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Abstract— The problem of the optimal microalgal growth
is considered here. The objective is to maximize the specific
growth rate of microalgae by manipulating the irradiance.
The model describing the growth of microalgae is based
on the mechanistic description in the form of the so called
photosynthetic factory (PSF) resulting into the second order bi-
linear system which is, nevertheless, known in biotechnological
literature to comprise many important features of microalgal
growth. To obtain the solution of optimal control problem,
the singular perturbation approach is used here to reduce fast
components of system dynamics leading to a less dimensional
system with more complex performance index which allows
a nice analytical solution. Its infinite horizon analysis shows
that the optimal solution on large time intervals tends to the
optimal steady state of PSF thereby supporting the hypothesis
often mentioned in the biotechnological literature. Finally, the
numerical algorithm to compute optimal control is applied to
the original non-reduced system giving very similar results as
the reduction based approach.

I. INTRODUCTION

The problem of the optimal control of bioreactors oper-

ating under high irradiance belongs to intensively studied

topics in both biotechnology and mathematical biology liter-

ature, see [7] and references within there. It is based on the

photosynthetic microorganisms growth modelling reflecting

the coupling between photosynthesis and irradiance (being a

controlled input), resulting in the steady-state light response

curve (so-called P–I curve), which represents the microbial

kinetics, see e.g. Monod or Haldane type kinetics [13] and

also survey introduction in [10].

Nevertheless, in order to study an optimal control of algae

production, a dynamic model should be developed. The

model considered later on is the lumped parameter model

for photosynthesis and photoinhibition, the so-called model

of photosynthetic factory - PSF model [3], [4], [6], [9], [16].

The main difficulty in considering the dynamic behavior

of the photosynthetic processes consists in their different

time scales. While the characteristic time of microalgal
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growth (e.g. doubling time) is in order of hours, light and

dark reactions occur in milliseconds and photoinhibition in

minutes, for more detail see e.g. [12].

The purpose of this paper is to analyze the two time

scales phenomena and to use this analysis to compute explicit

optimal control law to maximize algal biomass production.

Namely, the reduction of the dynamical system to a slow

manifold will be developed and then the corresponding less

dimensional optimal control problem will be solved analyt-

ically. This is the continuation of the efforts made in [10]

where further oversimplifying reduction lead to results that

did not correspond to non-reduced system numerical analy-

sis. Here, less restrictive reduction will be made resulting

into a more complex, but still analytically solvable problem.

Moreover, this setting will give mathematical confirmation

to the well-known biotechnological experimental observation

that for large time intervals optimal solutions tend to be

constant.

This paper is organized as follows. Section II presents

the dynamic model of the microalgal growth in detail and

derives its reduction to a slow manifold. Section III applies

Pontryagin’s maximum principle to derive analytically opti-

mal irradiance to maximize the average production rate. It

also formulates and proves some biotechnological relevant

properties of optimal solution. Simulation experiments for

the full dimensional non-reduced system are collected in

Section IV to support the viability of the reduced system

based analysis. Some conclusions and outlooks for further

research are drawn in the final section.

II. DYNAMICAL MODEL OF MICROALGAL GROWTH

Microalgal growth has the following important experi-

mentally based properties: (i) the steady state kinetics is

of Haldane type [8], and (ii) the microalgal culture in

suspension has so-called light integration property [14], [8],

i.e. as the light/dark cycle frequency, [5], is going to infinity,

the value of resulting production rate (e.g. oxygen evolution

rate) goes to a certain limit value, which depends on average

irradiance only [9]. These features are best comprised by the

dynamical model described further in detail.

A. Model of photosynthetic factory – dynamical PSF model

The following model, called as the model of photosyn-

thetic factory has been recently studied in the biotechno-

logical literature [3], [4], [16], [6]. Its main features are

schematically shown on Figure 1 where three states of

the photosynthetic factory are: R resting state, A activated

state, B inhibited state. Transition rates are αu, βu, γ, δ
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Fig. 1. Scheme of states and transition rates of the photosynthetic factory
– Eilers and Peeters PSF model.

(unit: s−1) while the input variable u is the irradiance. The

transition from state A to state B models the photoinhibition

process, while the transition from state B to state R models

the recovery from the photoinhibition. The photosynthetic

growth is proportional to the so-called dark reactions mod-

elled as the transition from state A to state R, see equation

(3). Light reactions are modelled as the transition from state

R to state A. This scheme can be mathematically modelled

as follows

ẋ = Ax+ u(t)Bx+ u(t)C , (1)

where the single scalar input u(t) represents the irradiance

in the culture (unit: µE m−2 s−1) and A,B, C are matrices

and column vector of the appropriate dimensions. The state

x of the PSF model is three dimensional, namely, x =
(xR, xA, xB)⊤, where xR represents the probability that PSF

is in the resting state R, xA the probability that PSF is in the

activated state A, and xB the probability that PSF is in the

inhibited state B, i.e. obviously xR + xA + xB = 1. Taking

into the account this condition and preferring the states xA,

xB due to their measurability one has:

[

ẋA
˙xB

]

=

[

−γ 0
0 −δ

] [

xA
xB

]

+

u(t)

[

−(α+ β) −α
β 0

] [

xA
xB

]

+ u(t)

[

α
0

]

,

α = 1.935 × 10−3µE−1m2, γ = 1.460 × 10−1s−1,

β = 5.785 × 10−7 µE−1m2, δ = 4.796 × 10−4s−1,

(2)

where the constants are taken from [16], [11] and u(t) is

a known piecewise smooth scalar function. In other words,

PSF model is the so-called bilinear controlled system, cf.

[2] and references within there. The PSF model has to be

completed by an equation connecting the hypothetical states

of PSF model with some quantity related to the cell growth.

This quantity is the specific growth rate µ. According to [3],

[16], the rate of photosynthetic production (proportional to

the specific growth rate µ defined as: µ := ċx/cx, where cx
is the microalgal cell density) is proportional to the number

of transitions from the activated to the resting state, i.e.

γ xA(t). Finally, for the average specific growth rate we

have the relation:

µ = κγ
1

tf − t0

∫ tf

t0

xA(t)dt , (3)

where κ is a new dimensionless constant – the fifth PSF

model parameter. The quantity in (3) will be further used

as the performance index.

For the constant input signal u ≥ 0 the system of

differential equation (2) is linear and its matrix has two

distinct negative eigenvalues. Therefore, any solution of (2)

with constant u ≥ 0 globally converges to the following

steady state solution depending on that constant u ≥ 0:

xAss =
δ · αu
λFλS

, xBss =
αβu2

λFλS
, (4)

where λF,S < 0 are eigenvalues of the corresponding

constant matrix on the right hand side of (2). As already

noted, the performance index to be maximized in the sequel

is based on quantity defined in (3). If only constant irradiance

is considered and steady state transition phenomena are

neglected, immediate idea is to maximize the steady state

value xAss with respect to u. Straightforward computations

[9], [11] show that such a maximal value exists and is

achieved for the unique input denoted as uoptss
and given as

follows:

uoptss
=

√

γδ

αβ
, u∗ := u/uoptss

. (5)

In the sequel, with a slight abuse of notation, the above uoptss

will be called as constant optimal input. The variable u∗,

introduced in (5), is a new normalized input variable used in

the sequel, with such an input variable, the optimal constant

input is simply equal to 1.

Summarizing, the above described PSF model is a conve-

nient modelling framework for lumped parameter model of

microalgal growth satisfying two basic properties (i) and (ii)

formulated at the beginning of the current section. The latter

property is mathematically proved in [9] based on the earlier

result on bilinear systems in [2]. For more details, see [10],

[9], [11] and further references within there.

B. PSF model re-parametrization and reduction

The aim of this short subsection is to rewrite the

model (2),(3) introducing a more convenient parametrization.

Namely, consider new parameters qi, i = 1, .., 5, defined as

q1 :=

√

γδ

αβ
, q2 :=

√

αβγ

δ

1

α+ β
, q3 := κγ

√

αδ

βγ
, (6)

q4 := α q1, q5 := β/α, (7)

together with earlier introduced dimensionless irradiance

u∗ := u/uoptss
giving the re-parameterized model

1
q4

[

ẋA
ẋB

]

= −
[

q2(1 + q5) 0
0 q5

q2(1+q5)

] [

xA
xB

]

+ u∗
[

−(1 + q5) −1
q5 0

] [

xA
xB

]

+ u∗
[

1
0

]

,

(8)

µ = q2q3(1 + q5)
1

tf − t0

∫ tf

t0

xA(t)dt . (9)
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Notice that q1 units are those of irradiance (µE m−2 s−1),

q2, q5 are dimensionless, q3, q4 are in s−1. The reason to

introduce such a re-parameterization is that the role of each

new parameter is now much more clearly visible. Namely,

parameters q1, q2, q3 correspond to the steady state properties

of the PSF, while q1 := uoptss
by definition. Furthermore,

q4 influence the overall dynamics through constant time

scaling only, while q5 is a small parameter quantifying the

separation between the fast and slow dynamic; q5 ≈ 10−4.

More specifically, based on (2) and [16], the following values

of PSF re-parameterized model parameters were calculated

for the microalga Porphyridium sp.: q1 := 250.106 µE m−2,

q2 := 0.301591, q3 := 0.176498e − 3 s−1, q4 := 0.483955
s−1, q5 := 0.298966e− 3.

Finally, the expressions for the steady states depending

on constant inputs given by (4) has after the above re-

parameterization the following simpler form

xBss =
u∗2

u∗2 + u∗/q2 + 1
, xAss =

xBss
q2(1 + q5)u∗

. (10)

In particular, by (8-10) the constant input u∗ = 1 maximizes

value of both µ and xA among all constant inputs u∗ ≥ 0:

µmax =
q3

2 + q−1
2

, xmaxAss
∼= 1

2q2 + 1
. (11)

As stated above, the system (8) is a stiff system, i.e.,

roughly saying, its first equation contains coefficients that

are several order higher than those of the second one. To

make advantage of that, one can reduce the dynamics to the

one dimensional one using the singular perturbation approach

with respect to the small parameter q5 ≈ 10−4 [15]. This is

done in the following way. First, introduce a new faster time

scale τ = q−1
5 t, so that the system (8) takes the form

q5
q4

d
dτ

[

xA
xB

]

= −
[

q2(1 + q5)xA
q5

q2(1+q5)
xB

]

+

u∗
[

−(1 + q5) −1
q5 0

] [

xA
xB

]

+ u∗
[

1
0

]

.

(12)

Now, after dividing the second equation by q5 one obtains

the singularly perturbed system with respect to the small

parameter q5. This system thanks to the properties of its

right hand side clearly satisfies the sufficient condition for

the convergence of the singular perturbation and therefore

one can consider the reduction obtained by setting q5 = 0 to

obtain

xA = (1 − xB) u∗

(u∗+q2)(1+q5)
,

1
q4

d
dτ xB = − 1

q2(1+q5)
xB + (1−xB)u∗2

(u∗+q2)(1+q5)
.

Now, changing the time scale back to the real time variable

t, one has finally the following reduced system

xA =
u∗(1 − xB)

(u∗ + q2)(1 + q5)
, (13)

dxB
dt

= − q4q5xB
q2(1 + q5)

+
q4q5(1 − xB)u∗2

(1 + q5)(u∗ + q2)
. (14)

Roughly saying, any solution of the system, no matter what

the initial conditions are, quickly satisfies the above relations

(13,14) with some precision. The rate of the error decay and

its steady state estimate has been obtained as well. They

show that crucial issue is actually estimate of the input

derivative. Details of this analysis will be presented in the

future publication. The set of all states satisfying (13) is

called as the slow manifold while the relation (14) is called

as the slow dynamics.

Notice, that the performance index (9) is computed via xA
while reduced dynamics is in terms of xB . Contrary to [10]

making further simplifications to keep functional simple, the

present paper takes a different approach. Namely, the slow

dynamics (14) is considered in terms of xB and functional

(9) is re-computed via (13) to obtain functional depending

on xB and u∗. The resulting complicated functional is now

depending both on state and input leading to a still quite

complicated optimization problem. Nevertheless, the explicit

analytical solution to this problem is possible and it is

provided in the next section in detail.

III. OPTIMAL CONTROL - MAXIMUM PRINCIPLE FOR

REDUCED SYSTEM

In this section, the optimal control problem for the system

(14) with the performance index obtained by (9),(13) is

considered and solved analytically. Recall that initial state

is assumed to be given and fixed, the final state is free

and time interval is fixed. Summarizing, for given fixed

T > 0, U > 0, x0 ∈ R
2, the following optimal control

problem1 is to be solved: find measurable on [0, T ] function

u(t) such that (denote in the sequel x1 := xB):

J =

∫ T

0

(x1−1)
u(t)

u(t) + L
dt 7→ min, u(t) ∈ [0, U ], (15)

ẋ1 = −K
L
x1 + u(1 − x1)

u

u+ L
K, x1(0) = x0

1, (16)

where K := q4q5(1 + q5)
−1, L := q2. (17)

Maximum Principle can be adapted for this case as follows.

Proposition 3.1: Consider the following system

ẋ = f(x, u), x = [x1, . . . , xn]
⊤ ∈ R

n, u ∈ U ⊂ R
m, (18)

J =

∫ tf

t0

f0(x, u)dt, x(t0) = x0, x(tf ) ∈ R
n, (19)

J to be minimized choosing a measurable function u(t)
where x0 ∈ R

n, 0 ≤ t0 < tf and compact U are given.

Suppose uopt is an optimal control minimizing performance

index in problem (18,19) and let xopt(t), xopt(0) = x0, be

the corresponding state trajectory. Then there exists non-

trivial solution ψ(t) = [ψ1(t), . . . , ψn(t)]
⊤ of the following

adjoint equation

ψ̇ =
∂f0
∂x

(uopt, xopt)⊤ − ∂f

∂x
(uopt, xopt)⊤ψ, ψ(tf ) = 0,

1We are replacing maximization of algae production by minimization of
its amount with minus sign added, without any loss of generality putting
t0 = 0, tf = T , omitting all constants before integral of the performance
index and for shortness, where no confusion arises, putting u := u∗ .

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB05.4

2664



such that for all t ∈ [0, T ] it holds

max
u∈U

H(xopt(t), u(t), ψ(t)) = H(xopt(t), uopt(t), ψ(t)),

where H(x, u, ψ) := −f0(x, u)+ψ⊤f(x, u) is the so-called

Hamiltonian for the optimal control problem (18,19).

Proof: See [10]. 2

The Hamiltonian and the adjoint system for (15,16) are:

H = −u(x1 − 1)

u+ L
+ ψ1K

(

(1 − x1)u
2

u+ L
− 1

L
x1

)

, (20)

ψ̇1 =
u

u+ L
+ ψ1

(

K

L
+ u

u

u+ L
K

)

, ψ1(T ) = 0. (21)

Suppose uo(t), t ∈ [0, T ], solves the optimal control problem

(15-16), then by Proposition 3.1 it holds for all t ∈ [0, T ]:

H(ψ(t), uo(t), x(t)) = max
u∈[0,U ]

H(ψ(t), u, x(t)) ≡ 0, (22)

for some solution of (21) ψ(t) := [ψ0(t), ψ1(t)]
⊤ 6≡ 0, i.e.

φ(u0) = max
u∈[0,U ]

φ(u), φ(u) :=
u(1 − x1)(1 + ψ1Ku)

u+ L
,

where ψ1(t) is the uniquely given solution of (21). To

determine u0, compute φ′(u) to obtain

∂φ(u)

∂u
=

1 − x1

(u+ L)2

(

Kψ1u
2 + 2KLψ1u+ L

)

. (23)

First of all, it is obvious from (15,16) that x1(t) < 1 ∀t > 0.

As the co-state ψ1 is given by (21), it is easy to see that

ψ1(t) ≤ 0 ∀t < T. Actually, assuming ψ1(t
′) > 0 for some

t′ < T one has by (recall that K,L > 0)

u

u+ L
≥ 0,

K

L
+ u

u

u+ L
K > 0, ∀u ∈ [0, U ],

that ψ̇1(t) > 0, ∀t ≥ t′, i.e. ψ1(t) > 0, ∀t ≥ t′ what

contradicts to the condition ψ1(T ) = 0. From the same

equation one can see that ψ1 ≡ 0 on some [t′, T ] if and

only if u(t) ≡ 0, ∀t ∈ [t′, T ]. Nevertheless, on such a time

interval the derivative in (23) equals to L > 0, i.e. maximum

of φ can not be achived at u = 0. Therefore, only case

ψ1(t) < 0 ∀t < T is possible.

Now, notice that in (21), when ψ1 < 0, derivative is equal

to zero at the interior point of [0, U ] and changes from the

positive to the negative one (notice, that in system (15-16) it

obviously holds x1(0) ∈ [0, 1] ⇒ x1(t) ∈ [0, 1],∀t ≥ 0 and

x1(0) ∈ [0, 1] is inevitable by biological meaning of x1 :=
xB). This point can be computed by solving the quadratic

equation and is given as

ũ(ψ1) = −L+

√

L2 − L

Kψ1
. (24)

Summarizing, the only possible optimal control uo(t) is

given by the following formula

uo(t) = α(ψ1(t)),

α(ψ1) = min

{

− L+

√

L2 − L
(

Kψ1

)−1
, U

}

,
(25)

where ψ1(t) is the solution of (21) with u = α(ψ1).
As matter of fact, to obtain the optimal control (25)

one has first to solve a nonlinear differential equation, i.e.

(21) with u = α(ψ1) and then substitute this solution to

the above α(·). Nevertheless, some interesting properties of

this solution can be obtained by analysis of that nonlinear

equation (21) with u = α(ψ1). First, the full qualitative

description of the above optimal control is formulated and

proved as the following

Proposition 3.2: Optimal control given in (25) is strictly

increasing on time interval [0, T − T sat] while on [T −
T sat, T ] it holds u(t) ≡ U . Moreover, the length T sat of

the interval where the optimal control is saturated does not

depend on T , namely, it equals to

T sat =
L(U + L)

K(U + L+ LU2)
log

(

U2(U + 2L)

(U2 − 1)(U + L)

)

.

Proof: The first part of the proposition follows from

the fact that the right hand side of the adjoint equation is

always strictly positive, so that ψ1(t) < 0 ∀t < T and

strictly increases, while in (25) uo depends on ψ1 in strictly

increasing way, unless the saturation occurs. To obtain the

formula for T sat, for ũ given by (24) consider the costate

ψsat1 where ũ(ψsat1 ) = U :

ψsat1 :=
−L

KU(U + 2L)
. (26)

As ψ1(T ) = 0, ψ1(T
sat) = ψsat1 and ψ1(t) is strictly in-

creasing, T sat should obviously satisfy the following relation

0 = eK( 1
L

+ U2

U+L
)T sat

(

ψsat1 +

∫ T sat

0

Ue−K( 1
L

+ U2

U+L
)s

U + L
ds

)

,

i.e. after integration, re-grouping and cancelling some terms
(

e( K
L

+U U
U+L

K)T sat − U2(U + 2L)

(U2 − 1)(U + L)

)

= 0,

giving easily the above formula for T sat. 2

The proposition just proved shows that the optimal control

course depends only on the input saturation and does not

depend on initial condition x1(0). Besides, for the same U ,

and two different T1 > T2 the optimal control on [0, T1]
coincides on subinterval [T1−T2, T1] with the optimal control

on interval [0, T2]. Moreover, for U ≥ 1 with increasing T ,

the optimal control converges to the constant input u ≡ 1
known to maximize the performance index within constant

inputs. More precisely, it holds the following

Proposition 3.3: Denote uoT (t) the optimal control (25)

corresponding to the fixed time interval [0, T ] and assume

U ≥ 1. Then

∀ ǫ, T̃ > 0, ∃T (ǫ, T̃ ) > 0 : |uo
T (ǫ,T̃ )

(t)−1| ≤ ǫ, ∀ t ∈ [0, T̃ ].
Proof: Consider the following relations

ψ̇1 = α(ψ1)
α(ψ1)+L

+ ψ1

(

K
L

+ Kα2(ψ1)
α(ψ1)+L

)

, ψ1(T ) = 0,

α(ψ1) = min
{

− L+

√

L2 − L
(

Kψ1

)−1
, U

}

,

(27)

ψe1 :=
−L

K(1 + 2L)
, α(ψe1) = 1. (28)
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Fig. 2. Singular perturbation based reduction - optimal control for U =

1250 and T = 10
3, 104, 105 (from top to bottom, correspondingly).

Straightforward, though laborious computations show that

α( −L
K(1+2L) ) = min

{

− L+
√
L2 + 2L+ 1 , U

}

=

min{1, U} = 1, 1
1+L + −L

K(1+2L)

(

K
L

+ K
1+L

)

= 0.

Therefore, ψe1 given by (28) is the equilibrium of (27) being,

in turn, the co-state equation (23) with u = α(ψ1). Further,

α(ψ1)

α(ψ1) + L
+ ψ1

(

K

L
+

Kα2(ψ1)

α(ψ1) + L

)







< 0 for ψe1 > ψ
= 0 for ψe1 = ψ
> 0 for ψe1 < ψ

giving by the simple Lyapunov-like function V = (ψ −
ψeq)2/2 argument that the equilibrium (28) is actually the

unique and globally asymptotically stable one for the system

(27) in reversed time. The last fact obviously implies that

∀T̃ > 0,∀ǫ > 0 ∃T = T (T̃ , ǫ) : |ψ1(t)−ψe1| < ǫ, t ∈ [0, T̃ ],

where ψ1(t) is the solution of (27). Now, the claim of the

proposition to be proved follows by the second equality of

(28) and by (25). 2

Remark 3.4: The last proposition actually confirms

widely spread in biotechnological literature but unproved

conjecture that on large time intervals the so-called constant

optimal control is actually close to the general optimal con-

trol, that does not depend on initial condition. All properties

are nicely demonstrated on Fig. 2, where the input is depicted

in the original biologically relevant non-scaled units, i.e. the
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Fig. 3. Gradient algorithm - computed optimal control for U = 1250 and
T = 10

3, 104, 105 (from top to bottom, correspondingly).

constant optimal control input scaled dimensionless value

u = 1 corresponds there to the non-scaled value u =
250 µEm−2s−1.

IV. OPTIMAL CONTROL - NUMERICAL GRADIENT

ALGORITHM FOR NON-REDUCED SYSTEM

The aim of this section is to compute for the same data

as in previous section the optimal control for non-reduced

system numerically to demonstrate that results do not differ

from those provided by the analytical ones for the singular

perturbation based reduction. To this end, the well-known

gradient algorithm is applied here to compute numerical

approximation to the optimal control problem defined by (2,

3). Here we take advantage of the fact, that the gradient

in the optimal control problem with fixed initial condition,

free end state condition and fixed time interval is quite easily

computable [1]. The only tricky practical problem is to create

a sophisticated step adjustment, as our optimum appears to

be quite flat. As a consequence, to proceed with a fixed step

is practically impossible.

First, let briefly recall the gradient algorithm. Recall, that

the performance index J to be minimized is chosen as the

integral in (3) with minus sign subject to (2). Denote there

x = (x1, x2)
⊤ := (xA, xB)⊤ giving the Hamiltonian H =

−x2 + ψ(Ax + Bxu + cu), where the matrices A,B and

vector c are visible from right hand side of (2). The co-state
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ψ(t) is given by the following adjoint equation

ψ̇ = −∂H
∂x

=

[

1
0

]

− ψA⊤ − ψB⊤u, ψ(tf ) = 0. (29)

Algorithm 4.1: Gradient algorithm with variable step

1) Suppose initial state of the system x(0) = x0 ∈ R
2
, input

saturation limit U > 0 and the terminal time T > 0 are
given. Choose an initial iteration of the control law u0, the
initial value of the step constant k0, fix some κ > 0 and
some suitable small ǫ1 > 0, ǫ2 > 0.

2) Suppose an iteration ui of the optimal control, the step
constant ki and the corresponding value of the performance
index Ji are known. Compute using (2) and (29) the state and
co-state trajectories xi(t), ψi(t) corresponding to the initial
condition x0 and the input ui(t).

3) Now, compute the gradient G of J at ui as follows:

Gi(t) := ∂H
∂u

(

xi(t), ψi(t)
)

.

If
∫ T

0
Gi(t)2dt ≤ ǫ2 put uopt := ui, Jopt := Ji, end.

4) Compute the next iteration of the optimal control ui+1 and
the next step constant ki+1 as follows:
a) Set k := ki, J := J(ui), kpr := k, Jpr := J .

b) Set ũ(t) = max
{

ui + kGi(t), U
}

and compute value of

functional J(ũ).

c) If
[

J(ũ) < J(1 − ǫ1)
]

, put Jpr := J , J := J(ũ), kpr :=
k, k := kpr + κ, κ := 2κ, go to b), else go to d).

d) If
[

J(ũ) ≥ J
]

, put kpr := k, k := (k+kpr)/2, κ := κ/8,
go to b), else go to e).
e) Put i := i+ 1, ki := k, ui = ũ, Ji = J, go to 2.

Once the above algorithm ends, the resulting uopt, Jopt
are the approximations with precision of order of ǫ2 >
0 of the optimal control law and the performance index

value, correspondingly, maximizing the production rate of

the system.

Algorithm 4.1 was implemented in MATLAB and

applied to the model of the system given by (2,3), with

real biological system parameters, the same as in the

previous section. Here, only most typical from numerous

and extensive numerical experiments will be described. It

turns out that the initial condition x0 affects the value of

performance index but does not affect the resulting optimal

control, therefore this value is fixed in all simulations here

as x0 = [0, 0.5]
T

. The input saturation limit was set to

U = 1250, the same as in the previous sections. Fig. 3

shows the computed optimal control u for a time interval

T = 1000, 10000, 100000 sec, respectively. One can see

a great deal of coincidence with the same time courses

computed in the previous section by reduction method,

cf. Fig. 2. We have also compared the resulting values of

the performance index with the production provided by

constant optimal input u = 250 showing that, indeed, with

increasing T > 0, the average performance converges to that

of constant u = 250, as predicted in the previous section,

see the table below which also shows perfect matching

of gradient algorithm based results with those based on

singular perturbation reduction.

T Constant u ≡ 250 Reduced Gradient

1000 442 479 479.6

10 000 5830 5893 5892.7

100 000 61951 62 020 62013

V. CONCLUSION

It has been demonstrated that on a sufficiently large time

interval the optimal irradiation is closed to the constant one

maximizing the appropriate component of the system steady

state. This fact has been confirmed both analytically based

on singular perturbation reduction and numerically via gradi-

ent optimization algorithm. Though the extensive numerical

experiments gave the same solutions as singular perturbation

based reduction, theoretically, one can not completely rule

out the possible existence of the fast oscillating optimal

solution. This remains an open question subjected to further

research.
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[6] Kmeť, T., Straškraba, M., Mauersberger, P.: A mechanistic model of
the adaptation of phytoplankton photosynthesis. Bulletin of Mathemat-

ical Biology, 55 (1993), 259–275.
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