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Abstract—The performance of the modified unscented 
Kalman-Bucy filter (UKBF) for the nonlinear stochastic 
continuous-time system is investigated. The error behavior of the 
UKBF is analyzed. It is proved that the estimation error remains 
bounded if the system satisfies a detectability condition and both 
the initial estimation error and the disturbing noise terms are 
small enough. Furthermore, it is shown that the design of noise 
covariance matrix plays an important role in improving the 
stability of the algorithm. Moreover, some selected cases with 
both bounded and unbounded estimation error are 
demonstrated by numerical simulations. 

I. INTRODUCTION 
ALMAN-BUCY filtering (KBF) [1] is an important and 
widely used tool for the state and parameter estimation of 

stochastic systems. Although it was originally developed as an 
optimal filter for linear systems, an application to nonlinear 
systems is also possible. The usual procedure is to linearize 
the nonlinear system at the current estimate, leading to the 
extended Kalman filter (EKF). This technique has turned out 
to be one of the most useful methods for the state and 
parameter estimation of nonlinear stochastic systems [2], [3]. 
However, it has two well known drawbacks [4]: (1) the 
first-order linearization can introduce large errors in mean and 
covariance of the state vector, and (2) the derivation of 
Jacobian matrices is nontrivial in many applications. 

The unscented Kalman filter (UKF) [5]-[7] is an efficient 
derivative free filtering algorithm for computing approximate 
solutions to nonlinear optimal filtering problems. It has been 
successfully applied to numerous practical problems and it has 
been shown to outperform EKF in many cases [8]. However, 
in its original form, the UKF is a discrete-time algorithm and it 
cannot be directly applied to continuous-time filtering 
problems, where the state and measurement processes are 
modeled as continuous-time stochastic processes. As a result, 
the differential equations which result in the continuous-time 
limit of the UKF are derived in [9]. The derived unscented 
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Kalman-Bucy filter (UKBF) equations are similar to the 
extended Kalman-Bucy filter (EKBF) equations [10] and 
consist of a pair of differential equations for the mean and 
covariance of the posterior state process. The UKBF can be 
widely used in practice, where a continuous-time signal is 
observed continuously in time. Examples of such applications 
are GPS and inertial navigation [11], [12], target tracking 
[13]-[15], and stochastic optimal control [16], [17]. Simo [9] 
compared the performance of the UKBF, the EKBF and the 
SLF for an example system and showed that the UKBF 
performs better than the EKBF. 

Despite its superior practical usefulness, the UKBF has not 
been analyzed in a rigorous mathematical way as the UKF 
[18]. Some results obtained in the study of the EKBF can be 
used to treat the stability properties of the UKBF. Motivated 
by the stability of the usual Kalman-Bucy filter for linear 
systems [19] and by successful application of the stochastic 
stability theory to solve nonlinear-estimation problems in [20], 
[21], analogous results are examined for the nonlinear case in 
this paper. In order to improve stability, slight modifications 
of the standard UKBF are performed by introducing an extra 
positive definite matrix in the noise covariance matrix. The 
design of the extra additive matrix can be seen as a tradeoff 
between stability and accuracy. In particular it is shown that 
the estimation error of the UKBF remains bounded if the 
initial estimation-error and the disturbing-noise terms are 
sufficiently small. To carry out the proof, super-martingales 
are employed. This is a common approach in the stability 
theory of stochastic differential equations. 

II. THE CONTINUOUS-TIME UNSCENTED KALMAN FILTER 
The considered nonlinear continuous-time system is 

represented by 
d ( ) ( ( ), )d ( )d ( )
d ( ) ( ( ), )d ( )d ( )

x t f x t t t L t w t
y t h x t t t V t v t

= +
= +                       (1) 

where ( ) nx t R∈  is the state process; ( ) my t R∈  is the integrated 
measurement process; f  is the drift function; h  is the 
measurement model function; ( )L t  and ( )V t  are arbitrary time 
varying matrices, being independent of ( )x t  and ( )y t ; ( )w t  
and ( )v t  are independent Brownian motions with diagonal 
diffusion matrices ( )cQ t  and ( )cR t , respectively. The dynamic 
and measurement models can be equivalently interpreted as 
Ito or Stratonovich type stochastic differential equations [22]. 

The filtering model can also be formulated in terms of 
formal white noises ( ) d ( ) / dwe t w t t= , ( ) d ( ) / dve t v t t= , and 
differential measurement ( ) d ( ) / dz t y t t=  as follows: 
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d ( ) ( ( ), ) ( ) ( )
d
( ) ( ( ), ) ( ) ( )

w

v

x t f x t t L t e t
t

z t h x t t V t e t

= +

= +
                         (2) 

where the white noise processes ( )we t  and ( )ve t  have spectral 
densities ( )cQ t  and ( )cR t , respectively. 

The procedure for implementing the UKBF for nonlinear 
stochastic continuous-time systems can be summarized as 
follows [9]. 

The n-dimensional random variable ( )x t  with mean ˆ( )x t  
and covariance ( )P t  is approximated by the matrix of sigma 
points ( )X t  selected with the following equations 

(0) ˆ( ) ( )X t x t=  
( ) ˆ( ) ( )iX t x t cP= + , 1, ,i L= …                       (3) 

( ) ˆ( ) ( )iX t x t cP= − , 1, ,2i L L= + …  
where 2 ( )c n lα= +  is a tuning parameter. The opposite weight 

mω  is as follows 
(0) (2 ) T[ ]n

m m mW Wω =                            (4) 
where  

(0)

( )mW
n

λ
λ

=
+

, ( ) 1
2( )

i
mW

n λ
=

+
, 1, , 2i n= . 

We define the matrix W  as follows 
(0) (2 ) T( [ ]) ( ) ( [ ])n

m m c c m mW I diag W W Iω ω ω ω= − × × −      (5) 
where  

(0)
2( ) (1 )cW

n
λ

λ α β
=

+ + − +
, ( ) 1

2( )
i

cW
n λ

=
+

( 1, , 2i n= ). 

The parameter λ  is a scaling parameter defined as 
2 ( )n l nλ α= + − . The positive constants α , β  and l  are used 

as parameters of the method. 
Corresponding to the stochastic differential equations of the 

UKF in the continuous-time, the UKBF can be derived as 
ˆd ( ) ( ( ), ) ( )[ ( ) ( ( ), ) ]
d m m
x t f X t t K t z t h X t t

t
ω ω= + −             (6) 
T T 1( ) ( ) ( ( ), )[ ( ) ( ) ( )]cK t X t Wh X t t V t R t V t −=                (7) 

T T T

T T

d ( ) ( ) ( ( ), ) ( ( ), ) ( ) ( ) ( ) ( )
d                               ( ) ( ) ( ) ( ) ( )

c

c

P t X t Wf X t t f X t t WX t L t Q t L t
t K t V t R t V t K t

= + +
−

   (8) 

And the predicted covariance ( )P t− , the measurement 
covariance ( )S t  and the cross-covariance of the state and 
measurement ( )C t  can be written in matrix form as follows. 

T T Td ( ) ( ) ( ( ), ) ( ( ), ) ( ) ( ) ( ) ( )
d c

P t X t Wf X t t f X t t WX t L t Q t L t
t

−

= + +     (9) 

T Td ( ) ( ( ), ) ( ( ), ) ( ) ( ) ( )
d c
S t h X t t Wh X t t V t R t V t

t
= +           (10) 

T Td ( ) ( ) ( ( ), ) ( ) ( ) ( )
d c
C t X t Wh X t t V t R t V t

t
= +             (11) 

If we assume that the posterior mean and covariance of ( )x t  
are ˆ( )x t  and ( )P t , respectively, the unscented transform- 
based approximations to the expectations and covariances can 
be formed as follows: 

E[ ( , )] ( ( ), ) mf x t f X t t ω≈ , E[ ( , )] ( ( ), ) mh x t h X t t ω≈  
TCov[ , ( , )] ( ) ( ( ), )x f x t X t Wf X t t≈ , TCov[ ( , ), ] ( ( ), ) ( )f x t x f X t t WX t≈  
TCov[ , ( , )] ( ) ( ( ), )x h x t X t Wh X t t≈ , TCov[ ( , ), ] ( ( ), ) ( )h x t x h X t t WX t≈  

The computational complexity of the UKBF can be seen to be 
two to three times the computational complexity of the EKBF, 
when compared in terms of number of multiplications and 
additions. When the state dimension is n, the UKBF needs 
2n+1 evaluations of f and h, while the EKBF needs only one. 

However, in addition to that, the EKBF needs evaluations of 
the Jacobian matrices of both the functions. 

III. STABILITY ANALYSIS OF THE UKBF FOR NONLINEAR 
STOCHASTIC CONTINUOUS-TIME SYSTEM 

A. Instrumental Diagonal Matrix and Extra Positive 
Definite Matrix 
In this section, a simple approach to present error of the 

UKBF is given. First the nonlinear functions f and h are 
expanded up to first order via 

ˆ ˆ ˆ( ( ), ) ( ( ), ) ( )[ ( ) ( )] ( ( ), ( ), )f x t t f x t t F t x t x t x t x t tφ− = − +      (12) 
and 

ˆ ˆ ˆ( ( ), ) ( ( ), ) ( )[ ( ) ( )] ( ( ), ( ), )h x t t h x t t H t x t x t x t x t tχ− = − +      (13) 
where 

ˆ( ) ( ( ), )fF t x t t
x

∂=
∂

, ˆ( ) ( ( ), )hH t x t t
x

∂=
∂

              (14) 

are matrix-valued stochastic processes, and ˆ( ( ), ( ), )x t x t tφ  and 
ˆ( ( ), ( ), )x t x t tχ are the remaining nonlinear terms. The estimation 

error is defined by 
ˆ( ) ( ) ( )t x t x tζ = −                               (15) 

Subtracting (6) from (2) and using (12) and (13) leads to the 
error evolution 
d ( ) ( ( ), ) ( )d ( ) ( ( ), ) ( )[ ( ) ( ( ), ) ]

d
ˆ ˆ[ ( ( ), ) ( ( ), )] ( )[ ( ( ), ) ( ( ), )]

                                                     ( ) ( ) ( ) ( ) ( )
( ( ) (

m m

w v

t f x t t L t w t f X t t K t z t h X t t
t

f x t t f x t t K t h x t t h x t t
L t e t K t V t e t

F t K t

ζ ω ω= + − − −
= − − −

+ −
= − ) ( )) ( ) ( ) ( ) ( )H t t t t tζ θ ρ+ + Γ

(16) 

with 
ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ( ), ( ), )t x t x t t K t x t x t tθ φ χ= −              (17) 

( ) ( ) ( ) ( )t L t K t V tΓ = −                            (18) 
( ) [ ( ) ( )]w vt e t e tρ =                             (19) 

From (6)-(11) and (14), the relationship between the UKBF 
and EKBF approximations [9] can be seen to be 

T T 1

T 1
( ) ( ) ( ( ), )[ ( ) ( ) ( )]

ˆ( ) ( ( ), )[ ( ) ( ) ( )]
c

c

K t X t Wh X t t V t R t V t
P t H x t t V t R t V t

−

−
=

⇔
            (20) 

In order to take these residuals between the two expression 
into account and obtain an exact equality, an unknown 
instrumental diagonal matrix 1 2( ) ( , , , )nt diag ξ ξ ξΞ =  is intro- 
duced, so that 

T 1ˆ ˆ( ) ( ) ( ) ( ) ( ( ), )[ ( ) ( ) ( )]cK t K t t P t H x t t V t R t V t −= Ξ       (21) 
In the modified form of the algorithm, the predicted 
covariance matrix d ( ) dP t t−  is calculated with enlarged ( )cQ t ,  

T T

T

ˆd ( ) ( ) ( ( ), ) ( ( ), ) ( )
d                            ( ) ( ) ( ) ( )c c

P t X t Wf X t t f X t t WX t
t L t Q t L t Q t

−

= +
+ + Δ

          (22) 

and 
T T T

T T

T T

T T

ˆd ( ) ( ) ( ( ), ) ( ( ), ) ( ) ( ) ( ) ( )
d

                         ( ) ( ) ( ) ( ) ( ) ( )
ˆ= ( ) ( ( ), ) ( ( ), ) ( ) ( )

                           ( ) ( ) ( ) ( ) (

c

c c

c

c

P t X t Wf X t t f X t t WX t L t Q t L t
t

Q t K t V t R t V t K t
X t Wf X t t f X t t WX t Q t

K t V t R t V t K

= + +
+ Δ −

+ +
− )t

  (23) 

where  
Tˆ ( ) ( ) ( ) ( ) ( )c c cQ t L t Q t L t Q t= + Δ  

and ( )cQ tΔ  is an extra positive definite matrix introduced in 
the calculated covariance matrix as a slight modification of the 
UKBF, so that the stability will be improved and the 
difference between T Tˆ ˆ( ) ( ) ( ) ( ) ( )cK t V t R t V t K t  and T T( ) ( ) ( ) ( ) ( )cK t V t R t V t K t  
in the covariance matrix d ( ) dP t t  will be compensated. Then 
the Kalman gain matrix shown in (21) becomes 
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T 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ), )[ ( ) ( ) ( )]cK t K t t P t H x t t V t R t V t −= Ξ        (24) 

B. Stochastic Boundedness of Estimation Error 

To examine the dynamics of the estimation error the 
following concepts of boundedness for solutions of stochastic 
differential equations are used in this paper: 
Definition 3.1: The stochastic process ( )tζ  is said to be 
stochastically sample path bounded, if for every 0a >  there is 
a ( ) 0aϕ > such that 

0
{sup || ( ) || ( )} 1 j

t
P t a aζ ϕ

≥
≤ ≥ −                       (25) 

Definition 3.2: The stochastic process ( )tζ  is said to be 
exponentially bounded in mean square, if there are real 
numbers η , ϑ , 0υ >  such that 

2 2E{|| ( ) || } || (0) || exp( )t tζ η ζ ϑ υ≤ − +                 (26) 
holds for every 0t ≥ . 
Lemma 3.1: Assume there is a stochastic process ( ( ), )V t tζ  
and real numbers minυ , maxυ , γ , 0μ >  such that 

2 2
min max|| ( ) || ( ( ), ) || ( ) ||t V t t tυ ζ ζ υ ζ≤ ≤               (27) 

and 
( ( ), ) ( ( ), )V t t V t tζ γ ζ μ≤ − +L                    (28) 

are fulfilled. Then the stochastic process ( )tζ  is exponentially 
bounded in mean square, 

2 2max

min min

E{|| ( ) || } || (0) || exp( )t tυ μζ ζ γ
υ υ γ

≤ − +             (29) 

for every 0t ≥ . Moreover the stochastic process ( )tζ  is 
sample-path bounded. 

With these lemmas and formulations shown in (12), (13) 
and (16), it is able to state a main result of this paper. 

Theorem 3.1: Consider a nonlinear stochastic system given 
by (2) and UKBF for nonlinear stochastic continuous-time 
systems as stated by (3)-(8), (23) and (24). Let the following 
assumptions hold: 
(1) There are real numbers maxh , maxξ , minp̂ , maxp̂ , minq̂ , min 0r >  
such that the following bounds are satisfied for every 0t ≤ : 

max|| ( ) ||H t h≤                                  (30) 

max|| ( ) ||t ξΞ ≤                                  (31) 

min max
ˆˆ ˆ( )p I P t p I≤ ≤                             (32) 

min
ˆˆ ( )cq I Q t≤                                 (33) 

min ( )cr I R t≤                                  (34) 
(2) There are real numbers φε , χε , φκ , 0χκ >  such that the 
nonlinear functions φ , χ  in (17) are bounded by 

2ˆ ˆ|| ( ( ), ( ), ) || || ( ) ( ) ||x t x t t x t x tφφ κ≤ −                  (35) 
2ˆ ˆ|| ( ( ), ( ), ) || || ( ) ( ) ||x t x t t x t x tχχ κ≤ −                 (36) 

for ( )x t , ˆ( ) nx t R∈  with ˆ| ( ) ( ) |x t x t φε− ≤  and ˆ| ( ) ( ) |x t x t χε− ≤ , 
respectively. 
Then there exist real numbers δ , 0ε >  such that the 
estimation error ( )tζ  given by (16) is exponentially bounded 
in mean square and stochastically sample-path bounded, if the 
initial estimation error satisfies 

|| (0) ||ζ σ≤                                    (37) 
and the covariance matrices of the noise terms are bounded via 

T( ) ( )L t L t Iδ≤                                    (38) 
T( ) ( )V t V t Iδ≤                                    (39) 

for every 0t ≥ . 
Proof: Choose 

T 1ˆ( ( ), ) ( ) ( ) ( )V t t t P t tζ ζ ζ−=                     (40) 
ˆ( )P t  is defined with positive definite and probability 1 since 

(32) holds. From (32) it follows that 
1

max min

1 1ˆ ( )
ˆ ˆ

I P t I
p p

−≤ ≤                          (41) 

and with (40) ( ( ), )V t tζ  is bounded by 
2 2

max min

1 1|| ( ) || ( ( ), ) || ( ) ||
ˆ ˆ

t V t t t
p p

ζ ζ ζ≤ ≤            (42) 

Consider the following stochastic system 
( ) ( ( ), ) ( ) ( )wd t f t t dt L t e tζ ζ= +                 (43) 

For a given stochastic process ( ( ), )V t tζ  the differential 
generator can be defined by 

2
T

,
1 1

1( , ) ( , ) ( , ) ( , ) ( , )[ ( ) ( )]
2

n n

i j
i j i j

V V VV t t t f t t L t L t
t

ζ ζ ζ ζ ζ
ζ ζ ζ= =

∂ ∂ ∂= + +
∂ ∂ ∂ ∂∑∑L (44) 

with T
1[ , , ]nζ ζ ζ= , and T

,[ ( ) ( )]i jL t L t  denoting the matrix 
element of T( ) ( )L t L t in the ith row and the jth column. 
Comparing (16) and (43), and using (44) yields 

2
T

,
1 1

( , ) ( , ) ( , )[( ( ) ( ) ( )) ( ) ( )]

1                                         ( , )[ ( ) ( )]
2

n n

i j
i j i j

V VV t t t F t K t H t t t
t

V t t t

ζ ζ ζ ζ θ
ζ

ζ
ζ ζ= =

∂ ∂= + − +
∂ ∂

∂+ Γ Γ
∂ ∂∑∑

L
   (45) 

with T
,[ ( ) ( )]i jt tΓ Γ denoting the matrix element of T( ) ( )t tΓ Γ  in the 

ith row and the jth coltunn. 
Furthermore, the sum in (45) can be written as  

2
T T

,
1 1 T

( , )[ ( ) ( )] tr( ( ) ( )Hess[ ( , )])

tr(Hess[ ( , )] ( ) ( ))

n n

i j
i j i j

V t t t t t V t

V t t t

ζ ζ
ζ ζ

ζ
= =

∂ Γ Γ = Γ Γ
∂ ∂

= Γ Γ
∑∑     (46) 

where Hess[ ]•  denotes the Hessian matrix. 
Using (24), we yields 

1

1 1

1 T T 1

ˆ|| 2( ) ||
ˆ ˆ ˆˆ ˆ ˆ ˆ|| 2( ) ( , , ) || 2( ) ( , ) ||
ˆˆ ˆ ˆ ˆ|| 2( ) ( , , ) || || 2( ) [ ( ) ( ) ( )] ( , , ) ||

T

T T

T T
c

x x P
x x P x x t x x P K x x
x x P x x t x x H V t R t V t x x t

θ
φ χ
φ χ

−

− −

− −

−
= − − −
≤ − + − Ξ

 

Set min( , )φ χε ε ε′ = . Using (30)-(36) we obtain 
1

max max2 2

min min

ˆˆ|| 2( ) ||
ˆ ˆ ˆ ˆ2 || || || || 2 || || || ||

ˆ

Tx x P
h

x x x x x x x x
p r

φ χ

θ
κ ξ κ

−−
≤ − − + − −

 

for ˆ| ( ) ( ) |x t x t ε ′− ≤ . Defining 
max max

min minˆnonl

h
p r

φ χκ ξ κ
κ = +                           (47) 

and using (17), we can obtain that there is a positive real 
number 0nonlκ >  such that 

1 3ˆˆ ˆ2( ( ) ( )) ( ) ( ) || ( ) ( ) ||T
nonlx t x t P t t x t x tθ κ−− ≤ −           (48) 

holds for ˆ| ( ) ( ) |x t x t ε ′− ≤  with min( , )φ χε ε ε′ = . 
From (40), (45), (46) and (47), it can be obtained 

1
T T T 1

T 1 T T 1

T T 1

ˆ ( ) ˆ( , ) ( ) ( ) ( )( ( ) ( ) ( )) ( ) ( )

ˆ ˆ( ) ( )( ( ) ( ) ( )) ( ) 2 ( ) ( ) ( )
ˆ[( ( ) ( ) ( ) ( ) ( )) ( )]

P tV t t t t F t K t H t P t t
t

t P t F t K t H t t t P t t
tr L t L t K t D t D t P t

ζ ζ ζ ζ ζ

ζ ζ ζ θ

−
−

− −

−

∂= + −
∂

+ − +
+ +

L

   (49) 

With (24), (30)-(32) and (34) one can obtain 
T 1

max max max
max

min

ˆ ˆ|| ( ) || || ( ) || || ( ) || || ( ( ), ) || || [ ( ) ( ) ( )] ||
ˆ ˆ            

cK t t P t H x t t V t R t V t
p h k
r

ξ
−= Ξ

≤ =
    (50) 

Moreover, from (38) and (39) one obtains 
Ttr[ ( ) ( )] tr[ ] lL t L t I dδ δ≤ ≤                         (51) 
Ttr[ ( ) ( )] tr[ ] vV t V t I dδ δ≤ ≤                        (52) 
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where ld  and vd  are the number of the rows of ( )L t  and ( )V t , 
respectively. Furthermore, using (32) and (50)-(52) it follows 
that 

T T 1

2
T Tmax

min min

ˆ[ ( ) ( ) ( ) ( ) ( )] ( )
ˆ1 tr[ ( ) ( )] tr[ ( ) ( )]

ˆ ˆ noise

tr L t L t K t D t D t P t
kL t L t V t V t

p p
κ δ

−+

≤ + ≤
          (53) 

with 
2
max

min min

ˆ

ˆ ˆ
l v

noise
d k d

p p
κ = +                               (54) 

Using (24) and (48) leads to 
1

T T 1 1

T 1 3

ˆ ( ) ˆ ˆ( , ) ( )[ ( ) ( ) ( ) ( )

                   2 ( ) ( ) ( )] ( ) || ( ) ||nonl noise

P tV t t F t P t P t F t
t

H t R t H t t t

ζ ζ

ζ κ ζ κ δ

−
− −

−

∂≤ + +
∂

− + +

L     (55) 

for || ( ) ||tζ ε ′≤  with min( , )φ χε ε ε′ = . Calculate 1ˆd ( )P t−  by the 
formula 

1 1 1ˆ ˆ ˆ ˆd ( ) ( )d ( ) ( )P t P t P t P t− − −= −                      (56) 
where (56) is given by the Riccati differential equation (25), 
and insert (56) into (55). This leads to 

T 1 1 T 1

3
ˆˆ ˆ( , ) ( )[ ( ) ( ) ( ) ( ) ( ) ( )] ( )

                                                    || ( ) ||
c

nonl noise

V t t P t Q t P t H t R t H t t
t

ζ ζ ζ
κ ζ κ δ

− − −≤ − +
+ +

L     (57) 

and, with (32) and (33) and T 1( ) ( ) ( ) 0H t R t H t− ≥ , we obtain 
2min

2
max

ˆ
( , ) ( || ( ) ||) || ( ) ||

ˆ nonl noise
qV t t t
p

ζ κ ζ ζ κ δ≤ − − +L          (58) 

Defining 
min

2
max

ˆ
min( , )

ˆ2 nonl

q
p

ε ε
κ

′=                            (59) 

and using (42) one obtains 
min min

2
max

ˆ ˆ
( ( ), ) ( ( ), )

ˆ2 noise
q pV t t V t t

p
ζ ζ κ δ≤ − +L            (60) 

for || ( ) ||tζ ε≤ . With (42) and (60), the requirements can be 
satisfied applying Lemma 3.1, where || (0) ||ζ ε≤ , noiseδ μ κ≤ , 

min maxˆ1 pυ = , max minˆ1 pυ = , and establish mean- square 
exponential boundedness as well as stochastic sample- path 
boundedness of the estimation error under the conditions of 
(37)-(38).  

For later use it is necessary to establish some estimates for 
ε  and δ . From (59) we obtain immediately 

min
2
max

ˆ
min( , , )

ˆ2 nonl

q
pφ χε ε ε

κ
=                        (61) 

with nonlκ  given by (47). For the evaluation of δ , it is 
necessary to take care that, for || ( ) ||tε ζ ε≤ ≤  with some ε  the 
inequality (60)  

min min
2
max

ˆ ˆ
( ( ), ) ( ( ), ) 0

ˆ2 noise
q pV t t V t t

p
ζ ζ κ δ≤ − + ≤L          (62) 

is fulfilled to guarantee the boundedness of the estimation 
error. Choosing 

2
min max max

3
max

ˆ ˆ
ˆ2 noise

q p
p

εδ
κ

=                               (63) 

with some ε ε<  one has, for | ( ) |tζ ε≥ , 
2min max min max

3 2
max max

ˆ ˆ ˆ ˆ
|| ( ) || [ ( ), ]

ˆ ˆ2 2noise
q p q pt V t t

p p
κ δ ζ ζ≤ ≤             (64) 

as (62) holds.                                                                         □ 
Remark 3.1: kΞ  is unknown instrumental diagonal matrices 
introduced to evaluate the difference between ˆ ( ) ( ) ( )cK t V t R t  

T Tˆ( ) ( )V t K t and T T( ) ( ) ( ) ( ) ( )cK t V t R t V t K t . From (50), (54) and (60) 
it is shown that the stability of the algorithm depends on the 
magnitude of kΞ  because different kΞ  may change the value 
of noiseκ  through maxk̂ .  

Remark 3.2:  To ensure the stability of UKBF, the matrices 
ˆ ( )cQ t  need to be positive definition. From (23), as ˆd ( ) / dP t t  

may be not positive definite matrices, extra additive matrix 
( )cQ tΔ  should be introduced as a modification to the UKBF so 

that min
ˆ ˆ( )cQ t q I≥  will be satisfied. Obviously, if ( )cQ tΔ  is 

sufficiently large, condition (33) can always be fulfilled.  
Remark 3.3:  To obtain φκ  and χκ  in (35) and (36), a 
compact subset K  of nR  was considered. The bounds defined 
by (35) and (36) for x, ˆ Kx∈  can be calculated by a standard 
estimation via an integral formula. Let if , ih  be the 
components of f and h, respectively. If f and h are twice 
differentiable for every Kx∈ , it follows that the Hessian 
matrices of if  and ih  are bounded with respect to the 
Euclidian norm of matrices. The constants φκ  and χκ  are then 
given by 

1 K
max sup || Hess ( ( ), ) ||

l
ii m x

f x t tφκ
≤ ≤ ∈

= , 
1 K
max sup || Hess ( ( ), ) ||

v
ii m x

h x t tχκ
≤ ≤ ∈

= . 

Remark 3.4: Regarding the restrictiveness of condition (30) 
for many applications the state variables are bounded inside 
reasonable limits. Outside this operating area the form of the 
function h has no influence on the behavior of the system. If 
the function h satisfies max| ( )( ) |h x x ε∂ ∂ ≤  for every physical 
reasonable value of the state vector x, it can be assumed 
without loss for generality that max| ( ) |H t h≤  holds. 
Remark 3.5: Eqn.(32) in assumption (1) of Theorem 3.1 is 
closely related to the observability and detectability properties 
of the system. These relations are discussed in Section 4. 

IV. THE SIGNIFICANCE OF NONLINEAR OBSERVABILITY OF 
THE UKBF FOR CONTINUOUS-TIME SYSTEMS 

Proving the boundedness of the estimation error bounds is 
required for the solution ˆ( )P t  of the Riccati differential 
equation (23) according to (6). This condition is closely 
related to observability and detectability properties of the 
system to be observed. The classical treatment for linear 
systems with deterministic state matrices has been given in 
[19], and generalizations to stochastic state matrices have 
been proposed. Firstly, the following definition for nonlinear 
stochastic systems are introduced for the main result in this 
section. 
Definition 4.1: The pair  

( , ), ( )f hx t x
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎣ ⎦

, nx R∈                       (65) 

is called uniformly detectable if there is a bounded matrix 
valued function ( )xΛ  and a real number 0γ >  such that  

T 2( , ) ( ) ( ) || ||f hx t x x
x x

ϖ ϖ γ ϖ∂ ∂⎡ ⎤+ Λ ≤ −⎢ ⎥∂ ∂⎣ ⎦
           (66) 

holds for every ϖ , nx R∈ . 
Lemma 4.1: Assume that the pair  

( , ), ( )f hx t x
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎣ ⎦

, nx R∈                        (67) 

is uniformly detectable according to Definition 4.1. Then the 
solution ˆ( )P t  of the Riccati differential equation (24) satisfies 
the bound 

min max
ˆ ˆ( )p I P t p I≤ ≤                             (68) 

Now it is possible to state the following result. 
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Theorem 4.1: Consider a nonlinear stochastic system with 
state differential equations (1) or (2) and UKBF for nonlinear 
stochastic continuous-time system as stated by (3)-(8), (23)  
and (24). Let the following assumptions hold: 
(1) There are positive real numbers maxh , minq̂ , min 0r >  such that 
the following bounds are satisfied for every 0t ≥ : 

max|| ( ) ||H t h≤                                (69) 

min
ˆˆ ( )q I Q t≤                                 (70) 

min ( )r I R t≤                                 (71) 
(2) The pair 

( , ), ( )f hx t x
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎣ ⎦

, nx R∈                       (72) 

is uniformly detectable according to Definition 4.1. 
(3) There are real numbers φε , χε , φκ , 0χκ >  such that the 
nonlinear functions φ , χ  in (17) are bounded by 

2ˆ ˆ|| ( ( ), ( ), ) || || ( ) ( ) ||x t x t t x t x tφφ κ≤ −                 (73) 
2ˆ ˆ|| ( ( ), ( ), ) || || ( ) ( ) ||x t x t t x t x tχχ κ≤ −                 (74) 

for ( )x t , ˆ( ) nx t R∈  with ˆ| ( ) ( ) |x t x t φε− ≤  and ˆ| ( ) ( ) |x t x t χε− ≤ , 
respectively. 
Then there exist real numbers δ , 0ε >  such that the 
estimation error ( )tζ  given by (15) is exponentially bounded 
in mean square and stochastically sample-path bounded, if the 
initial estimation error satisfies 

|| (0) ||ζ σ≤                                  (75) 
and the covariance matrices of the noise terms are bounded via 

T( ) ( )L t L t Iδ≤                                 (76) 
T( ) ( )V t V t Iδ≤                                 (77) 

for every 0t ≥ . 
Proof: According to Lemma 4.1 the solution ˆ( )P t  of the 
Riccati differential equation satisfies the bounds of (68). 
Therefore all requirements are satisfied to apply Theorem 3.1, 
and the boundedness of the estimation error can be proved 
under the stated conditions. 

V. NUMERICAL SIMULATIONS 
In the preceding two sections, it has been shown that, under 

certain conditions the estimation error for the UKBF for 
nonlinear stochastic continuous-time system remains bounded. 
To obtain the error bounds one requires especially a 
sufficiently small initial estimation error and sufficiently small 
noise. In this section the numerical simulations are presented, 
which indicate that the estimation error is bounded for small 
initial estimation errors and small noise, while divergent for 
large initial estimation errors or large noise. For this purpose, 
consider a nonlinear stochastic example system with the state 
differential equations (1) or (2), where 

2
2 2

1 1 2 2

( )
( ( ), )

( ) ( ( ) ( ) 1) ( )
x t

f x t t
x t x t x t x t

⎡ ⎤
= ⎢ ⎥− + + −⎣ ⎦

             (77) 

2( ( ), ) exp( ( ))h x t t c x t= −                       (78) 
From (79) and (80) we obtain 

2 2
1 2 1 2

0 1
( , )

1 2 3 1
f x t

x x x xx
⎡ ⎤∂ = ⎢ ⎥− + + −∂ ⎣ ⎦

, [ ]2( , ) 0 exp( )h x t x
x

∂ = − −
∂

 

It can be checked that the matrices fulfill the uniform 
detectability condition of Definition 4.1 with 

1 2 2
2 2

2 1 2

2 exp( ) 1
( )

exp( )( 3 1) 1
x x x

x
x x x

− +⎡ ⎤
Λ = ⎢ ⎥− + − +⎣ ⎦

 

Therefore, according to Lemma 4.1 the Riccati differential 
equation (23) has a bounded solution.  

For a numerical solution of the stochastic differential 
equations (1), (2) and (23), the stochastic version of Heun's 
method is employed. For the numerical simulations, one case 
with bounded estimation error and two cases with divergent 
estimation error were considered. For all three cases, we 
simply select as ( )Q t I= , ( ) 1R t = , (0)P I= , T(0) [0.8 0.2]x = . 

TABLE I 
INITIAL VALUES AND NOISE-WEIGHTING MATRICES  

FOR THE NUMERICAL SIMULATION 

 
Small initial 

error and small 
noise 

Large noise Large initial 
error 

(0)x  T[0.5 0.5]  T[0.5 0.5]  T[1.5 1.5]  
( )L t  0.1  0.1  0.1  
( )V t  0.1  2  0.1  

Error Behavior Bounded Divergent Divergent 
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(a) small initial error and small noise 
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(b) large initial error 
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(c) large initial error 

Fig.1. The state component 1( )x t  and its estimation with the EKBF and the 
UKBF for the example system. 

The stochastic differential equations considered are solved 
numerically using the Heun discretization with step size 

310t −Δ = . The remaining matrices ( )L t  and ( )V t , as well as the 
initial value ˆ(0)x , are chosen particularly for each of the three 
cases and are shown in Table I. The following cases were 
considered: small initial error and small noise, large noise as 
well as large initial error. The simulation results are depicted 
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in Figs. 1-2, where sample paths for the unknown state 1( )x t  
and the estimated state 1̂( )x t , as well as for the estimation error 

1( )tζ , are plotted against time t. 
It can be seen in Figs. 1 and 2 that for small initial error and 

small noise (37)-(39) or (75)-(77), respectively, the estimation 
error remains bounded. However, if the initial estimation error 
or the disturbing noise is large, (37)-(39) or (75)-(77) are 
violated respectively, then the estimation error is no longer 
bounded, as verified in Figs. 1(a) and 2(a). Because of the 
high nonlinearities of the example system considered, the 
error is divergent as verified in Figs. 1 (b)-(c) and 2 (b)-(c). 

The numerical simulations have shown that the estimation 
error is bounded if || (0) || 0.4ζ ≤  and T( ) ( ) 0.01L t L t I≤ , 

T( ) ( ) 0.01V t V t I≤  is fulfilled. However, estimating ε  and δ  via 
(61) and (63) yields much smaller values for the bounds. For a 
considered compact subset K nR∈  with K { | || || 3}nx R x= ∈ ≤  one 
obtains 41.4 10ε −≤ ×  and 145 10δ −≤ × , respectively.  
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(a) small initial error and small noise 
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(b) large initial error 
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(c) large initial error 

Fig.2. The estimation error 1( )tξ  with the EKBF and the UKBF for the 
example system. 

VI. CONCLUSION 
In this paper the behavior of the estimation error for the 

derived nonlinear continuous-time UKBF has been examined. 
It has been shown that, under certain conditions, the 
estimation error is bounded in mean square and stochastically 
sample-path bounded. This fact is embodied in the theorems 
3.1 and 4.1 in Sections 3 and 4. To obtain the error bounds, a 
good initial guess is required, along with small noise terms, 
and the original nonlinear stochastic system must be uniformly 

detectable, from which we can get a bounded solution for the 
Riccati differential equation. In Section 5 it has been shown by 
numerical simulations that, for systems with severe 
nonlinearities, these assumptions are, although restrictive, 
often necessary. The numerical simulations verify that the 
estimation error remains bounded for small initial errors and 
small noise terms, moreover they indicate that the error is 
divergent for large initial errors or large noise power. 
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