shall again exclude parameter values θ that
cause a pole-zero cancellation between the closed-loop
poles of the model and the zeros of the noise model. This
corresponds to the following assumption.

Assumption 2: The polynomials F (z−1)Y (z−1) +
B(z−1)X(z−1) and C(z−1) are coprime.

We then have the following result.
Theorem 4.4: Consider the BJ model structure (26) under

feedback control with the stabilizing controller K(z) =
X(z−1)
Y (z−1) , with Assumption 2 holding.
(i) With r(t) ≡ 0, the data are informative if and only if

max(nx − nf , ny − nb) ≥ nd +min{nx, nf}. (40)

(ii) Let max(nx−nf , ny −nb) < nd +min{nx, nf}. Then
the data are informative for almost all r(t) ∈ Uk if and only
if

k ≥ nd +min{nx, nf}+min(nf − nx, nb − ny). (41)
Proof: For the BJ model structure, the identity (31) is

equivalent with

(F1Y +B1X)D1

C1F1
=

(F2Y +B2X)D2

C2F2
. (42)

Suppose first that D1 and F1 have a common polynomial
factor H(z) = 1 + h1z

−1 + . . . + hnhz
−nh , so that D1 =

D̄1H and F1 = F̄1H , with D̄1 and F̄1 coprime. Consider,
additionally, that there are possible pole-zero cancellations
at θ1 between the zeroes of the controller and the poles of
G(θ1), and let M(z) = 1 + m1z

−1 + . . . + mnmz
−nm be

the greatest common factor between X and F̄1, so that X =
X1M and F̄1 = F ∗1M with X1 and F ∗1 coprime. Note that
F1 = F ∗1MH . Then (42) is equivalent with

(F ∗1HY +B1X1)D̄1

C1F ∗1
=

(F2Y +B2X)D2

C2F2
, (43)

where C1F
∗
1 and (F ∗1HY + B1X1)D̄1 are now coprime

because C1 is coprime with D1 (and hence with D̄1) and
also with F1Y + B1X (and hence with F ∗1HY + B1X1)
by Assumption 1. In addition, F ∗1 is coprime with B1, D̄1

and X1, and hence with the whole numerator. The general
solution is therefore

C2F2 = C1F
∗
1 T (44)

(F2Y +B2X)D2 = (F ∗1HY +B1X1)D̄1T, (45)
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where T = 1+t1z−1+. . .+tntz
−nt of degree nt = nm+nh.

Equation (45) can be rewritten as

(F2D2−F ∗1HD̄1T )Y +(B2D2M −B1D̄1T )X1 = 0 (46)

with X1 and Y coprime. Note that the leading term of the
polynomials multiplying Y and X1 is zero. The general
solution of (46) is given by

F2D2 − F ∗1HD̄1T = X1U (47)
B2D2M −B1D̄1T = −Y U (48)

where U is an arbitrary polynomial of the form U(z) =
u1z
−1 + . . .+ unuz

−nu , with nu = nd + nm +min{nf −
nx, nb − ny}. U(z) = 0 is the only solution of (47)-(48) if
and only if max{nx − nf , ny − nb} ≥ nd + nm. Suppose
this is the case; it then follows from (47)-(48) that

F2D2 = F ∗1HD̄1T and (49)
B2D2M = B1D̄1T (50)

Combining (44) and (49) yields

C2

D2
=

C1

HD̄1
=
C1

D1
,

while combining (49) and (50) yields

B2

F2
=

B1

F ∗1HM
=
B1

F1
.

Together, these last two identities imply that the data are
sufficiently informative to distinguish between the model
at θ1 and at any other θ. Part (i) of the Theorem then
follows from the fact that nm is the number of common
roots between the zeroes of the controller and the poles of
the plant model and that the largest possible number of such
common roots, for any value of θ1, is min{nx, nf}.

Suppose now that the controller is not sufficiently complex
to produce informative data with noise excitation only, i.e.
condition (40) is violated. We then seek necessary and
sufficient richness conditions on r(t) under which conditions
(31) and (32) or, equivalently (33), imply 4Wu ≡ 0 and
4Wy ≡ 0. It follows from the previous derivations that

4Wy =
C1D2 −D1C2

C1C2

=
1

C1C2
[C1D2 −D1

C1F
∗
1 T

F2
]

=
1

F2C2
[D2F2 −D1F

∗
1 T ] =

X1U

F2C2
(51)

Thus, (33) implies4Wy ≡ 0 if and only if E{ X1U
F2C2

r(t)}2 =
0 implies U(z) ≡ 0. Remember that deg(U) , nu = nd +
nm + min{nf − nx, nb − ny} where nm is the number of
common roots between the controller zeroes and the poles
of G(z, θ) at the considered θ1. Since the largest number
of such pole-zero cancellations at any θ1 is min{nx, nf}, it
then follows that U(z) ≡ 0 if and only if r(t) ∈ Uk for all
k ≥ nd +min{nx, nf}+min(nf − nx, nb − ny) provided
the points of support of u(t) do not coincide with possible
zeroes of X on the unit circle. This proves part (ii) of the
Theorem.

Comment. Just like in the case of an ARMAX model
structure identified in closed loop, the degree of richness
required of the external excitation signal r(t) is precisely
equal to the difference between the complexity required by
expression (40) and the actual complexity of the controller.

Corollary 4.4: For the OE model structure y(t) =
B(z−1)
F (z−1)u(t)+e(t), under feedback control with the stabilizing

controller K(z) = X(z−1)
Y (z−1) , the data set is informative if and

only if K(z) 6= 0.
Proof: Since Wy(z) = 0 for an OE model, condition

(30) is equivalent with K4Wu ≡ 0. Since Wu = B1
F1
− B2

F2

this implies B1
F1

= B2
F2

if and only if K(z) 6= 0.
This confirms a result obtained in [3] where it was shown
that identification with an OE model structure in a closed
loop setup yields a unique global minimum without external
excitation if the controller is not identically zero.

V. CONCLUSIONS

We have provided necessary and sufficient conditions
on the external signals to achieve informative data for all
commonly used input-output models, under both open-loop
and closed-loop experimental conditions. Our objective has
been to find the smallest possible degree of richness of the
external signal (u in open loop, r in closed loop) that delivers
an informative data set. While the open-loop results were
either known or to be expected, the novel contribution of
this paper lies with the closed-loop results. They show a
remarkable and quantifiable trade-off between the controller
complexity and the required degree of external excitation.
Our conditions on the required controller complexity in the
absence of external excitation are identical to conditions
derived in [3] for the existence of a unique minimum of the
identification criterion in the absence of excitation. However,
the results in [3] have been obtained under the assumption
that the system is in the model set, while the results of this
paper do not require such assumption.
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