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Abstract— This is a continuation of our preceding study
dealing with robust stabilizing controller synthesis for un-
certain discrete-time linear periodic/time-invariant systems.
In this preceding study, we dealt with the case where the
underlying systems are affected by polytopic-type uncertainties
and revealed a particular periodically time-varying dynamical
controller (PTVDC) structure that allows LMI-based robust
stabilizing controller synthesis. Based on these preliminary
results, in this paper, we provide LMI conditions for robust
H2 and H∞ PTVDC synthesis. One of the salient features of
the proposed method is that we can reduce the conservatism
and improve the control performance gradually by increasing
the period of the controller to be designed. In addition, we prove
rigorously that the proposed design method encompasses the
well-known extended-LMI-based design methods as particular
cases. Through numerical experiments, we illustrate that our
design method is indeed effective to achieve less conservative
results under both the periodic and time-invariant settings.
keywords: Robust control, periodic systems, polytopic uncer-
tainties, linear matrix inequalities.

I. INTRODUCTION

Robust performance analysis and controller synthesis for
linear systems affected by parametric uncertainties have been
a challenging topic in the community of control theory.
As for the robust performance analysis, we have observed
drastic theoretical advances in the past few years, and those
linear matrix inequality (LMI) approaches [20], [21] based
on the idea of sum-of-squares (SOS) decomposition of
positive polynomials [16] are surely effective to achieve exact
analysis results in an asymptotic fashion. These approaches
can be more strengthened in conjunction with the exactness
verification tests suggested in [19], [20], [9], which are also
closely related to the dual of the SOS approach known with
the name of the theory of moments [14], [12], [13].

Unfortunately, however, these powerful LMI-based results
do not preserve convexity when we deal with robust con-
troller synthesis problems. Due to this technical reason, the
best synthesis result available in the literature dates back
to de Oliveira et al. [6] appeared in the late 90’s, where
the authors investigated robust static state-feedback stabi-
lization problems of discrete-time linear time-invariant (LTI)
systems subject to polytopic uncertainties. More specifically,
the authors provided an “extended” LMI that characterizes
Schur stability of a matrix, which enables us to design
robust controllers in a less conservative fashion than the
quadratic-stability-based approach [2]. The result in [6] was
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successfully extended to other control problems such as
robust performance synthesis [7]. Recently, Arzelier et al. [1]
and Farges et al. [11] showed an intriguing extensions of [6],
[7] to robust controller synthesis of uncertain periodic sys-
tems. Similarly to the LTI case, less conservative extended-
LMI-based synthesis methods of periodically time-varying
static controllers were suggested. The papers [1], [11] also
well describe the motivation to consider discrete-time linear
periodic systems/controllers.

Even though the approaches in [6], [7], [1], [11] are
promising, they are still conservative and leave plenty of
room for improvement. Nevertheless, if we persist in static
controller synthesis, it is really hard to obtain a system-
atic single-shot LMI-based design method that outperforms
these existing results. This is the motivation of our preced-
ing study in [10], where we dealt with robust stabilizing
controller synthesis problems for polytopic-type uncertain
linear periodic/time-invariant systems and revealed a particu-
lar periodically time-varying dynamical controller (PTVDC)
structure that allows LMI-based synthesis.

Our goal in this paper is to extend these preceding results
to robust H2 and H∞ PTVDC synthesis. To this end,
we firstly consider a periodic system that has a particular
structure. Similarly to [10], the analysis of this particularly
structured periodic system brings us some important insights
for the desired structure of the PTVDCs that allows LMI-
based synthesis. One of the salient features of the proposed
design method is that we can reduce the conservatism and
improve the control performance gradually by increasing the
period of the controller to be designed. In addition, we prove
rigorously that the proposed design method encompasses the
well-known extended-LMI-based design methods as particu-
lar cases. Through numerical experiments, we illustrate that
our design method is indeed effective to achieve less con-
servative results under both the periodic and time-invariant
system settings. We should remind that this is achieved at the
expense of increased computational burden and complexity
of the controller structure.

We use the following notations. For given two integers
k and N , we denote by �k�N the remainder of k divided
by N . The set of symmetric matrices and positive-definite
symmetric matrices of the size n are denoted by Sn and
Pn, respectively. For a matrix A ∈ Rn×m with rank(A) =
r < n, A⊥ ∈ R(n−r)×n is a matrix such that A⊥A = 0
and A⊥A⊥T > 0. For a real square matrix A, we define
He{A} := A + AT . The convex hull of the collection of L
elements A[1], · · · , A[L] is denoted by co{A[1], · · · , A[L]}.

In this paper, we make extensive use of the next lemma.
Lemma 1: [10] For given P ∈ Sn, Q,S ∈ Sm, R ∈ Sl,
V ∈ Rn×m and W ∈ Rm×l, the following conditions are
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equivalent.
1) There exists X ∈ Sm such that[

P V
V ∗ Q + X

]
≺ 0,

[
S −X W
W ∗ R

]
≺ 0. (1)

2) The following condition holds:⎡⎣ P V 0
V ∗ Q + S W
0 W ∗ R

⎤⎦ ≺ 0. (2)

II. PERIODIC SYSTEMS OF PARTICULAR STRUCTURE

Let us consider the discrete-time N -periodic system that
has the following particular structure:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1 =
�k�N∑
j=0

(Ak,jxk−j + Bk,jwk−j),

zk =
�k�N∑
j=0

(Ck,jxk−j + Dk,jwk−j).

(3)

Here, xk ∈ Rn wk ∈ Rmw and zk ∈ Rlz . For all k ≥ 0
and j ≥ 0, the matrices Ak,j , Bk,j , Ck,j and Dk,j are N -
periodic, i.e., Ak+N,j = Ak,j , etc. Contrary to the standard
state-space description of periodic systems, those matrices
Ak,j , Bk,j , Ck,j and Dk,j with j ≥ 1 are non zero. These
add to the dynamics delayed effects of some previous states
and inputs, only of those located in the same period: j ∈
[1, �k�N ]. Similarly to [10], the analysis of this particularly
structured system brings us important insights for the desired
structure of the PTVDCs to presented in the next section.

To discuss with simplicity the proposed modeling, let us
consider the 2-periodic case. Then the equations (3) become{

xk+1 = A0,0xk + B0,0wk,
zk = C0,0xk + D0,0wk

when k is even and{
xk+1 = A1,0xk + A1,1xk−1 + B1,0wk + B1,1wk−1,
zk = C1,0xk + C1,1xk−1 + D1,0wk + D1,1wk−1

when k is odd. Such model may be seen as a standard
periodic system at the expense of adding ”hidden” states ξx,k

and ξw,k corresponding to the delayed dynamics. Namely,
with the augmented state ζk = [xT

k ξT
x,k ξT

w,k]T , we can
rewrite (3) into the standard state-space form as follows:{

ζk+1 = Akζk + Bkwk,

zk = Ckζk + Dkwk,
(4)

[
A0 B0

C0 D0

]
:=

⎡⎣ A0,0 0 0 B0,0
1 0 0 0
0 0 0 1

C0,0 0 0 D0,0

⎤⎦ ,

[
A1 B1

C1 D1

]
:=

⎡⎣ A1,0 A1,1 B1,1 B1,0
0 0 0 0
0 0 0 0

C1,0 C1,1 D1,1 D1,0

⎤⎦ .

(5)

To assess the performance of this system, we can readily
apply the discrete-time system lifting [5] so that we can
obtain an equivalent LTI representation of the form⎧⎪⎨⎪⎩

ζ̂k+1 = A1A0 ζ̂k +
[

A1B0 B1

]
ŵk,

ẑk =
[

C0

C1A0

]
ζ̂k +

[
D0 0

C1B0 D1

]
ŵk.

(6)

Here, ζ̂k ∈ R2n+mw , ŵk ∈ R2mw and ẑk ∈ R2lz . In
particular, we see from (5) that the state-space matrices in
(6) are structured as⎡⎣ A1A0 A1B0 B1

C0 D0 0
C1A0 C1B0 D1

⎤⎦ =⎡⎢⎢⎢⎣
A1,0A0,0 + A1,1 0 0 A1,0B0,0 + B1,1 B1,0

0 0 0 0 0
0 0 0 0 0

C0,0 0 0 D0,0 0
C1,0A0,0 + C1,1 0 0 C1,0B0,0 + D1,1 D1,0

⎤⎥⎥⎥⎦ .

From this particular structure, it is apparent that those
”hidden” states are actually stable and do not bring any
concrete contribution. Thus (6) can be reduced into{

x̂k+1 = Â2x̂k + B̂2ŵk,

ẑk = Ĉ2x̂k + D̂2ŵk

, (7)

[
Â2 B̂2

Ĉ2 D̂2

]
:=

⎡⎣ A1,0A0,0 + A1,1 A1,0B0,0 + B1,1 B1,0

C0,0 D0,0 0
C1,0A0,0 + C1,1 C1,0B0,0 + D1,1 D1,0

⎤⎦
where x̂k ∈ Rn. Consequently, we can assess the perfor-
mance of the periodic system (3) by investigating this LTI
system.

Even though we have restricted our attention to the 2-
periodic case, similar results readily follow for any models
such as (3). Namely, it is always possible to derive an
equivalent LTI representation of the form{

x̂k+1 = ÂN x̂k + B̂N ŵk,

ẑk = ĈN x̂k + D̂N ŵk

(8)

where x̂k ∈ Rn, ŵk ∈ RNmw and ẑk ∈ RNlz .
We denote the transfer matrix of this LTI system by
TN,ẑŵ(z). In addition, for compact notation, we define AN ∈
R(N+1)n×Nn, BN ∈ R(N+1)n×Nmw , CN ∈ RNlz×Nn,
DN ∈ RNlz×Nmw , ACk ∈ R((k+1)n+lz)×(k+1)n and
BDk ∈ R((k+1)n+lz)×(k+1)mw (k = 0, · · · , N − 1) by

AN :=

2
666666664

AN−1,0 AN−1,1 · · · · · · AN−1,N−1−1 AN−2,0 AN−2,1 · · · AN−2,N−2

0 −1
. . .

...
...

. . .
. . .

. . .
...

... −1 A0,0
0 · · · · · · 0 −1

3
777777775

,

BN :=

2
666666664

BN−1,0 BN−1,1 · · · · · · BN−1,N−1
0 BN−2,0 BN−2,1 · · · BN−2,N−2

...
. . .

. . .
...

...
. . .

. . .
...

...
. . . B0,0

0 · · · · · · · · · 0

3
777777775

,

CN :=

2
666664

CN−1,0 CN−1,1 · · · · · · CN−1,N−1
0 CN−2,0 CN−2,1 · · · CN−2,N−2

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · 0 C0,0

3
777775 ,
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DN :=

2
666664

DN−1,0 DN−1,1 · · · · · · DN−1,N−1
0 DN−2,0 DN−2,1 · · · DN−2,N−2

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · 0 D0,0

3
777775 ,

ACk :=

2
666666664

Ck,0 Ck,1 · · · · · · Ck,k−1 Ak−1,0 Ak−1,1 · · · Ak−1,k−1

0 −1
. . .

...
...

. . .
. . .

. . .
...

... −1 A0,0
0 · · · · · · 0 −1

3
777777775

,

BDk :=

2
666666664

Dk,0 Dk,1 · · · · · · Dk,k
0 Bk−1,0 Bk−1,1 · · · Bk−1,k−1

...
. . .

. . .
...

...
. . .

. . .
...

...
. . . B0,0

0 · · · · · · · · · 0

3
777777775

.

Under these notations, we can state the next results.
Lemma 2 (Generalized H2 Performance): Let us denote
the generalized H2 norm of the N -periodic system (3)
by γN . Then, γN < γ holds if and only if there exist
X0 ∈ Pn, F ∈ RNn×(N+1)n, Zk ∈ Plz and Fk ∈
R(k+1)n×((k+1)n+lz) (k = 0, · · · , N − 1) such that⎡⎣−X0 0 0

0 0(N−1)n 0
0 0 X0

⎤⎦ + BNBN
T + He{ANF} ≺ 0, (9a)⎡⎣−Zk 0 0

0 0kn 0
0 0 X0

⎤⎦ + BDkBDT

k + He{ACkFk} ≺ 0

(k = 0, · · · , N − 1),

(9b)

1
N

trace

(
N−1∑
k=0

Zk

)
< γ2. (9c)

Lemma 3 (H∞ Performance): Let us denote the H∞
norm of (3) by νN . Then, νN < ν holds if and only if there
exist X0 ∈ Pn and F∞ ∈ RNn×(N(n+lz)+n) such that⎡⎢⎣−X0 0 0 0

0 0(N−1)n 0 0
0 0 X0 0
0 0 0 −ν21Nlz

⎤⎥⎦ +
[ BN

DN

] [ BN

DN

]T

+He
{[AN

CN

]
F∞

}
≺ 0.

(10)

Similarly to the LTI case, these criteria are reasonable
measure to assess the performance of periodic systems.

Once we have constructed the equivalent LTI system (8),
it should be obvious from the above observation that we can
characterize the H2 and H∞ performances of the system (3)
via LMIs by simply writing down {ÂN , B̂N , ĈN , D̂N} in
(8) using Ak,j (k = 0, · · · , N − 1, j = 0, . . . , k), etc, and
applying LMI results for the LTI systems. The importance
of Lemmas 2 and 3 lies in the fact that those LMIs can be
rewritten equivalently as in (9) and (10), where these LMIs
are in particular convex with respect to all of the coefficient
matrices Ak,j (k = 0, · · · , N − 1, j = 0, · · · , k), etc. The
proofs of these lemmas are strongly inspired from [8] and
omitted here due to limited space.

III. STATE-FEEDBACK PTVDC SYNTHESIS

A. PTVDC Synthesis for Periodic Systems
Let us consider the “standard” N -periodic system de-

scribed by{
xk+1 = Akxk + Bkwk + Ekuk,
zk = Ckxk + Dkwk + Fkuk.

(11)

For this system, the controller discussed in [1], [11] is the
N -periodic static state-feedback controller of the form

uk = Kkxk, Kk+N = Kk (∀k ≥ 0). (12)

Contrary to this conventional controller structure, here we are
interested in designing N -periodic dynamical controllers. In
particular, motivated by the analysis results in Section II, we
are interested in the N -PTVDC of the form

uk =
�k�N∑
j=0

Kk,jxk−j Kk+N,j = Kk,j (∀k ≥ 0). (13)

This controller is obviously causal, and surely dynamical
with (hidden) states of dimension (N − 1)n. It is also
obvious that (13) reduces to (12) if we let Kk,0 = Kk and
Kk,j = 0 (j �= 0). From (11) and (13), the closed-loop
system is described by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1 =
�k�N∑
j=0

(Acl
k,jxk−j + Bcl

k,jwk−j),

zk =
�k�N∑
j=0

(Ccl
k,jxk−j + Dcl

k,jwk−j),

(14)

Acl
k,0 := Ak + EkKk,0, Acl

k,j := EkKk,j (j �= 0)
Bcl

k,0 := Bk, Bcl
k,j := 0 (j �= 0),

Ccl
k,0 := Ck + FkKk,0, Ccl

k,j := FkKk,j (j �= 0)
Dcl

k,0 := Dk, Dcl
k,j := 0 (j �= 0).

We note that this closed-loop system has exactly the same
structure as (3). Thus, we can apply Lemmas 2 and 3 to
assess its performance. To this end, let us denote by Acl

N the
matrix resulting from AN with Ak,j replaced by Acl

k,j . We

also introduce Bcl
N , Ccl

N , Dcl
N , ACcl

N and BDcl

N in a obvious
fashion. Then, we can obtain matrix inequality conditions to
assess the performance of the closed-loop system (14) by
simply replacing AN by Acl

N and so on in (9) and (10).
Unfortunately, those inequalities resulting from (9) and

(10) are not suitable for controller synthesis due to bilinear
terms among Kk,j (k = 0, · · · , N−1, j = 0, · · · , k) and F ,
Fk (k = 0, · · · , N − 1), F∞. To get around this difficulty,
by following [10], we consider to restrict the structure of F ,
Fk (k = 0, · · · , N − 1) and F∞. Then, we can obtain the
next results that provide LMIs for PTVDC synthesis.
Theorem 1 (H2 PTVDC Synthesis): Let us denote by γN

the generalized H2 norm of the closed-loop system (14)
constructed from (11) and (13). Then, γN < γ holds if
there exist X0 ∈ Pn, Zk ∈ Plz and Gk ∈ Rn×n (k =
0, · · · , N − 1) such that⎡⎣−X0 0 0

0 0(N−1)n 0
0 0 X0

⎤⎦ + Bcl
NBcl

N

T
+ He{Acl

NG} ≺ 0, (15a)
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⎡⎣−Zk 0 0
0 0kn 0
0 0 X0

⎤⎦ + BDcl

k BD
cl

k

T
+ He{ACcl

k Gk} ≺ 0

(k = 0, · · · , N − 1),

(15b)

1
N

trace

(
N−1∑
k=0

Zk

)
< γ2, (15c)

G :=
[

0Nn,n block-diag(GN−1, · · · , G0)
]
,

Gk :=
[

0(k+1)n,lz block-diag(Gk, · · · , G0)
]

(k = 0, · · · , N − 1).
The matrix inequalities in (15) can be reduced into LMIs via
change of variables Yk,j = Kk,jGk−j .
Theorem 2 (H∞ PTVDC Synthesis): Let us denote by νN

the H∞ norm of the closed-loop system (14) constructed
from (11) and (13). Then, νN < ν holds if there exist X0 ∈
Pn and Gk ∈ Rn×n (k = 0, · · · , N − 1) such that⎡⎢⎣−X0 0 0 0

0 0(N−1)n 0 0
0 0 X0 0
0 0 0 −ν21Nlz

⎤⎥⎦ +
[ Bcl

N

Dcl
N

] [ Bcl
N

Dcl
N

]T

+He
{[Acl

N

Ccl
N

]
G∞

}
≺ 0,

(16)

G∞ :=
[
0Nn,n block-diag(GN−1, · · · , G0) 0Nn,Nlz

]
.

The matrix inequalities in (16) can be reduced into LMIs via
change of variables Yk,j = Kk,jGk−j .

In the above theorems, those LMIs (15) and (16) are
derived by restricting the slack variables in (9) and (10). We
emphasize that these restrictions have been done in such a
sound way that the resulting LMIs (15) and (16) for PTVDC
synthesis encompass the corresponding extended-LMI-based
static controller synthesis. To see this, let us consider the H∞
controller synthesis problem for the N -periodic system (11).
We see from [3], [4] and the extended-LMI-based approach
in [6], [7] that the static controller (12) satisfying νN < ν
exists iff there exist Xk, Gk, Yk,0 (k = 0, · · · , N − 1) such
that the following LMIs hold:⎡⎣−Xk+1 0 0

0 −ν21lz 0
0 0 Xk

⎤⎦ +

⎡⎣ Bk

Dk

0

⎤⎦⎡⎣ Bk

Dk

0

⎤⎦T

+He

⎧⎨⎩
⎡⎣AkGk + EkYk,0

CkGk + FkYk,0

−Gk

⎤⎦ [
0 0 1n

]⎫⎬⎭ ≺ 0.

(17)

Here, k = 0, · · · , N − 1 and XN = X0. If these LMIs
are satisfied, the desired feedback gains can be obtained by
Kk = Yk,0G

−1
k (k = 0, · · · , N − 1).

To reveal a connection between (16) and (17), let us
consider the case where N = 2 and apply Lemma 1 to the
two inequalities in (17). Then, we see that (17) holds if and
only if there exist X0, Gk, Yk,0 (k = 0, 1) such that2
6664
−X0 0 0 0 0
0 −ν21lz 0 0 0
0 0 0 0 0
0 0 0 −ν21lz 0
0 0 0 0 X0

3
7775 +

2
664

B1 0
D1 0
0 B0

0 D0

0 0

3
775

2
664

B1 0
D1 0
0 B0

0 D0

0 0

3
775

T

+He

8>><
>>:

2
664

A1G1 + E1Y1,0 0
C1G1 + F1Y1,0 0

−G1 A0G0 + E0Y0,0

0 C0G0 + F0Y0,0

0 −G0

3
775

»
0 0 1n 0 0
0 0 0 0 1n

–9>>=
>>; ≺ 0.

(18)

Applying a congruence transformation, we see that (18)
reduces to (16) with exactly the same X0, Gk, Yk,0 (k =
0, 1) and Y1,1 = 0.

We can confirm that similar results do follow in the
general N -periodic cases. Namely, if (17) holds with
Xk, Gk, Yk,0 (k = 0, · · · , N − 1), then (16) holds with
the identical X0, Gk, Yk,0 (k = 0, · · · , N − 1) and Yk,j =
0 (j �= 0). It follows that, when we deal with the uncertainty-
free system (11), the restriction on the slack variable in
Theorem 2 does not introduce any conservatism and the
LMI (16) corresponds to a necessary and sufficient condition
for the existence of the desired static controller of the
form (12). Similar comments also apply to the LMI (15) in
Theorem 1. This point is crucial to ensure explicit advantages
of the PTVDCs when dealing with robust controller synthesis
problems for polytopic-type uncertain systems. As we see
in the next subsection, the extra freedom introduced by
Kk,j (j �= 0) can be used to obtain more sharpened results
in comparison with [6], [7], [1], [11].

B. Robust PTVDC Synthesis

Now we are ready to state an explicit advantage of the
PTVDC (13) over the conventional form (12). To this end,
let us consider the case where the system (11) is subject to
a polytopic uncertainty given in the following:

Mk :=
[

Ak Bk Ek

Ck Dk Fk

]
,

M[l]
k =

[
A

[l]
k B

[l]
k E

[l]
k

C
[l]
k D

[l]
k F

[l]
k

]
(l = 1, · · · , L),⎡⎢⎣ M0

...
MN−1

⎤⎥⎦ ∈ co

⎧⎪⎨⎪⎩
⎡⎢⎣ M[1]

0
...

M[1]
N−1

⎤⎥⎦ , · · · ,

⎡⎢⎣ M[L]
0
...

M[L]
N−1

⎤⎥⎦
⎫⎪⎬⎪⎭ .

(19)

Here, M[l]
k (k = 0, · · · , N − 1, l = 1, · · · , L) are given

matrices that define the vertices of the polytope.
1) Advantage of PTVDCs: For concrete illustration, let us

consider the robust H∞ state-feedback controller synthesis
problem. If we seek for the robust static controller of the
form (12), the following LMIs readily follow from the
extended LMI (17):⎡⎣−X

[l]
k+1 0 0
0 −ν21lz 0
0 0 X

[l]
k

⎤⎦ +

⎡⎣B
[l]
k

D
[l]
k
0

⎤⎦⎡⎣B
[l]
k

D
[l]
k
0

⎤⎦T

+He

⎧⎨⎩
⎡⎣A

[l]
k Gk + E

[l]
k Yk,0

C
[l]
k Gk + F

[l]
k Yk,0

−Gk

⎤⎦ [
0 0 1n

]⎫⎬⎭ ≺ 0.

(20)

Here, k = 0, · · · , N − 1, l = 1, · · · , L and X
[l]
N = X

[l]
0 (l =

1, · · · , L). If these LMIs hold, the desired feedback gains
are obtained by Kk = Yk,0G

−1
k (k = 0, · · · , N − 1).

On the other hand, it is obvious from (16) that we can
design robust H∞ PTVDC of the form (13) by solving the
LMIs resulting from Yk,j = Kk,jGk−j (k = 0, · · · , N −
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1, j = 0, · · · , k) in⎡⎢⎢⎢⎣
−X

[l]
0 0 0 0

0 0(N−1)n 0 0
0 0 X

[l]
0 0

0 0 0 −ν21Nlz

⎤⎥⎥⎥⎦+

[
Bcl[l]

N

Dcl[l]
N

] [
Bcl[l]

N

Dcl[l]
N

]T

+He

{[
Acl[l]

N

Ccl[l]
N

]
G∞

}
≺ 0.

(21)

Here, again k = 0, · · · , N − 1 and l = 1, · · · , L. Those
matrices Acl[l]

N , Bcl[l]
N , Ccl[l]

N and Dcl[l]
N are readily defined from

Acl
N , Bcl

N , Ccl
N and Dcl

N , respectively, by simply replacing Ak

by A
[l]
k , etc. If the LMIs in (21) hold, the desired feedback

gains in (13) can be obtained by Kk,j = Yk,jG
−1
k−j (k =

0, . . . , N − 1, j = 0, · · · , k).
By comparing (20) and (21), it is obvious from the

discussion in the preceding subsection that if (20) holds, then
(21) holds with exactly the same X

[l]
0 (l = 1, · · · , L), Gk,

Yk,0 (k = 0, · · · , N − 1) and Yk,j = 0 (j �= 0). Hence, in
the context of robust H∞ controller synthesis for polytopic-
type uncertain systems, we can obtain no more conservative
results by (21). In fact, the PTVDC synthesis based on (21)
and its counterpart for the robust H2 synthesis is surely
effective as we see in the next examples.

2) Numerical Examples: To illustrate the effectiveness of
the suggested PTVDCs, we solved the robust H2 controller
synthesis problem discussed in [11] 1. Before proceeding
to numerical computation, we briefly outline the advantage
of the PTVDC synthesis over the static controller design
suggested in [11].

For the uncertainty-free system (11), the next extend-LMIs
are suggested in [11] to design a periodically time-varying
static state-feedback H2 controller of the form (12).[

BkBT
k − Xk+1 AkGk + EkYk,0

∗ Xk − Gk − GT
k

]
≺ 0, (22a)

[
DkDT

k − Zk CkGk + FkYk,0

∗ Xk − Gk − GT
k

]
≺ 0, (22b)

1
N

trace

(
N−1∑
k=0

Zk

)
< γ2. (22c)

Here, k = 0, · · · , N − 1 and XN = X0. If these LMIs
hold, the feedback gains in (12) are obtained by Kk =
Yk,0G

−1
k (k = 0, · · · , N − 1). These LMIs may seem

completely different from (15) for PTVDC synthesis. How-
ever, by applying Lemma 1 repeatedly, we can prove that
if (22) holds, then (15) holds with exactly the same X0,
Zk, Gk, Yk,0 (k = 0, · · · , N − 1) and Yk,j = 0 (j �= 0).
For example, in the case of period two, the two LMIs in
(22a) in conjunction with Lemma 1 leads to (15a) (with
Yk,j = 0 (j �= 0)). The first LMI in (22b) is nothing but the
first one in (15b). Finally, it is apparent that the second LMI
in (22b) and the first one in (22a) ensures the second LMI in
(15b) (with Yk,j = 0 (j �= 0). Similar observations are also

1All LMI computations in this paper are carried out with YALMIP [15].

valid in the general N -periodic case. This clearly indicates
that, under the robust H2 synthesis setting for polytopic
systems, we can obtain no more conservative results by (the
robust version of) (15).

To illustrate this point practically, we solved the robust
H2 state-feedback synthesis problem for uncertain 3-periodic
system discussed in Section 5 of [11]. This system has
two uncertain parameters α and β and thus modeled as a
polytopic-type uncertain system with four vertices. By letting
the margin of the variation of α as |α| ≤ ᾱ and β as
0 ≤ β ≤ 1, we minimized γ subject to (15) evaluated on all
four vertices of the polytope. The resulting value for ᾱ = 0.1
was γ2 = 2.3795. If we enforce Kk,j = 0 (j �= 0) and
seek for a static controller of the form (12), we obtained
γ2

s = 2.7513. On the other hand, if ᾱ = 0.3, we obtained
γ2 = 3.6591 whereas γ2

s = 5.2173. Finally, if we let
ᾱ = 0.5, we obtained γ2 = 10.5923 whereas (15) was
identified to be infeasible if we let Kk,j = 0 (j �= 0).
These results clearly illustrate the effectiveness of designing
PTVDCs.

C. Application to LTI System Synthesis
The goal of this subsection is to clarify that the suggested

PTVDC structure and the associated LMI-based synthesis
method are promising for LTI system synthesis as well. It is
of course meaningless to consider the complicated controller
structure (13) for nominal system synthesis. However, when
we consider such “difficult” problems as robust controller
synthesis for polytopic uncertain systems [6], [7] to which
definite solution is not currently available, the PTVDCs
bring some improvements over the existing methods (at the
expense of complicated controller structure).

1) PTVDC Synthesis via LTI System Lifting: Let us con-
sider the polytopic-type uncertain LTI system described by{

xk+1 = Axk + Bwk + Euk,

zk = Cxk + Dwk + Fuk

(23)

where[
ABE

CDF

]
∈ co

{[
A[1]B[1]E[1]

C [1]D[1]F [1]

]
, · · · ,

[
A[L]B[L]E[L]

C [L]D[L]F [L]

]}
.

To design a robust LTI controller of the form uk = Kxk,
we can readily apply the extended-LMI-based method shown
in [6], [7]. On the other hand, by artificially regarding this
LTI system as N -periodic (i.e, Ak = A (k = 0, · · · , N − 1)
and so on in (11)), we can apply Theorem 1 and Theorem 2
to design robust PTVDC of the form (13). The advantage
of the PTVDC synthesis over the extended-LMI-based LTI
controller synthesis is obvious and can be stated exactly in
the same fashion as in the preceding periodic system case.

It is reported in [10] that we can robustly stabilize an
uncertain LTI system by designing PTVDC even in the case
where the extended LMIs for LTI controller synthesis [6] fail.
In the following, we illustrate the effectiveness of PTVDC
design over LTI controller design [6], [7] in the context of
robust H2 controller synthesis.

2) Numerical Examples: Let us consider the polytopic-
type uncertain LTI system (23) with two vertices where
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A[1] =

"−0.2 −0.4 0.5
−0.6 0.1 0.7

0.4 0.2 −0.5

#
, A[2] =

"−0.2 0.0 −0.4
0.9 0.5 0.2

−0.2 −0.3 −0.8

#
,

B[1] = B[2] =

"−0.4
−0.2

0.6

#
, E[1] = E[2] =

"
0.2
0.5
0.2

#
,

C [1] =C [2] =

"
100
010
000

#
, D[1] =D[2] =

"
0
0
0

#
, F [1] =F [2] =

"
0
0
1

#
.

For this system, we first designed a robust static state-
feedback controller of the form uk = Kxk by following
the extended-LMI-based method in [7]. Then, we obtained
an upper bound of the H2 norm γ1 = 60.1640 and the gain

K =
[

1.2649 −0.1503 −1.1286
]
.

The CPU time was 0.24 [sec]. Next, we artificially con-
structed an equivalent N -periodic system and designed a
robust PTVDC based on (15). Then, for N = 2, · · · , 6,
we obtained upper bounds γ2 = 30.6074, γ3 = 24.4013,
γ4 = 23.3218, γ5 = 22.7163 and γ6 = 22.3195. The CPU
time were 0.32, 0.42, 0.59, 0.81 and 1.07 [sec], respectively.
The PTVDC gains for the case N = 3 are as follows:

K0,0 =
[

1.2652 0.2190 −1.3953
]
,

K1,0 =
[

1.0524 0.4969 −0.8226
]
,

K1,1 =
[ −1.0203 −0.5147 0.2790

]
,

K2,0 =
[

1.0311 0.4869 −0.9831
]
,

K2,1 =
[ −0.9679 −0.5641 0.2707

]
,

K2,2 =
[

0.2924 0.1208 0.0902
]
.

In this numerical example, we successfully gained drastic
improvement by designing PTVDCs.

IV. CONCLUSION

In this paper, we proposed an LMI-based method to
design periodically time-varying dynamical state-feedback
controllers for discrete-time uncertain linear periodic/time-
invariant systems. Through numerical experiments, we con-
firmed that the suggested design method is indeed effective to
obtain less conservative results than the existing approaches.
We also showed that, by applying discrete-time system lifting
repeatedly, we can gradually reduce the conservatism (at
the expense of the increased computational burden and the
complexity of the controllers). This is a striking feature of the
present approach, and we stress that such successful reduc-
tion of the conservatism has been done without resorting to
cumbersome iterative computations. Another reason why we
have continuing interest in convex formulation is that, once
we have obtained convex problem, we can readily consider
its dual. In the future work, it is expected that we can verify
the exactness of the designed controllers by means of the
dual LMI and the exactness verification tests [19], [20], [9].

These synthesis results were derived from the LMI-based
analysis results for particularly structured periodic systems.
Those LMIs are also of prime importance when dealing
with robustness analysis problems and should deserve for
independent research. In our ongoing study [18], this topic is
fully investigated in conjunction with the idea of descriptor-
like system representation [17].
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