
On the Structure of Graph Edge Designs that Optimize the Algebraic
Connectivity

Yan Wan, Sandip Roy, Xu Wang, Ali Saberi, Tao Yang, Mengran Xue, Babak Malek

Abstract— We take a structural approach to the problem of
designing the edge weights in an undirected graph subject to
an upper bound on their total, so as to maximize the algebraic
connectivity. Specifically, we first characterize the eigenvector(s)
associated with the algebraic connectivity at the optimum, using
optimization machinery together with eigenvalue sensitivity
notions. Using these characterizations, we fully address optimal
design in tree graphs that is quadratic in the number of vertices,
and also obtain a suite of results concerning the topological and
eigen-structure of optimal designs for bipartite and general
graphs.

I. INTRODUCTION

The burgeoning importance of large-scale dynamical net-
works in our day-to-day lives has brought about a keen
interest in graph theory in the engineering community. While
the interface between graph theory and dynamical-network
analysis has been widely studied, the problem of designing
networks and their controllers to exploit a their topological
structure remains challenging. It is our perspective that such
network and controller designs are of critical importance, and
so we have engaged in a major effort to develop a systematic
graph-based methodology for design [1], [2], [3], [5]. Here,
we enrich our methodology to address the particular problem
of designing the edge weights in a graph, so as to optimize
an associated network’s dynamics.

Edge-weight design in graphs is needed for a range of
network applications, including sensor network algorithm-
design, assembly of autonomous vehicle teams, virus-
spreading control, and optimization of numerical sampling
tools, among others [1], [3], [7]. Of particular interest, Boyd
and his co-workers have identified and given a common
framework for several important edge-weight design prob-
lems (see [7] and references contained theirein), and in turn
have used a semi-definite programming (SDP) methodology
to find optimal edge-weight designs. While the SDP method-
ology does provide solutions to the edge-weight design
problems given some (non-trivial) regularity conditions, it
does not directly yield insight into graphical and dynamical
properties of high-performance designs; such insights are
critical both because they help to characterize the behaviors
of the optimally designed systems, and because they allow
us to identify/construct good designs even when precise
optimization is not possible. Here, we use a methodology that
meshes optimization, spectral graph theory, and eigenvalue
sensitivity notions to obtain structural results concerning

All authors are with the Department of Electrical Engineering, Washing-
ton State University. Correspondence to: {ywan}@eecs.wsu.edu. This work
was partially supported by NSF Grants ECS-0528882 and ECS-07258889
and NASA Grant NNA06CN26A.

optimal edge designs. Our approach enriches and informs
the existing numerical (SDP-based) characterizations of the
optimal edge design.

The methodology for edge-weight design introduced here
is closely connected to the techniques for static controller
design that we introduced in [1], [2], [3]. In [1], we motivated
and addressed an optimal node-design or scaling problem,
in particular addressing the design of diagonal matrix K
to optimize a performance measure defined from the matrix
KG. In [2], [3], we went one step further and showed that
the approach can be used to solve some optimal decentralized
design problems with constraints, i.e., the design of a diag-
onal matrix D or K to minimize the dominant eigenvalue
of D + KG subject to constraints on D/K . That problem
is common in the decentralized control of infrastructure
network dynamics such as epidemic spread or air traffic
flow. We have also given a complementary methodology for
designing dynamic decentralized controllers using a multiple-
derivative and multiple-delay paradigm, in [5], [6].

Our efforts here also contribute to algebraic graph theory
research. While the bulk of the literature in this domain is
focused on analyzing particular graphs rather than designing
them, Fiedler has addressed an optimal edge-weight design
problem. Fiedler’s important work provides structural under-
standing of an optimal edge-weight design (in particular, for
an eigenvalue design of tree-graph Laplacian matrices) [8].
Also of interest, a few recent efforts have obtained structural
results for other graph design problems (e.g., the fastest
mixing Markov chain problem), but for limited classes of
graphs such as paths (see the references in [7]). Meanwhile,
other efforts in the algebraic graph theory community have
sought structural insight into optimal edge-weight designs,
starting from the SDP formulation (e.g. [10]). From this
algebraic graph-theory perspective, our efforts serve to 1)
further the structural analysis given in the literature, 2)
achieve design for a much broader class of edge-weight
design problems and graphs, and 3) clarify that structural
insights into the optimal design in fact yield and/or permit
refinement of good algorithms for edge-weight design.

In this article, we study one canonical graph-edge design
problem: namely, that of selecting the edge weights subject to
an upper bound on their total, so as to maximize the graph’s
algebraic connectivity (i.e., the second-smallest eigenvalue
of the Laplacian matrix associated with the graph). To save
space, we omit all proofs and examples; the reader is kindly
asked to see the extended document [9] on our web page for
these aspects.

The structural approach to graph-edge design studied here

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB06.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 805

can be adapted to numerous other design problems of inter-
est. We are in the process of applying the graph-edge design
methodology for two other canonical problems—namely, 1)
optimization of the dominant eigenvalue of (both symmetric
and asymmetric) positive matrices defined on a graph, and
2) optimization of the mixing rate of a Markov chain (i.e.,
optimization of the subdominant eigenvalue of a stochastic
matrix defined on a graph). In the interest of space, these
results will be presented in future work.

II. REVIEW AND PROBLEM FORMULATION

We consider the problem of designing the edge weights in
a graph, to maximize the algebraic connectivity or Fiedler
eigenvalue of the graph, i.e. the second-smallest eigenvalue
of the associated Laplacian matrix.

Formally, let us consider a non-negatively weighted, undi-
rected graph G with vertex set V = {1, . . . , n}, edge set E
(where edges are specified as unordered pairs of vertices),
and nonnegative weight kij = kji associated with each
edge {i, j} ∈ E. We recall that the Laplacian matrix
L of the graph G is defined as follows: L = D − K ,
where kij

�
= 0 for {i, j} /∈ E, K

�
= [kij], and D is a

diagonal matrix with ith diagonal entry given by
∑n

j=1 kij .
We note that the Laplacian matrix L is a symmetric positive
semidefinite matrix, and so has real eigenvalues with the
minimum one equal to 0. The second-smallest eigenvalue of
the Laplacian matrix, known as the algebraic connectivity
(or, more informally, the Fiedler eigenvalue in honor of the
extensive study of it by M. Fiedler), is of wide interest to
both graph theorists and dynamical-network analysts.

Here, we aim to assign the nonnegative edge weights kij

for {i, j} ∈ E so as to maximize the algebraic connectivity
λ2, subject to an upper bound Γ on the total edge weight:∑

{i,j}∈E kij ≤ Γ. We refer to this edge-weight design
problem as the Laplacian edge design problem and refer to
E as the designable edge set. We call a design that achieves
the maximum an optimal edge design, and use the notation
k∗

ij for the edge weights in such a design; analogously, we
use the notation λ∗

2 for the optimal algebraic connectivity
(i.e., the algebraic connectivity for the optimal edge design).
We refer to eigenvectors associated with the algebraic con-
nectivity at the optimum as optimized eigenvectors. In the
case where the optimal eigenvalue is non-repeated, we use
the notation x∗ for the unique (to within a scale factor)
eigenvector. When the optimal eigenvalue is repeated m
times, we denote a basis for the corresponding eigenspace
as x∗(1), . . . ,x∗(m), and use the notation x∗ for vectors in
the span of x∗(1), . . . ,x∗(m) We also find it convenient to
refer to the set of edges in a design that have strictly positive
weights as the non-zero edge set, and to use the notation
Ed (respectively, E∗

d for an optimal design) for this set. We
notice that E∗

d ∈ E.
The Laplacian edge design problem posed above was

first studied by Fiedler in [8], wherein he coined the term

absolute algebraic connectivity1 for the optimal λ2. In
particular, the article [8] gives a structural characterization
of the eigenvector of the Laplacian L associated with the
optimal algebraic connectivity when it is nonrepeated, and in
turn finds the optimal edge design for tree graphs (including
ones with repeated algebraic connectivity) in terms of the
variance of the graph. More recently, Boyd and his co-
workers have used semi-definite programming methods to
obtain the absolute algebraic connectivity for general graphs,
in the process obtaining a set of optimal edge weights. Also
of interest, the article [8] exposes that the absolute algebraic
connectivity can be found as a solution to an embedding
problem, and in turn relates absolute algebraic connectivity
to the graph separators.

The structural approach that we pursue here is very closely
connected with the eigenvector structure-based approach of
Fiedler. However, our focus here is not only on character-
izing the absolute algebraic connectivity but also explicitly
constructing and characterizing the optimal edge design (or
designs). To this end, we clarify that a polynomial-time (in
fact, O(n2)) algorithm can be used to find the optimal edge
design for trees, as an alternative to the design strategy given
in Fiedler. We also characterize the topological structure of
the optimal design in this case and show how the design can
be obtained with O(n) effort upon addition of a new vertex.
Further, we obtain several characterizations of the family
of optimal edge designs, as well as bounds on the absolute
algebraic connectivity, for bipartite and general graphs.

III. THE STRUCTURE OF THE OPTIMIZED EIGENVECTOR

Let us review and extend the structural characterization of
the optimized eigenvectors given in [8]; Specifically, we first
review the result from Fiedler’s work on the optimized eigen-
vector, in the case where the optimal algebraic connectivity
is assumed non-repeated.

Theorem 1: Consider the Laplacian edge design problem.
For an optimal edge design such that the algebraic connec-
tivity is a non-repeated, the following condition holds: for
each {i, j} ∈ E, either 1) k∗

ij = 0 or 2) |x∗
i − x∗

j | = u and
k∗

ij > 0, where u is a positive constant.
In words, the theorem states that the absolute difference

in eigenvector components along each edge in E used in
the optimal design is identical, as long as the algebraic
connectivity is non-repeated. We have proved the result using
the standard Lagrange multiplier machinery together with
eigenvalue sensitivity ideas, see [9], as an alternative to the
majorization proof in [8]. The proof methodology highlights
the analagy of our graph-design methodology with our
previous results on optimal scaling and static decentralized
controller design [1], [2], [3].

The above result fully characterizes the optimized eigen-
vector, in the case where the optimal algebraic connectivity
is a nonrepeated eigenvalue of the Laplacian matrix. We note
that this optimized eigenvector has numerous other structural

1To be precise, Fiedler uses the term for the case where Σi,j∈Ekij ≤ n,
so we use different terminology here; however, notice that the more general
problem trivially reduces to this one through scaling.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.2

806

properties that are common to all eigenvectors associated
with the algebraic connectivity of a Laplacian, see e.g. [11]
for details. We also note (as was also noted in [8]) that the
above structural result implies that the non-zero edge set of
the optimum forms a bipartite graph, if indeed the algebraic
connectivity is not repeated. We will show in the following
subsections that the above structural result facilitates design
and provides a variety of insights into the optimal design.

As our later discussion will clarify, the optimal solu-
tion commonly has repeated algebraic connectivity, and so
characterizations of the optimized eigenvectors associated
with a repeated algebraic connectivity are needed. Broadly,
the repeated-eigenvalue case is complicated because of the
difficulty in finding sensitivities of repeated eigenvalues to
perturbations, see e.g. [12]. Here, we review the explicit
characterization of the eigenvectors given by Fiedler for the
case that the designable edge set forms a tree [8]. We then
develop a check for whether a repeated-eigenvalue solution
is an optimal one, for general graphs.

Let us begin with the tree case.
Theorem 2: Consider the optimal edge design problem for

a connected tree graph (i.e., for the case that the designable
edge set E specifies a connected tree). The unique optimal
edge design satisfies one of the following three conditions:

1) the optimal algebraic connectivity is non-repeated, the
optimized eigenvector x∗ has no zero components, |x∗

i −
x∗

j | is identical for each {i, j} ∈ E, and the optimized
eigenvector’s components are strictly increasing along the
path from any vertex s to any vertex t in the designable
edge graph such that x∗

s < 0 and x∗
t > 0.

2) the optimal algebraic connectivity is non-repeated, the
optimized eigenvector x∗ has a single zero component at a
vertex of degree 2 in the designable edge graph, |x∗

i −x∗
j | is

identical for each {i, j} ∈ E, and the optimized eigenvector’s
components are strictly increasing along the path from any
vertex s to any vertex t in the designable edge graph such
that x∗

s ≤ 0 and x∗
t > 0.

3) the optimal algebraic connectivity is repeated z times.
Also, all (eigen)vectors x∗ ∈ Span(x∗(1), · · · ,x∗(z)) have
a zero component at a particular vertex i with degree z + 1.
Further, for a path from vertex i to any vertex t, the
sequences x∗

i , · · · , x∗
t is monotonic and the differences of

the eigenvector components across each edge in the path are
identical.

Next, let us give a general condition for checking whether
a repeated-eigenvalue solution is optimal.

Theorem 3: Consider an edge weight assignment with∑
{i,j}∈E kij = Γ, which has algebraic connectivity repeated

z times, and coresponding eigenvectors x∗(1), · · · ,x∗(z).
This assignment is an optimal edge design, if and only
if the following condition holds: for any set of numbers
Δij , {i, j} ∈ E such that

∑
{i,j}∈E Δij = 0, there

exists x∗ �= 0 ∈ Span(x∗(1), · · · ,x∗(z)) such that∑
{i,j}∈E Δij(x∗

i − x∗
j)

2 ≤ 0.
We note that Theorem 3 gives a full structural charac-

terization of the optimal design, albeit in an implicit form.
Also, Theorem 3 reduces to Theorem 1 when z = 1, i.e. the

algebraic connectivity is non-repeated.

IV. AN EXPLICIT DESIGN FOR TREE GRAPHS

The structural characterizations of the optimized eigen-
vector(s) from Section 3 immediately permit us to develop
finite-dimensional search algorithms for finding the optimal
edge design. For tree graphs, it turns out that we can
obtain the optimal design exactly with O(n2) operations.
In this section, we give the algorithm for finding the optimal
edge design for tree graphs, present some simple qualitative
insights into the pattern of the optimal edge weights, and
show how the design can be updated upon addition of a new
vertex in O(n) time.

We note that the article [8] already has obtained the
optimal edge designs for tree graphs, with the results phrased
in terms of the variance of the graph. Our algorithm for the
optimum is an alternative to the one of Fiedler, that facilitates
distributed computation of the design and leads to the further
presented results.

Before presenting the algorithm, we define some termi-
nology. First, consider an edge {i, j} in the tree. We refer
to the two partitions formed upon removal of the edge as
the partitions induced by edge {i, j}, and use the notation
Si({i, j}) and Sj({i, j}) for the partition including i and the
partition including j, respectively. Similarly, we refer to the
partitions formed upon removal of a vertex i in the tree as
the vertex-partitions induced by the vertex i. We use the
notation S1(i), . . . , Sm(i) for the (in general m) partitions
formed. Finally, we use the notation D(i, j) for the distance
(number of edges) between vertex i and vertex j.

We are now ready to present the algorithm. The algorithm
has two steps. The first concerns finding the critical edge
or critical vertex, i.e. the edge such that the optimized
eigenvector has components of different signs at the two
ends, or else the vertex for which the eigenvector component
is null. The second step is the computation of the optimal
design.

Algorithm, Step 1: Finding the Critical Edge or Vertex.
Search through the edges in the graph, until a critical edge or
vertex is found. In particular, for each edge {i, j} ∈ E, find
C({i, j}) = 1

n (
∑

k∈Sj({i,j}) D(i, k)−∑
k∈Si({i,j}) D(i, k)).

If 0 < C({i, j}) < 1, then {i, j} is the critical edge. If none
of the edges is critical, find C({i}) = 1

n

∑
k=1,··· ,n D2(i, k).

Then the vertex i for which C({i}) is minimized is the
critical one (and in fact C({i}) ≤ C({j})-1 for all j in
this case). We notice that finding the distances and hence
C({i, j}) or C({i}) requires O(n) additions/multiplications,
and so Step 1 has maximum computational complexity
O(n2).

Algorithm, Step 2: Finding the Optimal Edge Design.
Let us consider two cases, namely the case where we have
a critical edge and that where we have a critical vertex.
Critical-Edge Case: Say that the edge {i, j} is the critical
one. Then construct the n-component vector x̂ that has kth
entry given by D(i, k) − C({i, j}). Then x∗ = x̂

||x̂||2 is
the optimized eigenvector (normalized to unit length). Also,
the optimal algebraic connectivity is λ∗ = Γ(x∗

i − x∗
j)

2.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.2

807

Finally, the optimal edge weights can be found recursively, as
follows. For edges {a, b} such that a is a leaf, k∗

a,b = λ∗x∗
a

x∗
a−x∗

b
;

these optimal edge weights can immediately be calculated.
Once they have been calculated, notice that there exists at
least one non-leaf edge {a, b} whose optimal weights has not
been computed, and for which all the optimal edge weights in
the partition Sa({a, b}) have been computed. For this edge,
k∗

a,b can be computed as k∗
a,b =

λ∗x∗
a−

∑
q∈N(a) k∗

q,a(x∗
q−x∗

a)

x∗
a−x∗

b
,

where N (a) contains the neighbors of vertex a except for
b. After computing this optimal edge weight, we see that
again one of the edges whose optimal weight remains to be
computed has an associated partition for which all optimal
weights have been computed; hence, recursively, all the
optimal edge weights can be computed. It is easy to check
that this computation is O(n).

Critical Vertex Case: Say that the vertex i is the critical
one. Construct a vector y with kth entry given by D(i, k).
For each edge {a, b} in the graph, find the scaled weight
k̂a,b of the edge. Do this as follows: first, for each edge
{a, b} such that a is a leaf of the tree, find k̂a,b = ya

ya−yb
.

After the weights for the leaves have been found, notice
that in each vertex-partition induced by i, at least one of
the edges whose weight remains to be found has associated
(edge) partition which 1) is within the vertex partition and 2)
has all scaled weights determined. For any such edge {a, b}
(with a connected to the partition with known weights), the

scaled weight is computed as k̂a,b =
ya−

∑
q∈N(a) k̂q,a(yq−ya)

ya−yb
.

In this way, scaled weights can recursively be computed for
all edges. Next, the optimal edge weight for each edge {a, b}
can be computed as k∗

a,b = Γk̂a,b

T , where T =
∑

{a,b}∈E k̂a,b.
Also, the optimal eigenvalue is given by λ∗ = Γ

T . Finally,
the optimized eigenvectors form a vector space of dimension
m − 1, where m is the number of vertex-partitions induced
by i. In particular, any vector with kth entry given by cjyk,
where j is the induced partition which contains vertex k, that
has zero sum is an optimized eigenvector. It is easy to check
that this computation is O(n). �

We note that the computation of the critical edge or vertex
is identical to the one given in [8]. Meanwhile, the edge-
weight computation that we use contrasts from that in [8], in
that individual weights are found recursively from neighbors’
weights. We notice that this approach make clear that only
a limited set of global information (e.g. the critical edge
location) need be transmitted to permit local computation of
the optimal weights.

The algorithm is computationally O(n2). We notice that
when we add new vertices to an existing tree, we do not
need to recalculate the critical edge or vertex from scratch.
Specifically, when a single node is added to an existing tree,
Step 1 can be simplified to have only constant computational
time. This simplification is made possible by the fact that
upon tree expansion, the critical edge/vertex {i, j} moves
in a special pattern. We show this result in Theorem 4. For
convenience, let us denote the tree constructed from tree T =
T (V, E) by connecting new vertex q to vertex p ∈ V as

T̃ = T (Ṽ , Ẽ), where Ṽ = {V, q} and Ẽ = {V, {p, q}}.
Theorem 4: Consider a tree graph T = T (V, E) and say

that a vertex q is added to the graph through connecting to
vertex p ∈ V . The critical edge or vertex of tree T̃ can be
determined as follows:

1) Suppose tree T has a critical edge {i, j}, and q ∈
Si({i, j}), then tree T̃ either has a critical edge {i, j} or
has a critical vertex i.

2) Suppose tree T has a critical vertex i, and q ∈ Sk(i),
then tree T̃ either has a critical vertex i or has a critical edge
{i, j}, where j ∈ Sk(i) and {i, j} ∈ E.

The theorem informs that when adding one node to an
existing tree, the critical vertex/edge of the expanded tree
can be easily found. The critical vertex/edge in the expanded
tree either stays the same, or moves along the edge in the
direction of the added node without crossing the nearest
vertex. The precise location of the critical vertex/edge can
be obtained in constant time through modifying C({i, j}) of
tree T .

Also, the edge weights in the optimal solution have some
interesting dependences on the visual graph structure. We
present these simple results in Theorems 5 and 6.

Theorem 5: Consider any path from the critical
edge/vertex to a leaf in a connected tree graph. The optimal
edge weights along the path decrease monotonically.

Theorem 6: Consider the set of edges that connect to a
leaf in a connected tree graph. The magnitudes of optimal
edge weights in the set are ordered according to, and in fact
are linear proportional to, the corresponding leaves’ distances
to the critical edge/vertex.

For a connected tree graph, the above two theorems give
us necessary conditions for an edge weight design to be the
optimum. In the circumstance that the optimal edge weights
are hard to obtain, we can resort to the theorems to obtain a
suboptimal but good solutions.

V. SOME STRUCTURAL RESULTS FOR BIPARTITE AND
GENERAL GRAPHS

From the structural results in Section 3, we also can obtain
a finite-search algorithm for finding the optimal design, in
the case where the optimal algebraic connectivity is not
repeated. Briefly, the finite-dimensional algorithm works as
follows: for each possible cutset of the graph, it turns out
that one can assign a unique potential optimal eigenvector
such that the cutset separates eigenvector components with
different signs. In turn, an edge weight assignment that
achieves this eigenvector can be identified, if one exists,
and the optimality of the potential solution can be checked.
A direct implementation of such a finite-search algorithm
(which is deeply related to our algorithms for scaling design,
see [1], [2], [3]) is computationally intensive as compared to
the standard numerical methods, and so we omit the details.

A more important consequence of our direct approach to
the Laplacian edge design problem is that it yields significant
structural insight into the optimal design for general (non-
tree) graphs. Here, we summarize some interesting insights
into the optimal designs for more general classes of graphs.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.2

808

In presenting results for non-tree designable edge sets, we
shall often find it convenient to distinguish between bipartite
and non-bipartite graphs. Let us thus recall that a bipartite
graph is one in which the vertices can be divided into two
sets, such that every edge connects a vertex in one set with a
vertex in the other. We shall also find it convenient at times
to classify graphs in terms of whether they admit an optimal
design without a repeated algebraic connectivity.

A. Edge-Utilization Structure and Eigenstructure

Let us begin with some analysis of the edge-utilization
structure and eigen-structure for the optimal. A critical
observation that underlies the results in this subsection is that
the Laplacian edge design problem (almost) always admits
multiple optimal edge designs. Let us formalize this concept,
in the following theorem:

Theorem 7: Consider a Laplacian edge-design problem
that has at least one optimal design with non-repeated alge-
braic connectivity. The optimal edge design for the problem
is unique if and only if the designable edge set forms a tree
graph.

This result can be proved straightforwardly by using the
eigenvalue/eigenvector equation at the optimum together
with perturbation arguments. Thus, we see that for non-
tree designable edge sets, the Laplacian edge-design problem
admits a family of optimal edge-weight selections. The
method of proof shows that, in fact, multiple edge designs
exist even though the optimizing eigenvector may be unique.

Observing that many optimal edge designs are possible,
we may be motivated to seek for designs that have particular
edge-utilization characteristics. The next result clarifies that,
at least for bipartite graphs, optimal designs can be obtained
that are identical in structure to the designable edge graph.
Designs with this characteristic may be preferable e.g. be-
cause of their desirable fault-tolerance properties.

Theorem 8: Consider a Laplacian edge-design problem
with designable edge set that forms a bipartite graph. If
there is at least one optimal design for which the algebraic
connectivity is non-repeated, then there is an optimal design
for which all the designable edges are assigned non-zero
weights.

One can also obtain a more restricted result on edge
utilization for general graphs:

Theorem 9: Consider a Laplacian edge-design problem. If
there is at least one optimal design for which the algebraic
connectivity is non-repeated, then there is an optimal design
that 1) is bipartite and 2) would become non-bipartite if any
other edge from the designable edge set E were made non-
zero.

Also, the locations of the eigenvalues in the optimal
solution—and in particular the possibility for repeated al-
gebraic connectivity—is important because it informs on
e.g. the sign patterns of eigenvector components (and hence
associated dynamics) and impacts use of numerical tools for
design.

In the following theorem, we characterize the presence of
solutions to the Laplacian edge design problem with repeated

eigenvalues:
Theorem 10: Each Laplacian edge design problem either

has an optimal edge design such that the non-zero edge
weight set Ed forms a tree, or has an optimal edge design
such that the algebraic connectivity is repeated.
This theorem, which also is proved by studying the family
of possible designs achieving the optimum, clarifies the
very common presence of repeated-eigenvalue optima. This
common occurrence of repeated-eigenvalue solutions is im-
portant from the perspective of using numerical optimization
tools (such as SDP-based methods, see e.g. [7]): at feasible
solutions with repeated eigenvalues, the derivative of the
Lagrangian with respect to the design parameters becomes
ill-defined; the fact that the optima themselves have such
a structure suggests that appropriate regularization may be
needed in using the numerical techniques.

In concluding the discussion on the edge-utilization struc-
ture and eigenstructure of optimal designs, we recall that the
optimizing eigenvector has a very special structure, in the
case where the algebraic connectivity is nonrepeated, see
also [8]. In particular, as we stated in positing the finite-
search algorithm, we can uniquely determine the optimizing
eigenvector (obviously, to within a scaling factor) once
the cutset that separates positive-valued and negative-valued
components in the eigenvector is known. This conclusion
is a natural generalization of the eigenvector construction
for trees (see Theorem 2), but does not provide low-order
algorithms for finding the optimum, and so we omit the
details. What is interesting is that this insight into eigenvector
structure (or, alternatively, the check for optimality given in
[8]) immediately yields a conclusion about whether or not
an the optimal edge design can be a tree:

Theorem 11: Consider a Laplacian edge-design problem,
where the minimum edge- and vertex- cutsets of the des-
ignable edge graph are both at least 2. Then the non-zero
edge set for any optimal edge design does not form a tree.

We notice that this result gives a more precise charac-
terization of the edge-utilization structure, in particular one
where the structures of all optimal designs are characterized
for a broad class of designable edge graphs.

B. Graph-Theoretic Bounds on Performance

Our solution methodology for the Laplacian edge-design
problem also permits development of graph-theoretic bounds
on the optimal algebraic connectivity. Such bounds lend
insight into the design methodology, because they permit
comparison of the optimal design with uniform-weight de-
signs and allow evaluation of performance for particular
graph classes (e.g., regular meshes, small-world networks,
etc). Here, as an example, we introduce a lower-bound on
the optimal algebraic connectivity, and discuss application of
this bound.

Lower bounding the algebraic connectivity is often of
particular interest, because such a bound implies an upper
bound on the settling time of an associated dynamics, e.g., a
distributed agreement protocol in a sensor network or a for-
mation dynamics in an autonomous-vehicle team (e.g., [13],

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.2

809

[14]). Here, we are interested in lower-bounding the algebraic
connectivity, in the case where the optimal edge design is
used. We can simply bound the algebraic connectivity in
terms of the diameter of graph specified by the designable
edge-set, as follows:

Theorem 12: Consider a Laplacian edge design problem
that has resource bound Γ. Then the optimal Fiedler eigen-
value is lower-bounded by 4Γ

nD2 , where D is the diameter of
the designable edge graph (i.e. of the unweighted graph in
n- vertices with edge set E).

The proof of this lower-bound follows from considering a
modified Laplacian edge design problem for a spanning tree
of the original designable graph, and using the eigenvector-
structure result given in Theorem 2. A particularly interesting
instance of the above theorem is in the case where the upper
bound Γ is set equal to the number of vertices n; this instance
permits us to study the scaling of the optimal eigenvalue with
respect to the number of vertices in the designable graph,
when the total available resource (Γ) is proportional to the
number of vertices. In particular, we find that optimal Fiedler
eigenvalue is lower-bounded by 4

D2 in this case. Thus, we
see that the optimal eigenvalue remains relatively large as
the number of vertices in the graph increases, as long as the
diameter remains small. This result immediately implies that
the optimal edge design for small-world graphs, which have
small diameter (see [15], [16], [17]), achieve fast settling.

It is worth noting that an even tighter lower bound,
phrased in terms of the variance of spanning trees of the
graph, follows immediately from [8]. However, application
of the variance-based result is more complex, because of
the difficulty both in its computation and in choosing the
appropriate spanning tree.

C. Meshing our Design with Numerical Methods

Our direct methodology for addressing the Laplacian edge-
design problem can also inform existing numerical solution
techniques. To review, Boyd and co-workers have used
semi-definite programming (SDP) techniques to solve the
Laplacian edge-design problem and other similar design
problems (e.g., [7]). In our complementary work on network
scaling problems [1], we have also noted that simple gradient
descent-type algorithms can be used to obtain optima. These
numerical methods typically yield fast solutions to the design
problems, which complement the structural insights that can
be obtained through our direct approach. Here, let us briefly
discuss one way in which our approach can inform, and be
meshed with, the numerical solution strategies.

In particular, we stress again that our methodology shows
that many optimal designs can be obtained for non-tree
graphs, not only the single optimum provided by the numer-
ical methods. Thus, our direct methodology can naturally be
interfaced with the numerical techniques to identify a family
of optimal edge designs, as follows:

1) The numerical technique can be used to obtain with
high fidelity one optimal edge design and corresponding
optimal algebraic connectivity and optimized eigenvector.
We notice that our direct analysis explicitly specifies the

optimized eigenvector once the cutset separating vertices
with positive- and negative- valued components is identified;
thus, the exact optimized eigenvector can be obtained after
a finite number of iterations of the numerical algorithm.

2) Once the optimized eigenvector x∗ and eigenvalue λ∗

have been obtained, the eigenvector equation can be used
to find the space of edge designs for which x∗ and λ∗

are an eigenvector and eigenvalue, respectively. We notice
that only some of these designs have λ∗ as the algebraic
connectivity (rather than as one of the higher eigenvalues);
it is straightforward to check whether λ∗ is the optimal
eigenvalue from the eigen-analysis.

We have developed an example illustrating how a family
of valid designs can be found, as well as a larger example
for a flow-network-design application. We ask the reader to
see the extended paper [9] for these examples.

REFERENCES

[1] S. Roy and A. Saberi, “Scaling: a canonical design problem for
networks,” International Journal of Control, vol. 80, no. 8, pp. 1342-
1353, 2007.

[2] Y. Wan, S. Roy, and A. Saberi, “Designing spatially-heterogeneous
strategies for control of virus spread,” to appear in IET Systems
Biology.

[3] Y. Wan, S. Roy, and A. Saberi, “A new focus in the science of
networks: towards methods for design,” Proceedings of the Royal
Society A, vol. 464, pp. 513-535, March 2008.

[4] S. Roy, J. Krueger, D. Rector, and Y. Wan, “A network model for
activity-dependent sleep regulation,” submitted to Journal of Theoret-
ical Biology.

[5] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “A multiple-derivative
and multiple-delay paradigm for decentralized controller design:
uniform-rank systems,” Submitted to Automatica, 2007.

[6] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “A multiple-derivative
and multiple-delay paradigm for decentralized controller design: in-
troduction using the canonical double-integrator network,” Submitted
to Automatica, 2007.

[7] S. Boyd, “Convex optimization of graph laplacian eigenvalues,” Pro-
ceedings International Congress of Mathematicians, vol. 3, pp. 1311-
1319, 2006.

[8] M. Fiedler, “Absolute algebraic connectivity of trees,” Linear and
Multilinear Algebra, no. 26, pp. 85-106, 1990.

[9] Y. Wan, S. Roy, X. Wang, A. Saberi, T. Yang, M. Xue, and B. Malek,
“On the Structure of graph edge designs that optimize the algebraic
connectivity,” full version available at www.eecs.wsu.edu/˜ywan.

[10] F. Göring, C. Helmberg, and M. Wappler, “Embedded in the Shadow of
the Separator,” submitted to SIAM Journal on Optimization, September
2, 2005.

[11] F. R. K. Chung, Spectral Graph Theory, American Mathematical
Society Press: Providence, RI, 1997.

[12] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press:
Oxford, 1965.

[13] S. Roy, A. Saberi, and K. Herlugson, “Formation and alignment
of distributed sensing agents with double-integrator dynamics,” IEEE
Press Monograph on Sensor Network Operations, April 2006.

[14] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Systems Magazine,
vol. 27, no. 2, pp. 71-82, 2007.

[15] D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, vol. 393, pp. 440-442, 1998.

[16] J. Kleinberg, “The small-world phenomenon: an algorithmic perspec-
tive,” in Proceedings of the 32nd ACM Symposium on Theory of
Computing, Portland, OR, May 2000.

[17] B. Bollobas and F. R. K. Chung, “The diameter of a cycle plus a
random matching,” SIAM Journal on Discrete Mathematics, vol. 1,
pp. 328-333, 1988.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.2

810

