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Abstract— Hybrid Vehicle fuel economy performance is
highly sensitive to the energy management strategy used to
select among multiple energy sources. Optimal solutions are
easy to specify if the drive cycle is known a priori. It is
very challenging to compute controllers that yield good fuel
economy for a class of drive cycles representative of typical
driver behavior. Additional challenges come in the form of
constraints on powertrain activity, like shifting and starting the
engine, which are commonly called “drivability” metrics. These
constraints can adversely affect fuel economy. The benefits of
including drivability restrictions in a Shortest Path Dynamic
Programming (SPDP) formulation of the energy management
problem are investigated for the first time. It is shown that
this method yields up to 10% fuel economy improvement on
a representative parallel electric hybrid when compared to a
simpler instantaneous optimization formulation. This result is
obtained by comparing a SPDP controller designed for driv-
ability to a second SPDP controller, designed for fuel economy
only, that uses an additional instantaneous optimization step
for the incorporation of drivability. The results also quantify
the tradeoff between drivability and fuel economy.

I. INTRODUCTION

Hybrid vehicles are becoming more and more common

in the automotive marketplace today. The most common

type is the electric hybrid, which consists of an internal

combustion engine (ICE), a battery, and at least one electric

machine (EM). Hybrids are built in several configurations

including series, series-parallel, and the parallel configuration

considered here. Since the initial debut of modern production

hybrids in 1997, researchers have been working to improve

the control algorithms for better fuel economy. Hybrid vehi-

cles are characterized by multiple energy sources; the control

strategy to select among these multiple energy sources is

termed “Energy Management.” An excellent overview of this

area is available in [8].

The optimal solution to the energy management problem

is readily computable if the drive cycle is exactly known

in advance. While this is rarely the case for the general

driving population, optimization over fixed drive cycles is

useful for benchmarking purposes and initial component

selection. When the drive cycle is not specified a priori,
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the design of the energy management system becomes much

more challenging.

Initially, many industrial and academic solutions to this

problem were rule-based. Engineers wrote a set of control

laws or rules that tended to improve fuel economy. A

common example of this is “load-leveling,” which uses the

battery and electric machine to keep the ICE operating near

a point of high efficiency. Later, design methods built around

the on-line minimization of an instantaneous (static) cost

function were introduced; see [8]. For example, a method

termed “Equivalent Consumption Minimization Strategy”

(ECMS) poses an on-line instantaneous optimization of fuel

economy to trade off battery usage vs. fuel consumption [6].

The controller is causal, but depends on a cycle-dependent

weighting factor that must be selected ahead of time. To

get around this problem, the method was later modified to

include a weighting factor that is adjusted on-line based on

driving conditions [5].

In [3], deterministic dynamic programming over a pre-

specified drive cycle was used to develop energy man-

agement control strategies. Causal control laws were suc-

cessfully extracted from the nominal non-causal dynamic

programming solution, and were demonstrated to deliver

very good performance on a hybrid electric delivery vehicle

[4]. There was, however, no a priori guarantee that this would

be possible in general, and the method to extract the causal

controller was time consuming.

The technique used here is Shortest Path Stochastic Dy-

namic Programming [2], [9]. This method uses a Markov

chain to represent the set of possible drive cycles. It is no-

ticeably different from the instantaneous minimization used

in ECMS in that the controller minimizes both a current cost

and an expectation of the future cost, represented by a value

function. The resulting optimal controllers are automatically

causal, so no post-facto extraction process is necessary, as it

was in [3].

In addition to fuel economy, the customer’s perception

of the drivertrain’s performance is another key issue in

designing the energy management system. In this context,

customers are concerned with the vehicle’s shifting, pedal

response, etc. These vehicle characteristics are commonly

termed “drivability.” Most of the past work in hybrid energy

management has focused primarily on fuel economy. In this

paper we address the “basic” drivability issues of gear se-

lection and engine on/off, rather than more detailed driveline

dynamics as in [7].

Most previous attempts at addressing these basic driv-

ability issues have been based on instantaneous, second-by-
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second, optimization methods. This paper is unique in that

it directly includes drivability and fuel economy over the

entire drive cycle in the optimal controller design. Stochastic

Dynamic Programming is used as a controller design method.

Drivability costs are considered not only in the current

time step (like on-line optimization methods), but also the

future expectation. Simulations are conducted for a prototype

production vehicle. Including drivability restrictions in the

full controller design is shown to yield approximately 10%

fuel economy improvement compared to a fuel-optimized

controller with drivability restrictions implemented as an

instantaneous optimization.

II. VEHICLE MODEL

A. Vehicle Architecture

The vehicle model studied in this paper is a parallel

electric hybrid. A 2.4 L diesel engine is coupled to the

front axle through a clutched 6-speed automated manual

transmission. An electric machine is directly coupled to the

rear axle through a fixed gear ratio without a clutch, therefore

the electric machine is always rotating at a speed proportional

to vehicle speed. Energy is stored in a 1.5 kWh battery pack.

The system parameters are listed in Table I.

TABLE I

VEHICLE PARAMETERS

Engine Displacement 2.4 L

Max Engine Power 120 kW

Electric Machine Power 35 kW

Battery Capacity 1.5 kWh

Battery Power Limit 34 kW

Vehicle Mass 1895 kg

B. Modeling Assumptions

For computational reasons, the vehicle model must be as

simple as possible. The vehicle model used here contains

the minimum functionality required to model the vehicle

behavior of interest on a second-by-second basis. Dynamics

much faster than the sample time of 1s are ignored. Long-

term transients that only weakly affect performance are also

ignored; coolant temperature is one example.

The dynamics of the internal combustion engine are ig-

nored; it is assumed that the engine torque exactly matches

valid commands and the fuel consumption is a function only

of speed, ωICE , and torque, TICE . The fuel consumption

F is derived from a lookup table based on dynamometer

testing,

Fuel flow = F (ωICE , TICE).

The automated manual transmission has discrete gears

and no torque converter. Losses in this highly efficient

transmission [1] are ignored. The engine speed is assumed

directly proportional to wheel speed based on the current

transmission gear ratio Rg ,

ωICE = Rgωwheel.

The engine torque TICE transmitted to the wheel is similarly

assumed proportional to wheel torque based on the current

gear ratio Rg . The electric machine torque TEM transmitted

to the wheel is proportional to the constant EM gear ratio

REM . The total wheel torque Twheel is thus the sum of the

ICE torque to the wheel RgTICE and the electric machine

torque to the wheel REMTEM ,

RgTICE + REMTEM = Twheel.

The engine can be turned off at any time, in which case the

clutch is disengaged and engine speed is zero independent of

wheel speed. Transmission gear shifts are allowed every time

step (1s) and transmission dynamics are assumed negligible.

The battery system is similarly reduced to a table lookup

form. The electrical dynamics due to the motor, battery,

and power electronics are assumed sufficiently fast to be

ignored. The energy losses in these components can be

grouped together such that the change in battery State of

Charge (SOC) is a function κ̄ of Electric Machine speed

ωEM , torque TEM , and battery SOC at the present time step,

SOCk+1 = κ̄(SOCk, ωEM , TEM ). (1)

Assuming a known vehicle speed, the only state variable

required for this vehicle model is the state of charge (SOC).

Changes in battery performance due to temperature, age, and

wear are ignored.

The control inputs for this vehicle are the IC engine torque,

electric motor torque, and the gear. Given the control choices,

ICE speed and EM speed are fixed given vehicle velocity.

During operation, the desired wheel torque is defined by the

driver. If we assume the vehicle must meet the torque demand

perfectly, then the sum of the ICE and EM contributions to

wheel torque must equal the demanded torque Tdemand,

RgTICE + REMTEM = Tdemand.

With this constraint, the choice of ICE and EM torque are

no longer independent. Their relationship can be expressed

in several ways, including as a Power Split Ratio defined

as the ratio of ICE power to the road power demand [3].

For computational convenience, the ICE crankshaft torque is

chosen as the control input. This leaves the system control

inputs as Engine Torque and Transmission Gear.

Simulation is conducted assuming a “perfect” driver. At

each time step, the vehicle velocity is the desired cycle

velocity. The desired road power is calculated as the exact

power required to drive the cycle at that time. Now, given

vehicle speed, demanded road power, and this choice of

control inputs, the dynamics become an explicit function κ of

the state Battery SOC and the two control choices as shown

in Table II,

SOCk+1 = κ(SOCk, TICE , Gear). (2)

The engine fuel consumption can be calculated from the

control inputs.
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TABLE II

VEHICLE DYNAMIC MODEL

State Control Inputs

Battery Charge (SOC) Engine Torque

Transmission Gear
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Fig. 1. Electrical System Discharge Efficiency at 0.5 SOC.

C. Component Models

The vehicle powertrain components are based on an early

prototype of a production vehicle. The engine fuel consump-

tion is calculated from a lookup table based on dynamometer

tests.

The behavior of the electrical system is a function of the

battery SOC, as shown in (1). Thus the system efficiency

is a function of three variables. Typical electrical system

discharge behavior is shown for a particular SOC of 0.5 in

Figure 1; a similar table exists for the regeneration (battery

charging) case. The system efficiency is a relatively weak

function of SOC in the normal operating range.

The electrical efficiency for the battery discharge condition

(Fig. 1) is defined as the ratio of wheel output power to the

battery power,

ηdischarge =
Pwheel

PBatt

.

This efficiency definition is based on the change in the

internal state of the battery and includes the losses to battery

internal resistance, power electronics, and motor losses. The

battery power limit for this system is roughly constant, so

system losses translate to about 30% higher peak mechanical

wheel power when charging compared to discharging.

D. Operational Assumptions

This model uses several assumptions about the allowed

vehicle behavior.

1) The clutch in the automated manual transmission

allows the diesel engine to be decoupled from the

wheels. This allows the engine to shut off during

forward motion.

2) There is no option to have the engine idle with the

clutch disengaged; the engine shuts off.

3) There is no ability to slip the clutch for starts.

4) There are no traction control restrictions on the amount

of torque that can be applied to the wheels.

III. DRIVABILITY CONSTRAINTS

A. Motivation

Customer perception is a crucial component in vehicle pur-

chasing decisions. The driver’s perception of overall vehicle

response and behavior is termed “drivability.” Manufacturers

are very aware of this and exert significant development

effort to satisfy drivability requirements. Generally speaking,

drivability concerns affect designs as much as fuel economy

goals.

Drivability is a rather vague term that covers many aspects

of vehicle performance including acceleration, engine noise,

braking, shifting activity, shift quality [7], and other behav-

iors. Improving drivability often comes at the expense of fuel

economy. For example, optimal fuel economy for gasoline

engines typically dictates upshifting at the lowest speed

possible. This, however, leaves the driver little acceleration

ability after the upshift. Thus upshifts are scheduled to occur

at higher speeds than optimal for fuel economy. In this paper

we address the “basic” drivability issues of gear selection and

when to start or stop the internal combustion engine.

Current academic work in hybrid vehicle optimization

primarily focuses on fuel economy. These tools are somewhat

less useful to industry because of drivability restrictions in

production vehicles, which fuel-optimal controllers usually

violate. If these fuel-optimal controllers are used, drivability

restrictions are typically imposed as a separate step.

In this paper we investigate the usefulness of optimizing

for fuel economy and drivability simultaneously. By includ-

ing these real-world concerns, one can generate controllers

that improve performance and are one step closer to being

directly implementable in production.

B. Chosen Penalties

In the context of the overall system, two significant

characteristics that are noticeable to the driver are the basic

behaviors of the transmission and engine. These are included

in the simulation model presented in Section II. To effectively

design controllers, qualitative drivability requirements must

be transformed into quantitative restrictions or metrics. Driv-

ability experts at Ford Motor Company were consulted to

assist in developing numerical drivability criteria. A primary

concern in engine behavior is the frequency of engine

start/stop events.

For the transmission, bothersome behavior includes:

• Shift “busyness” - shifting too often or too much

• “Hunting” - rapid shifting back and forth between the

same two gears

• Shift Timing-drivers have an innate expectation of shift

timing and dislike unexpected deviations.

To address these issues, two baseline metrics are used to

quantify behavior for a particular trip. The first is Gear
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Events, the total number of shift events on a given trip. The

second metric is Engine Events, the total number of engine

start and stop events on a trip.

By definition, engine starts and stops are each counted as

an event. Each shift is counted as a gear event, regardless of

the change in gear number. A 1st − 2nd shift is the same

as a 1st − 3rd shift. The clutch is disengaged when the

engine stops, and engaged again when the engine has started.

Engaging or disengaging the clutch for engine start/stop is

not counted as a gear event, regardless of the gear before or

after the event.

Despite the relative simplicity of these metrics, simulations

have shown that they capture a wide range of vehicle behav-

ior and are well correlated with more complicated metrics.

For example, optimizing for fuel economy often leads to

hunting behavior near a shift point. As the total number

of shifts is reduced, hunting behavior is usually eliminated

first as these frequent shifts do not significantly improve fuel

economy.

IV. SHORTEST PATH STOCHASTIC DYNAMIC

PROGRAMMING

A. Cost Function

In order to design a controller with acceptable drivability

characteristics, the optimization goal over a given trip of

length T would ideally be defined as

min
∑T

0
Fuel flow

such that (3)
∑T

0
GE ≤ GEmax ,

∑T

0
EE ≤ EEmax

where GE and EE are the number of Gear and Engine

Events respectively, and GEmax and EEmax are the max-

imum allowable number of events on a cycle. Intuition

suggests normalizing these constraints by some measure of

cycle length, but engineers typically compare and design

controllers on a given cycle and thus think of the problem

as posed in (3).

This constrained optimization incorporates the two major

areas of concern: fuel economy and drivability. Constraints

of this type cannot be incorporated in the Stochastic Dynamic

Programming algorithm used here because the stochastic na-

ture of the optimization cannot directly predict performance

on a given cycle. Instead, the drivability events are included

as penalties, and those penalty weights are adjusted until the

outcome is acceptable and meets the hard constraints. This

new formulation has an optimization goal of

min(
T∑

0

Fuel flow + α

T∑

0

GE + β

T∑

0

EE). (4)

The search for the weighting factors α and β involves some

trial and error, as the mapping from penalty to outcome is

not known a priori. Note that setting α and β to zero means

solving for optimal fuel economy only.

These weighting factors allow the designer to trade off

between fuel economy and the different drivability metrics.

Controllers based on this cost function, however, completely

drain the battery as they seek to minimize fuel. An additional

cost is added to ensure that the vehicle is charge sustaining

over the cycle, as described in Section IV-C. This SOC-based

cost only occurs during the transition to key-off, so it is

represented as a function φSOC(x) of the state x, which

includes SOC. The performance index for a given drive cycle

is

J =
T∑

0

Fuel flow + α

T∑

0

GE + β

T∑

0

EE + φSOC(xT ).

(5)

Now, to implement the optimization goal of minimizing

(5), a running cost function is prescribed as a function only

of the state x and control input u at the current time

cfull(x, u) = F (x, u)+αIGE(x, u)+βIEE(x, u)+φSOC(x)
(6)

where the function I(x, u) is the indicator function and

shows when a state and control combination produces a Gear

Event or Engine Event. Fuel use is calculated by F (x, u).
The SOC-based cost φSOC(x) still applies only at key-off,

when the systems transitions to the key-off absorbing state

as described in Section IV-C. Many other vehicle behaviors

can be optimally controlled by adding appropriate functions

of the form φ(x, u); a typical example is limiting SOC

deviations during operation to reduce battery wear.

B. Problem Formulation

To determine the optimal control strategy for this vehicle,

the Shortest Path Stochastic Dynamic Programming (SPDP)

algorithm is used [2], [9]. This method directly generates

a causal controller; characteristics of the future driving

behavior are specified via a Markov chain rather than exact

future knowledge. The system model is formulated as

xk+1 = f(xk, uk, wk),

where u(xk) is a particular control choice in the set of

allowable controls U , xk is the state, and wk is a random

variable arising from the unknown drive cycle. Given this

formulation, the optimal cost V ∗(x) over an infinite horizon

is a function of the state x and satisfies

V ∗(x) = min
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))], (7)

where c(x, u) is the instantaneous cost as a function of state

and control; (6) is a typical example. This equation represents

a compromise between minimizing the current cost c(x, u)
and the expected future cost V (f(x, u, w)). Note that the cost

V (x) is a function of the state only. This cost is finite for all

x if every point in the state space has a positive probability

of eventually transitioning to an absorbing state that incurs

zero cost from that time onward.

The optimal control u∗ is the control that achieves the

minimum cost V ∗(x)

u∗(x) = argmin
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))]. (8)

In order to use this method, the driver demand is modeled

as a Markov chain. This “driver” is assigned two states:
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current velocity vk and current acceleration ak, which are

included in the full system state x. A probability distribution

is then assigned to the set of accelerations at the next time

step. This means estimating the function

P (ak+1|vk, ak) (9)

for all states vk, ak. This Markov chain captures the uncer-

tainty in the problem, which is represented in (7) by the

random variable w. The specific realization of w determines

ak+1 in (9),

ak+1 = g(vk, ak, wk) (10)

P (ak+1|vk, ak) = P (w : g(vk, ak, wk) = ak+1). (11)

The transition probabilities (9) are estimated from known

drive cycles that represent typical behavior, dubbed the

“design cycles.” The function g represents system dynamics.

The variables vk, ak, and ak+1 are discretized to form a

grid. For each discrete state [vk, ak] there are a variety of

outcomes ak+1. The probability of each outcome ak+1 is

estimated based on its frequency of occurrence during the

design cycle. See [9] for more detail.

In addition to fuel economy, it is desirable to study the

drivability characteristics of the vehicle. The metrics chosen

are gear shifts and engine events as described in Section III.

To track these metrics, two additional states are required: the

Current Gear (1-6) and Engine State (on or off).

Bringing this all together, the full system state vector x

contains five states: one state for the vehicle (Battery SOC),

two states for the stochastic driver (vk, ak), and two states

to study drivability (Current Gear and Engine State). This

formulation is termed the “SPDP-Drivability” controller. A

summary of system states is shown in Table III. The control

u contains the two inputs Engine Torque and Transmission

Gear, as described in Section II and Table II.

TABLE III

VEHICLE MODEL STATES

State Units

Battery Charge (SOC) [0-1]

Vehicle Speed m/s
Current Vehicle Acceleration m/s2

Current Transmission Gear Integer 1-6

Current Engine State On or Off

Remark: As demands on controller functionality grow, so

also must the complexity of the model. For example, to study

fuel economy using deterministic dynamic programming, the

only state required is the battery state of charge; the control

inputs are Engine Torque and Transmission Gear. Two more

states are required to study the stochastic version, and the

drivability model requires two additional states.

C. Terminal State

As mentioned in Section IV-B, the dynamics of the system

must contain an absorbing state. For this case, the absorbing

state represents “key-off,” when the driver has finished the
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Fig. 2. Value Function V (x) for several velocities and fixed acceleration.

trip, shut down the vehicle, and removed the key. Once the

key-off event occurs, there are no furthur costs incurred,

the trip is over, and the vehicle cannot be restarted. The

probability of transitioning to this state is zero unless the

vehicle is completely stopped (vk, ak = 0). The probability

of a trip ending once the vehicle is stopped is calculated

based on the design cycles. This probability is less than one

because a stopped vehicle could represent a traffic light or

other typical driving event that does not correspond to the

end of a trip.

For fuel economy certification, the battery final SOC must

be close to the initial SOC or else the test is invalid. To

include this in the SPDP formulation, a cost is imposed when

the vehicle transitions into the key-off state and the SOC is

less than the initial SOC. This penalty accrues only once, so

the absorbing state has zero cost from then onwards. Here

we add a quadratic penalty in SOC if the final SOC is less

than the initial SOC. No penalty is assigned if the final SOC

is higher than the initial SOC.

The effects of this key-off penalty are clearly visible in

the value function V (x). For the fuel-only case, the value

function depends on the current acceleration, velocity, and

SOC. Figure 2 shows V (x) as a function of SOC for one

particular acceleration and several velocities. This controller

assumes the initial SOC is 0.5. Notice that at low velocities

the value function has a pronounced quadratic shape for SOC

under 0.5, but it flattens out at higher speeds. The SOC

penalty only occurs at key-off, which can only occur at zero

speed. Thus the SOC key-off penalty strongly affects the

value function at low speeds, when there is a large probability

of key-off in the near future. At higher speeds, there is little

chance of key-off anytime soon, so the SOC penalty only

weakly affects the value function.

D. Computation

The main difficulty with the method of Shortest Path

Stochastic Dynamic Programming lies in actually computing

the value function V (x). Analytical results exist for some

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA18.1

4386



simple classes of problems, but in most cases, the only

available solution method is numerical. While the off-line

computational burden is large, the on-line computation is

much less demanding and can be implemented in real time.

To design this controller, there are two basic steps: cal-

culating the value function V (x) off-line, and then im-

plementing it in a controller to drive a cycle. The on-

line implementation requires calculating the current cost

c(x, u) in (6), calculating the set of next states xk+1, and

interpolating into the precomputed V (x).
To quantify the additional computation required, we com-

pare the on-line and off-line requirements of three methods:

Equivalent Consumption (ECMS), a simple “local” SPDP

method discussed in Section V, and the SPDP-Drivability

method proposed here. All three require similar operations to

calculate the current cost function, which is somewhat trivial.

The main difference is in calculating the value function.

ECMS requires a single constant rather than a value function

and so is quite simple. The value functions for SPDP-Local

and SPDP-Drivability are calculated via table interpolation

both on-line and off-line. The number of points used for

each table is shown in Table IV for comparison. All off-line

computations can be conducted on a desktop PC.

TABLE IV

COMPARISON OF COMPUTATION REQUIREMENTS

Method Off-Line Table Size On-Line Table Size

Local SPDP 2.6 · 105 441

Drivability SPDP 3.1 · 106 5292

E. Implementable Constraints

The cost function (6) must be carefully selected with

consideration for computation. Stochastic Dynamic Program-

ming is inherently computationally intensive and can quickly

become intractable. The computation burden is exponential

in the number of system states; thus the cost function should

depend on a minimal number of states in order to limit the

computation burden.

For optimization, at each time step a penalty is assigned

if either a shift or engine event occurs. The only two states

required to implement this cost function are the current gear

and the engine state. This cost function definition captures

the required behavior with minimal additional computation.

Even so, including drivability in the optimization imposes

roughly a factor of ten increase in computation over the fuel-

only case.

In contrast, suppose the metric of interest were based

on a moving window in time, e.g. the number of engine

events in the previous 30 seconds. This would require an

additional system state to store the number of these events.

The additional computation burden for this case would be

roughly a factor of fifty over the fuel-only case.

V. ALTERNATIVE PROBLEM FORMULATION

If drivability is an issue in controller design, there are two

options. The first choice is to include the drivability issues in

the SPDP-Drivability controller design by using additional

states, as discussed in Section IV. A second choice is to

design an SPDP controller for the fuel-only case and try to

address drivability after the fact. In this case, the drivability

restrictions are still implemented via optimization, but they

are only local in the sense that there is no estimate of the

future cost [9].

This local design method is implemented as follows. The

value function Vlocal(x) is calculated by optimizing for fuel

only using (7) and a cost clocal(x, u) that only includes fuel

F (x, u) and key-off SOC φSOC(x),

V ∗

local(x) = min
u∈U

Ew[clocal(x, u) + V ∗

local(f(x, u, w))],

clocal(x, u) = F (x, u) + φSOC(x).

Recall that the only states required are velocity, acceleration,

and SOC; this makes the computation much easier. The

real-time controller is then implemented using the reduced

dimension value function Vlocal(x), but the full dimensional

cost function (6) that includes drivability. The real time-

controller must still track the full set of states, but it is much

easier in real-time than when calculating V (x). The real-time

controller is then

u∗(x) = argmin
u∈U

Ew[cfull(x, u) + Vlocal(f(x, u, w))].

This method is termed a “local” controller.

The main difference between the two controller design

options is computation. Solving for the value function with

the SPDP-Drivability controller requires about 10 times more

computation than the local method. Using a local controller

saves significant computation, but the result is sub-optimal

and likely sacrifices some amount of performance. The main

contribution of this paper is to determine if the performance

benefit of using SPDP-Drivability controllers justifies the

increased off-line computation.

VI. COMPARISON OF SPDP TO THE EQUIVALENT

CONSUMPTION MINIMIZATION STRATEGY (ECMS)

One of the most well known optimization methods is

known as the “Equivalent Consumption Minimization Strat-

egy” (ECMS). This method optimizes for fuel economy only;

it requires little computation and is easy to implement. At

each time step, the controller minimizes a function that trades

off battery usage vs. fuel,

u∗(x) = argmin
u∈U

[Fuel(x, u) + λ∆SOC(x, u)]. (12)

The design parameter is the weighting factor λ, which

represents the relative value of battery charge in terms of

fuel. The difficulty arises in calculating this weighting factor

as it is highly cycle dependent.

Consider now the SPDP algorithm for the fuel only

case. The cost function c(x, u) in (7) is not a function

of the random variable w and can be removed from the

expectation. The value function V (x) can be linearized about

the operating point, transforming (8) into (13). This is a valid
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approximation because SOC only changes slightly at each

time step,

u∗(x) = argmin
u∈U

[c(x, u) +
∂Q(x, u)

∂SOC
∆SOC)] (13)

where

Q(x, u) = Ew[V (f(x, u, w)].

Notice that the local slope of the value function ∂Q
∂SOC

in

(13) is equivalent to the weighting factor λ in (12). The SPDP

algorithm has the same structure as the ECMS method, but

the weighting factor is a function of several variables. There

is a variant of ECMS method called Adaptive ECMS (A-

ECMS) in which the weighting factor is allowed to change

over time based on the current driving conditions [5]. A-

ECMS is even more similar to the SPDP algorithm in that

both methods have a non-constant weighting factor.

This relationship is clearly illustrated by again studying

the value function V (x) as a function of SOC for fixed

acceleration and velocity shown in Figure 2. The local slope

of V (x) in the figure is exactly the weighting factor ∂Q
∂SOC

in (13) and analogous to λ in (12).

VII. MAIN RESULTS

The main purpose of this paper is to quantify the benefits

of including drivability in the full optimization. To that

end, two sets of controllers are designed: a set of SPDP-

Drivability controllers as in Section IV, and a set of local

controllers as in Section V. Many different controllers are

designed, each with different drivability penalties. In the end

result, one can compare the effectiveness of optimization for

drivability using the SPDP-Drivability vs. the Local method.

Both sets of controllers are designed and simulated on

the Federal Test Procedure (FTP) cycle. These controllers

are causal; the real-time implementation only has knowledge

of the drive cycle statistics. Each individual controller is

simulated and the metrics of interest are recorded.

There are two major ways to compare the results. The first

method is to simply tabulate the total cost of a cycle based

on the cost function (6). Then for each set of drivability

penalties α and β, compare the total accrued cost of the local

to the SPDP-Drivability controllers. This method answers the

question: “Given the cost of drivability events, which method

provides a better controller?”

The second method takes a different approach. Both local

and SPDP-Drivability controllers are found that produce a

given number of gear and engine drivability events. The fuel

economy of the two is then compared. This method answers

a different question: “Given a desired drivability performance

on a certain cycle, which controller yields better fuel econ-

omy?” This second method is used here as it is more realistic:

it more closely mimics the natural constrained optimization

formulation (3). This method allows controllers to be selected

by making informed judgements about drivability events.

The number of events can be benchmarked against existing

vehicles, and engineers can easily judge “too many” or “too

few.”
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Fig. 3. Comparison of “Local” and “SPDP-Drivability” Controllers on
FTP.

The results of this comparison are shown in Figure 3.

This figure shows the fuel economy obtainable for a given

number of gear and engine events using the two different

control methods. The SPDP-Drivability controller yields

performance improvement of up to 10%. This performance

improvement occurs exactly in the region of interest for pro-

duction vehicles: typical vehicles have 50-80 engine events

and 60-80 gear events on FTP.

Figure 3 also clearly illustrates the tradeoffs between driv-

ability and fuel economy. This allows an intelligent selection

of the desired operating point. The simplest purpose of this

figure is to select the best controller for given drivability

criteria. However, the figure also shows the sensitivity to

changes about that operating point. For example, the figure

shows a high sensitivity to engine events. The designer may

choose to increase fuel economy by allowing more engine

activity. Similarly, suppose the initial operating point has 100

shifts. The designer knows that fuel economy is insensitive

to gear activity in this vehicle and can choose to decrease

shift activity with little loss of fuel economy. The results

here depend on the hardware in question; other vehicle

configurations may show different characteristics.

To generate Figure 3, a large number of controllers were

generated and simulated. The results were then fit with a

response surface to produce the curves shown. The raw

results of these simulations are shown in Figure 4. Note

that the fuel economy is a function of both gear and engine

events, so this is naturally a 3-D table. In this case, fuel

economy is relatively insensitive to gear events, so the data

are shown as a function of engine events only.

Due to the stochastic nature of the optimal control prob-

lem, the final SOC is not guaranteed to end at any particular

value. The final SOC for these simulations is always close

to the initial SOC, but there is variation. Ignoring this

variation could cause false fuel economy estimates. In this

case, the SPDP-Drivability controllers not only got better fuel

economy, but tended to have a higher final SOC. Thus the
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Fig. 4. Comparison of “Local” and “SPDP-Drivability” Controllers on
FTP with Fuel Economy uncorrected for final SOC.
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Fig. 5. Comparison of “Local” and “SPDP-Drivability” Controllers on
FTP with Fuel Economy adjusted based on final SOC.

conclusions comparing the two controller types are valid. In

order to make a more reliable comparison, one must estimate

the relative value of SOC deviations at the end of a trip. For

this vehicle and this particular cycle, a final SOC that is 1%

higher than the inital SOC roughly corresponds to a 0.3 MPG

decrease in fuel economy. The final fuel economy values are

corrected based on this estimate and the final SOC to yield

the data shown in Figure 5.

VIII. CONCLUSIONS

The optimal energy management strategy for a hybrid

vehicle depends on the future drive cycle. This knowledge is

not available in practice, leaving a challenging control design

problem. One practical and successful option is an on-line

optimization to minimize a cost function that depends on

the current state and control. A second, more computation-

ally intensive method is Stochastic Dynamic Programming

(SPDP), which also includes a stochastic estimate of future

costs.

Drivability is an important consideration in designing a

deployable controller. When using SPDP, these restrictions

could be implemented in two ways. The first and easiest

option is to design a SPDP controller for fuel economy

only, and add an additional on-line local optimization to

include drivability. This method is very similar to how one

would include drivability in an Equivalent Consumption

Minimization Strategy (ECMS) type controller. The second

option is to design a SPDP-Drivability controller with a

full set of states that include drivability, but this method

requires significant additional computation. The results pre-

sented here show that using this SPDP-Drivability controller

with a representative vehicle simulation yields significant

(up to 10%) fuel economy improvements that can justify

the increased off-line computational complexity compared

to the local on-line optimization. Quantifying this benefit is

the major contribution of this paper.

When designing an energy management controller, the

designer has a range of choices that trade off controller com-

plexity for performance and functionality. Local optimization

methods like ECMS are simple to design and implement,

but other methods are more robust. Optimizing for fuel use

with Shortest Path Dynamic Programming is useful to add

robustness, but requires significantly more computation than

ECMS. Including drivabiltiy in the SPDP controller imposes

a factor of 10 increase in off-line complexity, but yields

performance improvements on the order of 10% over the

fuel-only SPDP local case under drivability constraints.
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