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Abstract— A generalisation of the entropy of a plane curve
to R

n space is provided and the generalised entropy is used
to evaluate the nonlinear behaviour of dynamical systems.
The entropy of a curve, first introduced within the theory of
thermodynamics of plane curves, has been used to quantify the
irregularity of a curve. This paper extends the concept to higher
dimensions and provides an algorithmic procedure to evaluate
the entropy of a curve evolving in the phase space according
to the equations of a dynamical system. The thermodynamic
indicator is eventually used to infer some properties about the
dynamical system. In particular, according to the proposed
indicator, all linear systems evolve at entropy zero, while higher
entropies characterise nonlinear systems, leading to an effective
criterion for their classification.

I. INTRODUCTION

This paper provides a new approach for the analysis and
eventually the classification of dynamical systems. Some
classification methods are already known from literature
and are now a cornerstone in modern systems theory. For
instance, it is possible to classify a linear system as sta-
ble, asymptotically stable or unstable, on the basis of the
eigenvalues of its transition matrix. The same approach can
be extended to nonlinear systems applying a linearisation
procedure with respect to some nominal evolution, although
now information can only be inferred about the particular
evolution. A second approach based on Lyapunov Exponents
is used to classify attractors into equilibria, cycles and
chaotic sets [1]. This second approach has the advantage
of providing a general view on nonlinear systems, without
restrictions to a particular equilibrium, but has the drawback
that it can be applied only to dynamical systems that admit
attractive sets. Other attempts have been made in the past to
tackle the problem of nonlinear systems classification. For
instance in [2] a method based on the time-frequency plane
is used to distinguish between 5 possible nonlinearities. This
method can only be applied to SDOF (Single Degree Of
Freedom) nonconservative systems. In [3], two systems are
considered equivalent if any variable of one system may be
expressed as a function of the variables of the other system
and of a finite number of their derivatives. This is also known
as Lie-Bäcklund isomorphism. From this point of view, the
class of simplest systems, also called flat systems, includes
all systems equivalent to a linear controllable system of any
dimension with the same number of inputs. The drawback
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of this approach from a mathematical point of view is the
difficulty of obtaining criteria for checking flatness. Besides,
a complete classification of nonlinear systems according to
the Lie-Bäcklund isomorphism is still to be done.

In this paper a novel method for comparing nonlinear
systems is proposed and is based on a generalisation of
the entropy of a plane curve [4]. Roughly speaking, the
entropy of a curve is 0 when the curve is a straight line,
and increases as the curve becomes more “wiggly”. Starting
from the seminal work of [4], a new theory called thermo-
dynamics of curves was developed [5], with some analogies
with thermodynamics. However, defining the entropy of a
curve only for plane curves has restricted its use to a few
applications, as for instance [6]. In [7] and [8] a first attempt
to extend the concept to higher dimensions was made leading
to a natural application in the analysis of nonlinear systems.
The main idea is to study the evolution of the entropy of a
line which starts from entropy 0. With the proposed method,
all lines evolving according to linear dynamics keep their
entropy constant and fixed to 0. Besides, if the entropy of a
line increases, it is a symptom of some nonlinear behaviour.
In particular, larger or smaller values of the entropy might
discriminate between stronger and milder nonlinearities. This
ability is potentially very useful for the analysis and control
of dynamical systems. First of all, a class of well-established
methods for controlling linear systems is available, but an
analogous systematic approach for non linear systems is still
an open problem. Therefore, it would be convenient to know
how much a nonlinear system can be considered close to
a linear one. Besides, nonlinear behaviours often refer to
the capacity of predicting a trajectory in the phase space in
the long term. If a straight segment is dynamically bent and
folded and its entropy increases, then it can be expected that
it is harder to make a reliable prediction.

This paper relies on the works [7] and [8] and provides
a more general and systematic approach to the analysis of
nonlinear systems; many new interesting properties that have
been found recently are described in detail. In addition a
comparison with Lyapunov Exponents is proposed, motivated
by some similarities between the algorithm required to
compute them and the procedure proposed here.

The paper is organised as follows: next section is dedicated
to a review of the main concepts from thermodynamics of
curves and the generalisation to higher dimensions. Section 3
describes the algorithmic procedure to compute the proposed
indicator and lists its main properties. Section 4 compares the
indicator with the Lyapunov Exponents and section 5 shows
the behaviour of the index in the simulations of some well-
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known benchmark problems. Finally in the last section we
summarise our results and conclude the paper.

II. A GENERALISED THERMODYNAMICS OF
CURVES

Here, the main properties of thermodynamics of curves are
briefly recalled, while [4] and [5] provide full general theory.
From a theorem by Steinhaus [9] the expected number of
intersections between a plane curve Γ and a random line D
intersecting it, is:

E [D] =
∞∑

n=1

nPn =
2L

C
, (1)

where Pn is the probability for a line to intersect a plane
curve in n points. Probability is intended as the number of
lines which intersect the plane curve with respect to the total
number of intersecting lines. The quantity L is the length
of the plane curve Γ and C is the length of the boundary
of its convex hull. Therefore the probability only depends
on the shape of the particular plane curve Γ. In analogy
with Shannon’s measure of entropy [10], the entropy of a
curve can be defined as H (Γ) = − ∑∞

n=1 Pn log (Pn),
where Pn has the same meaning as in equation (1). A classic
computation for the maximal entropy provides the entropy of
a plane curve Γ [6] as H (Γ) = log

(
2L
C

)
. The definition of

the temperature of a curve is generally given as the inverse
of β (Γ) [5], where β (Γ) = log

(
2L

2L−C

)
. The main feature

of the previous entities is that only straight segments are
represented by a temperature T = β−1 = 0, and then
H = 0. This is in accordance with Nernst’s thermodynamic
assumption and provides the analogy with thermodynamics
as in physics.

An extension to higher dimensions of thermodynamics of
curves was first proposed in [7] and [8], where the entropy
of a curve was defined as

H (Γ) = log
(

2L

d

)
, (2)

where d is the diameter of the smallest hypersphere covering
the curve Γ. This definition circumvents the difficulty of
defining the length of the convex hull perimeter C in higher
dimensions, but preserves the property that the minimal
entropy is associated only with straight segments.

III. ENTROPY BASED ANALYSIS OF DYNAMICAL
SYSTEMS

The generalised entropy indicator (2) is applied to the
analysis of dynamical systems by evaluating the entropy of a
line as it evolves in the phase space. The line is approximated
by a number of segments, and the evolution of the line is
computed by evaluating the dynamics of the end-points of
the segments. The upper bound of the indicator (2) depends
on the number of the used points [7], so a normalised version
can be used instead:

H =
log

(
L
d

)
log (N − 1)

, (3)

where N − 1 is the number of segments approximating the
line. According to the definition (3), H ∈ [0 1), as will
be proved later in Property 1. From now on, the normalised
version of the generalised entropy indicator (3) will be used.

Assuming that a dynamical system evolves according to a
discrete-time model

x (k + 1) = f (x (k) , k) x ∈ R
m, (4)

where m represents the dimension of the state vector, then
the indicator (3) can be computed according to the following
procedure

Numerical Algorithm:
1) Initialisation: k = 0

a) Choose N points x1 (0) , ..., xN (0) ordered along
a straight line

b) H (0) is 0

2) Evolution: step k

a) Compute the next state for each point
x1 (k + 1) , ..., xN (k + 1) according to (4)

b) Consider the line that connects sequentially all the
points and take its length L

c) Compute the smallest hypersphere that contains all
the points, and take its diameter d

d) Compute H (k) according to (3)
e) Go to next step ( k = k + 1 ).

Deterministic inputs can be included in equation (4)
without significant changes, and have not been considered
here for sake of simplicity. The procedure to compute the
minimum covering sphere in point 2.c) is described in detail
in the appendix.
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Fig. 1. Three plane lines covered by the same circle: more irregular lines
have higher entropies.

The rationale of indicator (3) is that it describes the
regularity of a line: if all points are aligned sequentially
along a straight line, then the segment has entropy 0. On
the other hand, more tortuous lines have higher entropies, as
illustrated in the example in figure 1. A second property is
that the generalised entropy takes into account the ordering
of the points in the sequence. This is described in Figure 2.
At the beginning points P1, P2 and P3 are chosen ordered
along a straight line according to the first step of the previous
algorithm. In this case L = d = P1P3 and thus H (0) = 0.
If at the next step the system dynamics exchange P2 and
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P 1 P 2P 3

P 1 P 3P 2

H ( 0 )  =  0

H ( 1 )  =  0 . 3 6 9  

Fig. 2. A straight line turns into another straight line, but if the ordering
of the points changes then the entropy changes as well.

P3, then L = P1P2 + P2P3 while d = P1P2. Therefore
H (1) > 0. By taking into account the ordering of the points,
the generalised entropy realises if the system dynamics are
folding the initial segment over itself, which is clearly a
symptom of nonlinearity. The remainder of this section is
an overview of the properties of the proposed indicator.

A. Properties of the generalised entropy

The generalised entropy indicator has several properties
that make it interesting for the analysis of nonlinear
dynamical systems. A list of them is reported in the
following:

Theorem 1 : The entropy of a curve as defined in (3) is 0
if and only if the curve is straight and the points are ordered
sequentially along it.
This is the main property of the entropy of a plane curve
and it is still valid for (3) in higher dimensions. Proof is
provided in the appendix.

Property 1 : The entropy range of a line as defined in (3) is
always between 0 and 1
As a consequence of the proof of theorem 1, the entropy is
bounded from below by 0. Besides, the maximum distance
between two points within an hypersphere can not exceed
the diameter. Thus, L ≤ (N − 1) · d so H < 1.
The introduction of a normalising constant in the index pro-
posed in [6] might not seem a proper choice because it affects
the computation of the entropy of a curve. For instance, two
identical curves described by a different number of points
have now different entropies. However, from the point of
view of dynamical systems analysis, it is convenient to have
a fixed full scale range, although some care is required in
providing the value of the entropy always accompanied with
the information about the number of used points. Moreover,
the normalisation step paves the way to a probabilistic
approach.

An important consequence of property 1 is that the
entropy of a line is well defined even when the dynamical
system is unstable and the length of the line tends to infinity.

Theorem 2 : A curve starting from entropy equal to zero
has constant 0 entropy according to (3) if the dynamical
system is linear
This holds for any line and for any linear dynamical system
(time-variant systems as well). A proof is provided in [7].

Property 2 : The entropy of a line as defined in (3) is
insensitive to changes of scale, rotations and translations

The entropy is defined as a ratio between lengths. Therefore,
if all the point vectors that define the line are scaled, rotated
or translated, the entropy remains the same.

Property 3 : A curve starting from entropy equal to zero has
constant 0 entropy according to (3) if the dynamical system is
one-dimensional and the state function is monotonic
The case when the state space dimension is 1 is a degenerate
situation in the sense that all the points remain necessarily
aligned along the only available dimension. Therefore the
entropy is larger than 0 only if the points change their
ordering, as in figure 2. The sequence does not change if
x1 (k) < x2 (k) implies x1 (k + 1) < x2 (k + 1) for each
choice of the points x1 (k) and x2 (k). This is equivalent to
the notion of monotonic function.

Remark: Even if the state function is not monotonic,
the indicator might still be 0 if the initial segment is
chosen in a region of the state space where the state
function is monotonic. For instance, if an initial segment of
ordered positive numbers is chosen and the state function
is x (k + 1) = x (k)2, the non-monotonic behaviour of this
system is missed.

The value of the proposed indicator can be computed
either theoretically exploiting the previous properties and
theorems, or by the algorithmic procedure introduced at the
beginning of the section. The theoretical approach can be
used if the dynamical system is linear to infer that the
entropy will be constantly zero, or if the dynamical system
has symmetry properties that lead to a geometrical solution.
For instance, if the nonlinear system is x (k + 1) = x (k)2,
then an initial line symmetric with respect to the origin will
fold up on itself so that (3) will be log (2) / log (N − 1). If
the dynamical system does not have particular symmetries
or properties, it will be generally very hard to predict the
behaviour of the indicator and it is necessary to use the
algorithmic procedure. On the other hand, a drawback of the
algorithmic approach is that it might be numerically unstable
if all the points converge to an equilibrium or diverge. In
the first case, all distances among the points go to zero,
while in the second case they go to infinity. For this reason,
the algorithmic procedure gives the best results in the case
that the norms of the state points remain bounded and do
not converge to one only value. A possible application is
therefore the analysis of chaotic systems, where the states
evolve within attractors. For this reason, next paragraph is
dedicated to a comparison between the proposed indicator
and Lyapunov Exponents, which are one of the most used
methods to evaluate chaotic behaviours.

IV. A COMPARISON WITH LYAPUNOV
EXPONENTS

The generalised entropy indicator introduced in this work
can be computed in an algorithmic way which is particularly
convenient for chaotic systems. Several ways are known from
the literature for the evaluation of chaotic behaviours, such
for instance [11] and [12], but the most wide spread method
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is the computation of the Lyapunov Exponents (LEs) [13].
The maximum LE gives a quantitative characterization of the
exponential divergence of initially nearby trajectories. Also
in this case, it is not generally possible to compute LEs in
an analytic way, but one has to resort to numerical methods.
LEs are computed evaluating the evolution of some points
in the phase space, in a way that is similar to the approach
proposed here. Two recent references for computing the LEs
for continuous time and discrete time systems can be found
in [14] and [15] respectively. A drawback of LEs is that
two dynamical systems having the same LEs can behave in
a very different way [16]. In particular, if a chaotic system
in R

n is characterised by LEs λ1, λ2, ..., λn, then a linear
continuous dynamical system with state transition matrix
A = diag [λ1, λ2, ..., λn] has the same LEs. Although it is
still true that two trajectories arbitrarily close diverge in the
long term if the dynamical system is linear and unstable, yet
the behaviour is far from chaotic. This is a major difference
with the proposed generalised entropy indicator. A second
drawback of LEs is that it is not clear how to compute
them for dynamical systems defined over a discrete state
space. In this case, it is not straightforward how to define
the distance between two states and whether two trajectories
converge or not. On the other hand, the proposed generalised
indicator provides a nice extension for the investigation of
unusual dynamical systems defined on a discrete state space,
as for instance the Kaprekar routine [17] addressed in the
next section.

V. SIMULATION EXAMPLES

Extensive simulations have been performed to study the
behaviour of the proposed index, and many benchmark prob-
lems have been investigated and compared. In the following
some of the most significant results that have been obtained
are presented.

An interesting example is obtained in the case when
the state is either 0 or 1, according to the outcome of a
Bernoulli experiment. The generalised entropy computed in
this situation is larger when the two probabilities are closer,
as shown in figure 3. This is in analogy with the entropy
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Fig. 3. Comparison of the entropy of a dynamical system with two possible
outcomes on the basis of the probability of each outcome

as in information theory, [10] and [18], and emphasises that

the proposed indicator takes into account the predictability
of a dynamical system. Indeed, a probability of 50% for each
outcome represents the most unpredictable situation.
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Fig. 4. Comparison of the entropy of several dynamical systems

In figure 4 a comparison among several dynamical systems
is shown. In particular, the comparison involves a chaotic
system described by Lorenz equations, the Van Der Pol
oscillator (i.e. a dynamical system that admits a limit cycle),
Kaprekar routine on 6-digit numbers, and a nonlinear system
based on the arithmetic-geometric mean (AGM) equations.
Lorenz equations are described by⎧⎨

⎩
ẋ1 = − 8

3 x1 + x2x3

ẋ2 = −10 x2 + 10 x3

ẋ3 = −x1x2 + 28 x2 − x3

. (5)

Van Der Pol oscillator is described by{
ẋ1 = x2

ẋ2 =
(
1 − x2

1

)
x2 − x1

. (6)

Both the previous problems have been solved discretising
the continuous system with a sampling time of 0.01 s. The
AGM system is described by{

x1 (k + 1) = (x1 (k) + x2 (k)) /2
x2 (k + 1) =

√
(x1 (k) · x2 (k))

, (7)

where the initial conditions have to be chosen inside the
positive quadrant. Finally, the Kaprekar routine, see for
example [17], consists of an algorithm that can be applied
to integer numbers and works performing alternately the
following steps:

Step 1 Rearrange the digits of a number a (k) in ascending and
descending order so to obtain two new numbers a (k)
and a (k) respectively.

Step 2 Compute a (k + 1) = a (k)−a (k). Increase time index
k and go back to step 1

In the example, Kaprekar routine has been applied to six
digit numbers. In this case the solution is known to converge
to a fixed number, (e.g. when the starting number has all
equal digits) or to a limit cycle. Although all the four
dynamical systems introduced previously have very different
characteristics, it is still possible to compare them according
to the proposed index. In particular, the highest entropies
were obtained for Kaprekar routine, then Lorenz equations,
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Van Der Pol oscillator and the AGM system respectively. All
entropies have been computed using 1000 points.

The next example is dedicated to the comparison of the
entropy of a dynamical system where a parameter a is used to
tune the amount of nonlinearity. The investigated dynamical
system evolves according to the equations:{

x1 (k + 1) = a · x1 (k)
x2 (k + 1) = 3.2 · x2 (k) · (1 − x2 (k)) . (8)

The first component of the system (8) evolves with
linear dynamics, so its expected entropy is 0. The second
component evolves according to a logistic equation, which
is a function that can be used to represent demographic
models, where the multiplicative parameter is a positive
number representing a combined rate for reproduction and
starvation [1]. In the example here the value of the parameter
is 3.2, and the equation has two equilibrium points. In
the example, when |a| < 1, the linear component goes to
zero and the dynamical system reduces to the nonlinear
part. On the contrary, when |a| > 1, the linear component
overrides the nonlinear one. Finally when |a| = 1 the two
components have comparable values. The entropy of the
system reflects this situation, and either assumes the value
of the dominant component or an intermediate value in
the last case. The simulation results are shown in figure
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Fig. 5. Comparison of the entropy of a dynamical system as a function of a
parameter that weighs the contribute of the linear and nonlinear component

5, where the higher entropies are reached when a has
values 0.95 and 0.975 (nonlinear dominance). The curves
converging to 0 entropy are due to values of a equal to
1.1 and 1.05 (linear dominance). The curve in the centre
is obtained when a = 1. In addition, it can be noted that
the value of a affects the time that is necessary before the
linear component becomes dominant or can be neglected,
therefore affecting the transient behaviour of the entropy.

It was remarked when discussing Property 3 that the
choice of the initial conditions (i.e. the first straight line) can
affect the generalised entropy indicator and its final value.
This can be unavoidable if the behaviour of the nonlinear

system depends on the initial state space region. In the
examples proposed so far, extensive simulations showed that
the behaviour of the indicator is not affected by the initial
conditions, provided that the initial line is chosen within
the region of interest (e.g. inside the attractor set in chaotic
systems). In other situations special care is required in the
choice of the initial conditions, and Monte Carlo simulations
might be necessary to distinguish among different behaviours
of the same nonlinear system. As a final example the logistic
equation is considered in the case that the state is extended
to include the fixed rate parameter:{

x1 (k + 1) = x2 (k) · x1 (k) (1 − x1 (k))
x2 (k + 1) = x2 (k) . (9)

It is known from literature [1] that the logistic function
presents both stable and chaotic behaviours depending on
the value of x2. Therefore it is not very significant to study
the overall entropy of the system, but it is more significant to
investigate the entropy as a function of the second component
which only depends on its initial condition. The graph of
the entropy so obtained is shown in figure 6 and reproduces
realistically the known behaviour of the logistic function.
In fact system (9) has one equilibrium when the parameter
is smaller than 3, it oscillates for values between 3 and
3.57 (approximately), it shows a chaotic behaviour for values
greater than 3.57 and smaller than 4 and there is a so-
called “island of stability” for values around 3.8. Figure 6
interpolates the value of the entropies computed for possible
values of the parameter from 0.1 to 4, computed with a 0.1
interval step.
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Fig. 6. Entropy of the logistic equation as a function of x2

VI. CONCLUSIONS

This paper generalises the entropy of plane curves to
R

n space. Moreover, it provides an algorithmic procedure
to evaluate an entropy indicator that is used to infer some
properties of dynamical systems. Several nonlinear systems,
having completely different characteristics, have been com-
pared and classified according to the entropy indicator. The
generalised entropy is used also to analyse chaotic systems,
as an alternative choice to Lyapunov Exponents, extending
the application field to the investigation of dynamical systems
defined on a discrete state space. Simulation results show
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that the proposed indicator has many useful properties and
provides very promising results with a wide generality.

An intrinsic difficulty in the analysis of nonlinear systems
is that very different behaviours (stability, instability, limit
cycles, attractors..) can occur in different regions of the state
space for the same dynamical system. In such situations it is
possible to evaluate the entropy of the system as a function
of the initial conditions, as described in the last example
provided.
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APPENDIX

Minimum covering sphere

The problem of finding the smallest hypersphere contain-
ing all the points, introduced in the algorithmic procedure to
compute (3) at step 2.c), requires further considerations. This
problem is known from literature as the “Minimum Covering
Sphere” (MCS) problem [19]. The mathematical formulation
of MCS for a finite set of points {xi} is the minimax problem

min
c

max
i

‖xi − c‖ , (10)

where c is the unknown centre of the hypersphere. The MCS
problem is known to have always one unique solution [19].
The algorithmic procedure to compute the proposed indicator
H (k) requires the solution of an MCS problem (10) at
each step. In this work, the algorithm proposed by Hopp
and Reeve [20] was used to solve problem (10), because
it is in general faster than the classic solution of a convex
quadratic programming problem. Algorithm [20] exploits the
geometric nature of the problem and computes iteratively an
outer and an inner spherical bounding of the MCS. When the
two spheres eventually converge, the solution is the unique
MCS. The algorithm is proved to converge always to the
solution in a finite number of steps. Moreover, if n is the
number of total points and d is the dimension of the state
space, then the algorithm has complexity O(n1.1d2) if points
are distributed uniformly inside a sphere, and O(n1d2.3) if
points are all in the proximity of the surface of the sphere
(which represents the worst case) [20]. In our simulations
(performed on an AMD 64 bit processor with 2GHz clock
frequency) we observed that solution was never found in
more than 2s for a set of 1000 points in R

3. Particular
distributions of points are claimed to be potentially critical
for the algorithm [20] in case of numeric noise, but they
never occurred in our practice.

Proof of theorem 1

Proof: The sufficient condition, i.e. a straight line has
H = 0, according to (3), is easily verified. The necessary
condition is that if H = 0, and thus the diameter is equal
to the length of the line, then the only possibility is that
the line is straight. To prove the necessary condition it can
be noted that the curve is always contained in a sphere A

centered in its mid-point, with diameter L. Therefore, being
the MCS minimal, its diameter is always smaller or equal
than L. In addition, as a consequence of the fact that the
minimum covering sphere is unique, if d = L, then A must
be the MCS. Moreover, the line has at least two distinct
points on the sphere surface, otherwise a smaller hypersphere
can always be found. To sum up, d = L implies that the line
must have a point in the centre of the MCS and at least two
on the surface. Now, since the overall length of the line is
d, then it must be formed by the two segments connecting
the centre with the two points on the surface, otherwise it
would be longer than just d by triangle inequality. In this
case, the only possibility is that the line is the diameter itself,
otherwise the centre would not be a convex combination of
the two points on the sphere surface, which is a necessary
condition for the minimum covering sphere [19]. Therefore
the line corresponds to the diameter and is straight.
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