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Abstract— Electrical muscle stimulation has demonstrated
potential for restoring functional movement and for preventing
muscle atrophy after spinal cord injury (SCI). Control systems
used to optimize delivery of electrical stimulation protocols
depend upon algorithms generated using computational models
of paralyzed muscle force output. The existing skeletal muscle
models are either not accurate or too complicated to implement
for real-time control. In this paper, we propose a Wiener-
Hammerstein system, Linear-Saturation-Linear (LSL) model,
to model the skeletal muscle dynamics under electrical stimulus
conditions. Experimental data from the soleus muscles of an
individual with SCI was used to quantify the performance
of the model. We demonstrate that the proposed Wiener-
Hammerstein system is comparable to, in terms of model fitting,
and outperforms, in terms of prediction, the Hill Huxley model,
the most advanced and accurate model previously reported. On
the other hand, the proposed LSL model is much simpler in
terms of the structure and involves a much smaller number
of unknown coefficients. This has substantial advantages in
identification algorithm analysis and implementation including
computational complexity, convergence and also in real time
model implementation for control purposes.

I. INTRODUCTION

After spinal cord injury (SCI) the loss of volitional muscle

activity triggers a range of deleterious adaptations. Muscle

cross-sectional area declines by as much as 45% in the

first six weeks after injury, with further additional atrophy

occurring for at least six months [5], Muscle atrophy impairs

weight distribution over bony prominences, predisposing

individuals with SCI to pressure ulcers, a potentially life-

threatening secondary complication [16]. The diminution of

muscular loading through the skeleton precipitates severe

osteoporosis in paralyzed limbs. The lifetime fracture risk

for individuals with SCI is twice the risk experienced by

the non-SCI population [21]. Rehabilitation interventions to

prevent post-SCI muscle atrophy and its sequelae are an

urgent need. Electrical muscle stimulation after SCI is an

effective method to induce muscle hypertrophy [15], [11],

fiber type and metabolic enzyme adaptations [8], [1], and

improvements in torque output and fatigue resistance [18],

[20]. New evidence suggests that an appropriate longitudinal

dose of muscular load can be an effective anti-osteoporosis

countermeasure [18], [17], [14]. Electrical muscle stimula-

tion also has potential utility for restoration of function in

tasks such as standing, reaching, and ambulating. The myriad
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applications for electrical stimulation after SCI have created

a demand for control systems that adjust stimulus param-

eters in real-time to accommodate muscle output changes

(potentiation, fatigue) or inter-individual force production

differences. To facilitate the refinement of control system

algorithms, mathematical models of muscle torque output are

continuously being developed. To most successfully adapt

stimulus parameters to real-time muscle output changes, an

accurate and easy-to-implement model is essential.

Over the last decades, researchers have developed a num-

ber of muscle models aimed at predicting muscle force

output [9], [10], [3]. The Hill Huxley model [10] is the

most advanced and accurate model put forward to date

[4]. Compared to other models, the Hill Huxley model

represents muscle dynamics well. However, its complexity

undermines its usefulness for real time implementation for

control. Identification of a Hill Huxley model is non-trivial

because it is time-varying, high dimensional and nonlinear.

Local minimum versus global minimum is always a difficult

issue for identification, and the user must tune identification

algorithm parameters patiently (including the initial estimate)

in order to have a good result.

Our goal has been to develop a model that is comparable

to or outperforms the Hill Huxley model, but at a reduced

complexity. We propose to use a Wiener-Hammerstein sys-

tem that resembles the Hill Huxley structure but has the

added advantage of greater simplicity. This approach was

previously suggested by Hunt and colleagues [13] but was

deemed inadequate for muscle modeling. By examining the

experimental data sets and the Hammerstein system, we

noted two problems. First, a linear block prior to the non-

linear block was missing and secondly, the static nonlinear-

ity seemed suboptimal. The proposed Wiener-Hammerstein

model overcomes these two deficiencies, enjoys a high

degree of accuracy, and is comparable to or outperforms the

Hill Huxley model. Most importantly, the proposed model

is much simpler not only in the structure but also in the

number of unknown coefficients. The purpose of this report

is to describe a Wiener-Hammerstein system for modeling

paralyzed skeletal muscle dynamics under electrical stim-

ulation. By using actual soleus force data from a subject

with SCI, we demonstrate that this model’s advantages over

previous models are theoretically justified and numerically

verified. Equally important is a demonstration of the useful-

ness of block oriented nonlinear systems together with their

identification algorithms. Identification of block oriented

nonlinear systems including Wiener-Hammerstein systems

has been extensively investigated recently in the control and
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identification literature and has become one of the most

active research areas in identification [23], [22], [2], [24],

[6]. However, almost all the works reported in the control and

identification literature have been of a theoretical nature, e.g.,

identifiability, identification algorithms, convergence analysis

and different types of static nonlinearities in the system. In

contrast, we demonstrate an application of the block oriented

nonlinear system in electrically stimulated paralyzed skeletal

muscle modeling.

II. MODELING

A. Hill Huxley model

Among the several muscle models developed in recent

decades [9], [10], [3], the Hill Huxley model [10] is the

most advanced and accurate [4], [12]. The Hill Huxley

nonlinear model describes the stimulated muscle behavior

in the continuous time domain by means of two differential

equations (1) and (2)

dCN

dt
=

1

τc

n
∑

i=1

Ri exp(−
t − ti

τc

) −
CN

τc

, (1)

where Ri = 1 + (R0 − 1) exp(− ti−ti−1

τc

)

dy

dt
= A

CN

Km + CN

−
y

τ1 + τ2
CN

Km+CN

. (2)

In (1) and (2), ti is the time of ith stimulation input and

CN is the (internal) state variable, while y(t) is the force

output. Note no actual input amplitude is directly used but

only the input time sequence ti is used. The effect of the

input amplitude is automatically adjusted by the parameters

Ri and τc. The model incorporates six parameters A, R0,

and Km as gains, and τ1, τ2 , τc as the time constants as

well as a sequence of coefficients ti’s that describe the exact

time and the interval of electrical pulse inputs.

B. Wiener-Hammerstein Model

The proposed Wiener-Hammerstein system is shown in

Fig. 1(a). It is composed of two dynamic linear systems

and a nonlinear block w = f(v) denoted by Av

1+Bv
, where

B and A are unknown parameters which vary for each

individual patient. Note that w will be “saturated” at A/B
for positive v, therefore, we call it LSL (Linear-Saturation-

Linear) model. The system is in the discrete time domain.

The input u(k) = u(kT ) is the electrical stimulus (in volts)

at time kT where T = 1 ms is the sampling interval and

the output y(k) = y(kT ) is the muscle force at time kT .

The internal signals are unavailable. The linear blocks prior

and after the nonlinearity are first order dynamic systems.

In theory, these linear systems can be replaced by high

order linear systems to provide more flexibility. However,

test results demonstrate that first order linear systems are

sufficient. The LSL model resembles the structure of the Hill

Huxley model but at a much reduced complexity.

Note that the parameters A and B in the nonlinear block

are to be adjusted individually and are a necessary part

of the system. The overall system in Fig. 1(a) is however

unnecessarily complicated and in fact is ill-defined from

an identification point of view. One of the most important

properties in identification is the identifiability, i.e., whether

there exists a different system that can generate the same

input-output data. In the setting of Fig. 1(a) , the question

is whether there exists two sets of parameters, a0, a1, b0,

b1, A and B that could produce the same input-output data.

To this end, it is easily verified that the system in Fig. 1(a)

is not identifiable. Observe that the nonlinear block in Fig.

1(a) can be decomposed into three blocks, two constant

gains and a known nonlinearity, as shown in Fig. 1(b).

Further, the gains can be absorbed by the linear systems,

which results in the following system in Fig. 1(c), where

a2 = a0B and b2 = b0
A

B
. This normalization process not

only makes the system identifiable but also greatly simplifies

the identification problem, reducing the number of unknown

parameters from six to four. Also, no additional sequence

of ti’s is needed, which is not the case for the Hill Huxley

model. It is important to comment that the system in Fig. 1(c)

is identical to the system in Fig. 1(a) from input to output

point of view, though the complexity is greatly reduced.

Fig. 1. (a): Wiener-Hammerstein muscle (LSL) model. (b): The middle
nonlinear block of (a) can be decomposed into three parts. (c): The
simplified Wiener-Hammerstein muscle (LSL) model.

III. IDENTIFICATION OF THE WIENER-HAMMERSTEIN

MODEL

The proposed LSL Model appears in Fig. 1(c). Let θ =
[a1, a2, b1, b2] denote the unknown system parameters. The

purpose of identification is to determine their estimates

θ̂ = [â1, â2, b̂1, b̂2] based on the available input-output

measurements u(k) and y(k). Let ŷ(k) be the predicted

output calculated using the estimates

ŷ(k) =
b̂2

z − b̂1

f(
â2

z − â1

u(k)), (3)

where z is the z-transform, i.e., z−1y(k) = y(k − 1), and f
is the known nonlinearity in the middle block of Fig. 3,

f(x) =
x

1 + x
. (4)
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The identification problem is to find the best parameter

set θ∗ which minimizes the sum of squared errors between

the actual output y(k) and the predicted output ŷ(k) of the

proposed model

θ∗ = arg min
θ̂

{
∑

k

(y(k) − ŷ(k, θ̂))2}. (5)

Obviously, (5) is a nonlinear optimization problem because

of the involvement of the nonlinear function. As for any

nonlinear optimization problem, we face the issue of a local

minimum versus the global minimum. We resolve this issue

by the following approach.

If a nonlinear minimization algorithm starts at an initial

estimate θ0 that is very close to the optimal θ∗, then any rea-

sonable nonlinear minimization algorithm should converge to

the optimal θ∗. The question is how to find a good initial

estimate. Suppose now the values of â1 and â2 are given, the

internal signal ŵ(k) = f( â2

z−â1

u(k)) ,k = 1, 2, · · · , N , can

be calculated. Based on this internal signal and the model

ŷ(k) = b̂2

z−b̂1
ŵ(k), the values of b̂1 and b̂2 can be determined

accordingly by the least squares method and the actual output

y(k),

[b̂1, b̂2]
T = (RT R)−1RT Y, (6)

where

Y =











y(2)
y(3)

...

y(N)











and R =











y(1) ŵ(1)
y(2) ŵ(2)

...
...

y(N − 1) ŵ(N − 1)











,

provided that the matrix R is full rank which is indeed the

case for actual patient data sets. Therefore, [b̂1, b̂2] is no

longer independent but a deterministic function of â1 and

â2

[b̂1, b̂2]
T = h(â1, â2), (7)

and the minimization problem (5) of four parameters be-

comes the minimization problem of two parameters

min J(a1, a2, h(a1, a2)). (8)

We make three observations in regard to this approach:

First, the minimization problem (5) is reduced to the min-

imization problem (8) that is still nonlinear. However, it is

two-dimensional and the cost function J versus â1 and â2

can now be easily plotted and visualized. Second, physiolog-

ical constraints require that a1, a2 ≥ 0 and |a1| < 1 because

the force is always non-negative and bounded. Third, as

illustrated by Fig. 2, electrical stimulation is not an arbitrary

input. Although the input frequency can be altered, the

pattern of pulses is unvarying. Under such an input and the

corresponding actual muscle force output, the cost function

of (8) versus a1, a2 is shown in Fig. 3 for input frequencies

at 10 Hz and 20 Hz respectively. It can be seen clearly

from Fig. 3 that the cost function J(a1, a2, h(a1, a2)) is not

necessarily convex but has one and only one local (global)

minimum. This makes optimization (8) very efficient and

always convergent.
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Fig. 2. Electrical stimulation input at frequency 10 Hz.

Fig. 3. The cost function J(a1, a2, h(a1, a2)) versus a1 and a2 for inputs
at frequencies 10Hz and 20Hz respectively

Let the solution of (8) be â10, â20, b̂10 and b̂20. It seems

as if the minimization problem (5) has been solved by

(8). By a closer look, however, we notice that the solution

b̂10 and b̂20 of (8) are the solution of the equation error

type and the original cost function (5) is of output error

type y(k) = b̂1y(k − 1) + b̂2ŵ(k − 1). Thus â10, â20,

b̂10 and b̂20 of (8) is not exactly a solution of (5) but

it does provide a very good initial estimate for the four-

dimensional minimization problem (5). The next step is

to find the optimal parameter θ∗ set using (5) and the

obtained initial estimates [â10, â20, b̂10, b̂20] from (8). To this

end, many nonlinear optimization packages can be used.

In our work, the program “fminsearch”, which is Nelder-

Meade simplex approach based and embedded in MATLAB

(Ver 7.3.0.267 (R2006b)), is used to solve the nonlinear

optimization problems (5) and (8). The main reason to apply

such an algorithm is that the algorithm is very simple and
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is embedded in MATLAB, a widely available numerical

package. A large number of numerical simulations verify

that the global minimum is always achieved by this approach

independent of the initial values in the two-dimensional

optimization (8) which provides a good initial estimate of

the four-dimensional problem (5).

IV. EXPERIMENTAL RESULTS

Data collection and performance comparisons are made

against the Hill Huxley nonlinear model, the most accurate

model available in the literature. We identified both the

LSL model and the Hill Huxley model using actual soleus

force data from the individual with SCI. The LSL model is

identified based on the algorithm presented above. They all

converge to the global minimum quickly. For identification of

the Hill Huxley nonlinear model, much care has to be taken

to avoid a local minimum. To this end, the estimates are first

manually tuned until the model output has a relatively good

fit to the actual force output. Then the resultant parameters

are used as initial values for “fminsearch”, which refines the

fitness further. The output of “fminsearch” is further per-

turbed to generate a cluster of initial estimates which are fed

into “fminsearch” again. The best solution is considered as

the Hill Huxley model. For comparison, standard goodness-

of-fit (gof) and the normalized mean absolute error are used.

Goodness-of-fit is calculated as

gof = 1 −

√

√

√

√

∑N

k=1
(y(k) − ŷ(k))2

∑N

k=1
(y(k) − ȳ)2

, (9)

where N is the total number of data length, and ŷ(k) and ȳ
are the predicted force output by the model and the mean of

the actual force output, respectively. The normalized mean

absolute error is the mean of absolute difference between the

predicted and actual force outputs, divided by the maximum

actual force.

nmae =
1

N

∑N

k=1
|y(k) − ŷ(k))|

max{y(k)}
. (10)

A. Collection of SCI patient data

One male subject with chronic SCI (> 2 years) provided

written informed consent, as approved by the University

of Iowa Human Subjects Institutional Review Board. A

detailed description of the stimulation and force transducing

system has been previously reported [18], [19], [20] (Fig.

4). In brief, the subject sat in a wheelchair with the knee

and ankle positioned at ninety degrees. The foot rested

upon a rigid metal plate, and the ankle was secured with

a soft cuff and turnbuckle connectors. Padded straps over

the knee and forefoot ensured isometric conditions. The

tibial nerve was supramaximally stimulated in the popliteal

fossa using a nerve probe and a custom computer-controlled

constant-current stimulator. Stimulation was controlled by

digital pulses from a data-acquisition board (Metrabyte DAS

16F, Keithley Instruments Inc., Cleveland, OH) housed in

a microcomputer under custom software control. Ten 15 Hz

stimulus trains were given to maximally potentiate the soleus

muscle. Next, 10-pulse stimulus trains (2 ms pulse duration)

were delivered at either 10 Hz or 20 Hz. The ensuing soleus

isometric plantar flexion torques were measured via a load

cell (Genisco AWU-250) positioned under the first metatarsal

head. Torque was amplified 500 times (FPM 67, Therapeutics

Unlimited) and input to a 12-bit resolution analog-to-digital

converter at a sampling rate of 1000 samples per second. The

digitized signals were analyzed with Datapac 2K2 software

(RUN Technologies, Mission Viejo, CA).

Fig. 4. Schematic representation of the limb fixation and force measurement
system.

B. Fitting performance

Fig. 5 shows the outputs of the LSL model and the Hill

Huxley model under 10 Hz and 20 Hz electrical stimulations.

The corresponding goodness-of-fit and the mean absolute

error are shown in Table I. Both the LSL model and the Hill

Huxley model provide excellent results with the goodness-

of-fit above 0.9000. The Hill Huxley model has a better

performance than the LSL model for 10 Hz data (0.9361 vs.

0.9175); while the LSL model performs a little better than

the Hill Huxley model for 20 Hz data (0.9100 vs. 0.9052).

TABLE I

GOODNESS-OF-FIT (GOF) AND NORMALIZED MEAN ABSOLUTE ERROR

(NMAE) OF THE PROPOSED LSL MODEL AND THE HILL HUXLEY

MODEL, RESPECTIVELY

Input Frequency LSL model Hill Huxley model
gof nmae gof nmae

10 Hz 0.9175 2.21% 0.9361 1.67%
20 Hz 0.9100 2.03% 0.9052 2.37%

C. Prediction performance

Since the purpose of the model is to predict the force

for different input stimuli, we compare the prediction per-

formance of the two models under four cases: (a) using
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Fig. 5. The force outputs of the Wiener-Hammerstein (LSL) model (red),
the Hill Huxley model (black), and the actual force output (blue) under (a)
10 Hz and (b) 20 Hz electrical stimulation.

the models identified from 10 Hz data sets to predict the

force output at 20 Hz input, (b) using the models identified

from 10 Hz data sets to predict the force output at 20 Hz

input assuming the actual force output is available after 150

step delay (0.15 sec, note that the sampling interval is 0.001

sec), (c) using the models identified from 20 Hz data sets

to predict the force output at 10 Hz input, and (d) using the

models identified from 20 Hz data sets to predict the force

output at 10 Hz input assuming the actual force output is

available after 150 step delay (0.15 sec, again note that the

sampling interval is 0.001 sec)). The results are shown in Fig.

6 and Table II. It can be seen that both models identified at

a frequency predict the force output excited by a different

frequency input reasonably well. Also, the proposed LSL

model outperforms the Hill Huxley model in all the cases,

for example, by 10% in the case (a) and by 11% in the case

(c), respectively, in terms of goodness-of-fit.

TABLE II

PREDICTION ABILITY OF THE PROPOSED LSL MODEL AND THE HILL

HUXLEY MODEL, RESPECTIVELY.

Freq. Freq. Delay LSL model Hill Huxley model
A B steps L gof nmae gof nmae

10 Hz 20 Hz infinity 0.8507 3.93% 0.7563 5.90%
10 Hz 20 Hz 150 0.8677 2.45% 0.8158 3.31%
20 Hz 10 Hz infinity 0.6328 10.17% 0.5289 12.46%
20 Hz 10 Hz 150 0.6580 3.93% 0.6457 9.30%

“Freq. A ” is the frequency of which the data set used to identify the model,
and “Freq. B” is the frequency at which the force we are going to predict.
“Delay steps L” means that the actual L-step-delayed-output is available and
used in prediction. “infinity” means no actual output is used in prediction.
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Fig. 6. Comparison of the prediction results of the LSL model (red dashed)
and the Hill Huxley model output (black dash dot). The blue solid curves
denote the actual force output. (a) using the models identified from 10 Hz
data sets to predict the force output at 20 Hz input, (b) using the models
identified from 10 Hz data sets to predict the force output at 20 Hz input
assuming the force output is available after 150 steps (0.15 sec), (c) using
the models identified from 20 Hz data sets to predict the force output at 10
Hz input, and (d) using the models identified from 20 Hz data sets to predict
the force output at 10 Hz input assuming the force output is available after
150 steps (0.15 sec).

V. DISCUSSION AND CONCLUSIONS

The utility of control systems for electrical stimulation

of paralyzed muscle depends in large measure on the fit

and predictive capabilities of the underlying muscle model.

Although the Hill Huxley model is the most advanced and

accurate model in the literature, it is not easy to identify

and is difficult to incorporate into control algorithms due

to its complicated structure and the number of parameters

involved [12]. A simpler model with comparable predictive

and fit capabilities would have greater usefulness in real-

world control applications. Compared to the Hill Huxley

model, the proposed LSL model possesses the following

attractive properties.

• Simplicity: The proposed system consists of two time

invariant first order linear systems and a known static

nonlinearity and has only four parameters to identify.

On the other hand, the Hill Huxley model is described

by two time varying nonlinear differential equations

with six unknown parameters and a sequence of ti’s
that describe the exact time and the interval of electrical

pulses.

• Competitive performance: Both the LSL model and

the Hill Huxley model provide good performance. In

terms of model fitting, the Hill Huxley model is about

1% better and in terms of prediction, the LSL model

outperforms the Hill Huxley model by about 10%, a

significant improvement because of its simplicity. In

general, it is safe to say that the proposed LSL model is

at least comparable to the Hill Huxley model in terms
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of performance but at a much reduced complexity.

• Easy to Identify: The proposed LSL model is very easy

to identify by the identification algorithms developed

in this paper. It does not rely on the initial estimates

due to the global convergence property of Approach

1 and/or Approach 2, while identification performance

of the Hill Huxley model relies heavily on the initial

estimates. Therefore, some time-consuming and very

fine adjustments have to be made in order to avoid the

local minimum problem.

• Easy to implement: The ultimate goal of the skeletal

muscle model is to be implemented in the control

algorithm. The proposed LSL model possesses a much

simpler structure and a smaller number of unknown

parameters and requires much less computational ex-

pense. This makes the proposed system much easier to

incorporate into a control scheme.

In summary, the proposed LSL model performs well

compared to the most advanced and accurate Hill Huxley

model. In addition, it has a much simpler structure and

a smaller number of unknowns. It is a very competitive

alternative in modeling skeletal muscle dynamics and has

great potential to be incorporated into control systems, which

we are working on currently. We emphasize again that the

convergence analysis carried out in this report is targeted at

the particular application and is based on the observations of

actual electrical stimulation inputs and muscle force outputs.

The identification algorithms developed accordingly are very

efficient for paralyzed skeletal muscle modeling based on the

proposed Wiener-Hammerstein system.
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