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Abstract— This is the first part of a two-part paper on
collective motion from consensus with Cartesian coordinate
coupling. Collective motions including rendezvous, circular
patterns, and logarithmic spiral patterns can be achieved by
introducing Cartesian coordinate coupling to existing consensus
algorithms. In this first part, we study the collective motions of
a team of vehicles in 3D by introducing a rotation matrix to an
existing consensus algorithm for single-integrator kinematics.
It is shown that both the network topology and the value
of the Euler angle affect the resulting collective motions.
We show that when the nonsymmetric Laplacian matrix has
certain properties and the Euler angle is below, equal, or
above a critical value, the vehicles will eventually rendezvous,
move on circular orbits, or follow logarithmic spiral curves.
In particular, when the vehicles eventually move on circular
orbits, the relative radius of the orbits (respectively, the relative
phase of the vehicles on their orbits) is equal to the relative
magnitude (respectively, the relative phase) of the components
of a right eigenvector associated with a critical eigenvalue of
the nonsymmetric Laplacian matrix. Simulation results are
presented to demonstrate the theoretical results.

I. INTRODUCTION

Coordination of robotic networks has received significant

attention in recent years due to its potential impact in nu-

merous civilian, homeland security, and military applications.

Examples include space-based interferometry, environment

monitoring, border patrol, and search and rescue. Consensus

plays an important role in achieving distributed coordination

(see [1] and references therein). The basic idea of consensus

is that a team of vehicles reaches an agreement on a common

value by negotiating with their neighbors.

Related to consensus is the cyclic pursuit strategy, where

each vehicle pursues only one other vehicle with the network

topology forming a unidirectional ring. Cyclic pursuit is

studied for single-integrator kinematics in [2], [3] while for

wheeled vehicles subject to nonholonomic constraints in [4],

[5]. Ref. [6] generalizes the cyclic pursuit strategy by letting

each vehicle pursue one other vehicle along the line of sight

rotated by a common offset angle. It is shown that depend-

ing on the common offset angle, the vehicles can achieve

different symmetric formations, namely, convergence to a

single point, a circle, or a logarithmic spiral pattern. Other

researchers also study symmetric formations by adopting

models based on the Frenet-Serret equations of motion [7]

or by exploring the connections between phase models of
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coupled oscillators and kinematic models of self-propelled

particle groups [8].

Motivated by [6], we introduce Cartesian coordinate cou-

pling to existing consensus algorithms. In particular, the

Cartesian coordinates of the relative positions of neighboring

vehicles are coupled through a rotation matrix in the resulting

algorithms. This is the first part of a two-part paper. In this

part, we consider the case of single-integrator kinematics

while the case of double-integrator dynamics will be dealt

with in the second part [9]. In contrast to the existing con-

sensus algorithms for single-integrator kinematics, where the

Cartesian coordinates of a vehicle are decoupled, different

collective motions can result from the Cartesian coordinate

coupling. In contrast to [6], which focuses on a unidirectional

ring topology in 2D for single-integrator kinematics, this first

part of the paper studies the collection motions resulting

from the Cartesian coordinate coupling for single-integrator

kinematics over a general network topology in 3D.

The contributions of this first part of the paper are as

follows. We study the convergence properties of a consensus

algorithm with a rotation matrix introduced in 3D for single-

integrator kinematics over a general network topology. We

show that both the network topology and the value of the

Euler angle affect the resulting collective motions. We show

that when the nonsymmetric Laplacian matrix has certain

properties and the Euler angle is below, equal, or above a

critical value, the vehicles will eventually rendezvous, move

on circular orbits, or follow logarithmic spiral curves. In

particular, when the vehicles eventually move on circular

orbits, the relative radius of the orbits (respectively, the

relative phase of the vehicles on their orbits) is equal to

the relative magnitude (respectively, the relative phase) of

the components of a right eigenvector associated with a

critical eigenvalue of the nonsymmetric Laplacian matrix.

Our analysis relies on algebraic graph theory, matrix theory,

and properties of the Kronecker product. In particular, we

will show that the convergence result in [6] is a special case

of the result in this part of the paper and the convergence

result in [6] can be recovered by exploiting the properties of

circulant matrices and the Kronecker product.

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

It is natural to model interaction among vehicles by

directed or undirected graphs. Suppose that a team consists

of n vehicles. A weighted graph G consists of a node set

V = {1, . . . , n}, an edge set E ⊆ V × V , and a weighted

adjacency matrix A = [aij ] ∈ R
n×n. An edge (i, j) in a
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weighted directed graph denotes that vehicle j can obtain

information from vehicle i, but not necessarily vice versa. In

contrast, the pairs of nodes in a weighted undirected graph

are unordered, where an edge (i, j) denotes that vehicles i

and j can obtain information from each another. Weighted

adjacency matrix A of a weighted directed graph is defined

such that aij is a positive weight if (j, i) ∈ E , while

aij = 0 if (j, i) 6∈ E . Weighted adjacency matrix A of a

weighted undirected graph is defined analogously except that

aij = aji, ∀i 6= j, since (j, i) ∈ E implies (i, j) ∈ E .

A directed path is a sequence of edges in a directed graph

of the form (i1, i2), (i2, i3), . . ., where ij ∈ V . An undi-

rected path in an undirected graph is defined analogously. A

directed graph has a directed spanning tree if there exists at

least one node having a directed path to all other nodes. An

undirected graph is connected if there is an undirected path

between every pair of distinct nodes.

Let nonsymmetric Laplacian matrix [10] L = [ℓij ] ∈
R

n×n associated with A be defined as ℓii =
∑n

j=1,j 6=i aij

and ℓij = −aij , i 6= j. For a weighted undirected graph, L is

symmetric positive semi-definite. However, L for a weighted

directed graph does not have this property.

B. Existing Consensus Algorithm

Consider vehicles with single-integrator kinematics given

by

ṙi = ui, i = 1, . . . , n, (1)

where ri ∈ R
m is the position and ui ∈ R

m is the control

input associated with the ith vehicle. A consensus algorithm

for (1) is studied in [11]–[13] as

ui = −
n

∑

j=1

aij(ri − rj), i = 1, . . . , n, (2)

where aij is the (i, j)th entry of weighted adjacency matrix

A associated with weighted directed graph G. Consensus is

reached using (2) if for all ri(0), ri(t) → rj(t) as t → ∞.

III. CONSENSUS FOR SINGLE-INTEGRATOR KINEMATICS

WITH CARTESIAN COORDINATE COUPLING

In this section, we consider a consensus algorithm for

single-integrator kinematics (1) with Cartesian coordinate

coupling as

ui = −
n

∑

j=1

aijC(ri − rj), i = 1, . . . , n, (3)

where C ∈ R
m×m denotes a Cartesian coordinate coupling

matrix. Note that (2) corresponds to the case where C = Im,

where Im denotes the m × m identity matrix. That is, us-

ing (2), the components of ri (i.e., the Cartesian coordinates

of vehicle i) are decoupled while using (3) the components

of ri are coupled. In this section, we focuses on the case

where C is a rotation matrix while a similar analysis can be

extended to the case where C is a general matrix.

Using (3), (1) can be written in matrix form as

ṙ = −(L ⊗ C)r, (4)

where r = [rT
1 , . . . , rT

n ]T , L is the nonsymmetric Laplacian

matrix associated with G, and ⊗ denotes the Kronecker

product.

Before moving on, we need the following lemmas and

definition:

Lemma 3.1: [14] Let U ∈ R
p×p, V ∈ R

q×q , X ∈ R
p×p,

and Y ∈ R
q×q . Then (U⊗V )(X⊗Y ) = UX⊗V Y . Let A ∈

R
p×p have eigenvalues βi with associated eigenvectors fi ∈

C
p, i = 1, . . . , p, and let B ∈ R

q×q have eigenvalues ρj with

associated eigenvectors gj ∈ C
q , j = 1, . . . , q. Then the pq

eigenvalues of A⊗B are βiρj with associated eigenvectors

fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.

Lemma 3.2: [13] Let L be the nonsymmetric Laplacian

matrix associated with weighted directed graph G. Then L
has at least one zero eigenvalue and all nonzero eigenvalues

have positive real parts. Furthermore, L has a simple zero

eigenvalue and all other eigenvalues have positive real parts

if and only if G has a directed spanning tree. In addition,

there exist 1n, where 1n is the n × 1 column vector of all

ones, satisfying L1n = 0 and p ∈ R
n satisfying p ≥ 0,

pTL = 0, and pT 1 = 1.1

Lemma 3.3: (see e.g., [15]) Given a rotation matrix R ∈
R

3×3, let a = [a1, a2, a3]
T and θ denote, respectively, the

Euler axis (i.e., the unit vector in the direction of rotation)

and Euler angle (i.e., the rotation angle). The eigenvalues

of R are 1, eιθ, and e−ιθ, where ι denotes the imaginary

unit, with the associated right eigenvectors given by, respec-

tively, ς1 = a, ς2 = [(a2
2 + a2

3) sin2( θ
2 ),−a1a2 sin2( θ

2 ) +
ιa3 sin( θ

2 )| sin( θ
2 )|,−a1a3 sin2( θ

2 ) − ιa2 sin( θ
2 )| sin( θ

2 )|]T ,

and ς3 = ς2, where · denotes the complex conjugate of a

number. The associated left eigenvectors are, respectively,

̟1 = ς1, ̟2 = ς2, and ̟3 = ς3.

Definition 3.1: Let µi, i = 1, . . . , n, be the ith eigenvalue

of −L with associated right eigenvector wi and left eigen-

vector νi. Also let arg(µi) = 0 for µi = 0 and arg(µi) ∈
(π

2 , 3π
2 ) for all µi 6= 0, where arg(·) denotes the phase of a

number. Without loss of generality, suppose that µi is labeled

such that arg(µ1) ≤ arg(µ2) ≤ · · · ≤ arg(µn).2

Theorem 3.2: Suppose that weighted directed graph G has

a directed spanning tree. Let the control algorithm for (1) be

given by (3), where ri = [xi, yi, zi]
T and C is the 3 × 3

rotation matrix R defined in Lemma 3.3. Let µi, wi, νi,

and arg(µi) be defined in Definition 3.1, p be defined in

Lemma 3.2, and a = [a1, a2, a3]
T , ςk, and ̟k be defined in

Lemma 3.3.

1) If |θ| < θc
s, where θc

s
△
= 3π

2 − arg(µn), the vehicles

will eventually rendezvous at position (pT x,pT y,pT z),
where x = [x1, . . . , xn]T , y = [y1, . . . , yn]T , and z =
[z1, . . . , zn]T .

2) If |θ| = θc
s and arg(µn) is the unique maximum phase

of µi, all vehicles will eventually move on circular orbits

with center (pT x,pT y,pT z) and period 2π
|µn| . The radius

of the orbit for vehicle i is given by 2|wn(i)(
νT

n

νT
n wn

⊗

1That is, 1n and p are, respectively, the right and left eigenvectors of L
associated with the zero eigenvalue.

2It follows from Lemma 3.2 that µ1 = 0, w1 = 1n, and ν1 = p.
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̟T
2

̟T
2 ς2

)r(0)|
√

a2
2 + a2

3 sin2( θ
2 ), where wn(i) is the ith com-

ponent of wn. The relative radius of the orbits is equal to

the relative magnitude of wn(i). The relative phase of the

vehicles on their orbits is equal to the relative phase of wn(i).

The circular orbits are on a plane perpendicular to Euler axis

a.

3) If arg(µn) is the unique maximum phase of µi and

θc
s < |θ| < 3π

2 − arg(µn−1), all vehicles will even-

tually move along logarithmic spiral curves with center

(pT x,pT y,pT z), growing rate |µn| cos(arg(µn)+ |θ|), and

period 2π
|µn sin(arg(µn)+|θ|)| . The radius of the logarithmic

spiral curve for vehicle i is given by 2|wn(i)(
νT

n

νT
n wn

⊗
̟T

2

̟T
2 ς2

)r(0)|e[|µn| cos(arg(µn)+|θ|)]t
√

a2
2 + a2

3 sin2( θ
2 ). The rel-

ative radius of the logarithmic spiral curves is equal to

the relative magnitude of wn(i). The relative phase of the

vehicles on their curves is equal to the relative phase of wn(i).

The logarithmic spiral curves are on a plane perpendicular

to Euler axis a.

Proof: It follows from Lemmas 3.1 and 3.3 and Definition 3.1

that the eigenvalues of −(L⊗ R) are µi, µie
ιθ, and µie

−ιθ

with associated right eigenvectors wi⊗ς1, wi⊗ς2, and wi⊗ς3,

respectively, and associated left eigenvectors νi⊗̟1, νi⊗̟2,

and νi ⊗̟3, respectively. That is, the eigenvalues of −(L⊗
R) correspond to the eigenvalues of −L rotated by angles

0, θ, and −θ, respectively. Let λℓ, ℓ = 1, . . . , 3n, denote the

ℓth eigenvalue of −(L ⊗ R). Without loss of generality, let

λ3i−2 = µi, λ3i−1 = µie
ιθ, and λ3i = µie

−ιθ, i = 1, . . . , n.

Because weighted directed graph G has a directed spanning

tree, it follows from Lemma 3.2 that −L has a simple zero

eigenvalue and all other eigenvalues have negative real parts.

According to Definition 3.1, we let µ1 = 0 and Re(µi) < 0,

i = 2, . . . , n, where Re(·) denotes the real part of a number.

Note from Lemma 3.2 that w1 = 1n and ν1 = p. Because

µ1 = 0 and µi 6= 0, i = 2, . . . , n, it follows that −(L ⊗ R)
has exactly three zero eigenvalues (i.e., λ1 = λ2 = λ3 = 0).

Note that −(L ⊗ R) can be written in Jordan canonical

form as MJM−1, where the columns of M , denoted by mk,

k = 1, . . . , 3n, can be chosen to be the right eigenvectors

or generalized right eigenvectors of −(L ⊗ R) associated

with eigenvalue λi, the rows of M−1, denoted by pT
k ,

k = 1, . . . , 3n, can be chosen to be the left eigenvectors

or generalized left eigenvectors of −(L⊗R) associated with

eigenvalue λi such that pT
k mk = 1 and pT

k mℓ = 0, k 6= ℓ,

and J is the Jordan block diagonal matrix with λi being the

diagonal entries. Noting that λk = 0, k = 1, 2, 3, we can

choose mk = 1 ⊗ ςk and pk = p ⊗ ̟k

̟T
k

ςk
, k = 1, 2, 3. Note

that e−(L⊗R)t = MeJtM−1. Also note that eJℓt → 0 when

Jℓ is a Jordan block corresponding to an eigenvalue with a

negative real part.

For the first statement of the theorem, note that µ1 = 0
and Re(µi) < 0, i = 2, . . . , n. Also note from Definition 3.1

that arg(µi) ∈ [arg(µ2), arg(µn)] ⊂ (π
2 , 3π

2 ), i = 2, . . . , n.

Noting that all complex eigenvalues of −L are in conju-

gate pairs, it follows that arg(µ2) = 2π − arg(µn). If

|θ| < θc
s, then all arg(µi), arg(µie

ιθ), and arg(µie
−ιθ) are

within (π
2 , 3π

2 ), i = 2, . . . , n, which implies that Re(λℓ) <

0, ℓ = 4, . . . , 3n. Noting that λk = 0, k = 1, 2, 3,

it follows that limt→∞ r(t) = limt→∞ e−(L⊗R)tr(0) →
(
∑3

k=1 mkpT
k )r(0) = (1pT ⊗ I3)r(0). It thus follows that

xi(t) → pT x(0), yi(t) → pT y(0), and zi(t) → pT z(0) as

t → ∞. That is, all vehicles will eventually rendezvous at

(pT x(0),pT y(0),pT z(0)).

For the second statement of the theorem, if θ = θc
s

(respectively, θ = −θc
s), then µn rotated by an angle θ

(respectively, −θ) will locate on the imaginary axis, that is,

λ3n−1 = µneιθ = −|µn|ι (respectively, λ3n = µne−ιθ =
−|µn|ι), while µ2 = µn rotated by an angle −θ (respec-

tively, θ) will also locate on the imaginary axis, that is,

λ6 = µ2e
−ιθ = |µn|ι (respectively, λ5 = µ2e

ιθ = |µn|ι).
Because arg(µn) is the unique maximum phase of µi, λ3n−1

(respectively, λ3n) and λ6 (respectively, λ5) are the only two

nonzero eigenvalues of −(L ⊗ R) on the imaginary axis

and all other nonzero eigenvalues have negative real parts.

In the following, we focus on θ = θc
s since the analysis

for θ = −θc
s is similar except that the vehicles will move

in reverse directions. Note that λk = 0, k = 1, 2, 3, and

Re(λℓ) < 0 for all ℓ 6= 1, 2, 3, 3n−1, 6. Noting that λ3n−1 =
−|µn|ι and λ6 = |µn|ι, we can choose m3n−1 = wn ⊗ ς2,

p3n−1 = νn

νT
n wn

⊗ ̟2

̟T
2 ς2

, m6 = m3n−1, and p6 = p3n−1.

It follows that r(t) = e−(L⊗R)tr(0) → (
∑3

k=1 mkpT
k +

e−ι|µn|tm3n−1p
T
3n−1 + eι|µn|tm6p

T
6 )r(0) for large t. Define

c(t) = (e−ι|µn|tm3n−1p
T
3n−1 + eι|µn|tm6p

T
6 )r(0). Let ck(t)

be the kth component of c, k = 1, . . . , 3n. It follows that

c3(i−1)+ℓ(t) = 2Re(e−ι|µn|twn(i)ς2(ℓ)p
T
3n−1r(0)), where

i = 1, . . . , n, ℓ = 1, 2, 3, and ς2(ℓ) denotes the ℓth component

of ς2. After some manipulation, it follows that c3(i−1)+ℓ(t) =
2|ς2(ℓ)wn(i)p

T
3n−1r(0)| cos(|µn|t − arg(wn(i)p

T
3n−1r(0)) −

arg(ς2(ℓ))), i = 1, . . . , n, ℓ = 1, 2, 3. Therefore, it follows

that xi(t) → pT x(0)+c3i−2(t), yi(t) → pT y(0)+c3i−1(t),
and zi(t) → pT z(0)+c3i(t) for large t. After some manipu-

lation, it can be verified that
∥

∥[c3i−2(t), c3i−1(t), c3i(t)]
T
∥

∥ =

2|wn(i)p
T
3n−1r(0)|

√

a2
2 + a2

3 sin2( θ
2 ), which is a constant.

It thus follows that all vehicles will eventually move on

circular orbits with center (pT x(0),pT y(0),pT z(0)) and

period 2π
|µn| . The radius of the orbit for vehicle i is given by

2|wn(i)p
T
3n−1r(0)|

√

a2
2 + a2

3 sin2( θ
2 ). Note that the relative

radius of the orbits is equal to the relative magnitude of

wn(i). In addition, it is straightforward to see that the relative

phase of the vehicles on their orbits is equal to the relative

phase of wn(i)p
T
3n−1r(0), which is equivalent to the relative

phase of wn(i). Note from Lemma 3.3 that Euler axis a is or-

thogonal to both Re(ς2) and Im(ς2), where Re(·) and Im(·),
representing, respectively, the real and imaginary part of a

number, are applied componentwise. It can thus be verified

that a is orthogonal to [c3i−2(t), c3i−1(t), c3i(t)]
T , which

implies that the circular orbits are on a plane perpendicular

to a.

For the third statement of the theorem, if arg(µn) is the

unique maximum phase of µi and θc
s < θ < 3π

2 −arg(µn−1)
(respectively, arg(µn−1) −

3π
2 < θ < −θc

s), then µn rotated

by an angle θ (respectively, −θ) will have a positive real part,
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that is, λ3n−1 = µneιθ = |µn|e
ι(arg(µn)+θ) (respectively,

λ3n = µne−ιθ = |µn|e
ι(arg(µn)−θ)), while µ2 = µn

rotated by an angle −θ (respectively, θ) will also have a

positive real part, that is, λ6 = µ2e
−ιθ = |µn|e

−ι(arg(µn)+θ)

(respectively, λ5 = µ2e
ιθ = |µn|e

−ι(arg(µn)−θ)). In addition,

λ3n−1 (respectively, λ3n) and λ6 (respectively, λ5) are the

only two eigenvalues of −(L ⊗ R) with positive real parts

and all other nonzero eigenvalues have negative real parts.

In the following, we focus on θc
s < θ < 3π

2 − arg(µn−1)
since the analysis for arg(µn−1)−

3π
2 < θ < −θc

s is similar

except that all vehicles will move in reverse directions. Note

that λk = 0, k = 1, 2, 3, Re(λ3n−1) > 0, Re(λ6) > 0, and

Re(λk) < 0 otherwise. Similar to the proof of the second

statement, define c(t) = (e|µn|eι(arg(µn)+θ)tm3n−1p
T
3n−1 +

e|µn|e−ι(arg(µn)+θ)tm6p
T
6 )r(0). Let ck(t), k = 1, . . . , 3n,

be the kth component of c(t). Also let Let

̺i = |wn(i)p
T
3n−1r(0)| and ϕi = arg(wn(i)p

T
3n−1r(0)).

It follows that xi(t) → pT x(0) + c3i−2(t),
yi(t) → pT y(0) + c3i−1(t), and zi(t) →
pT z(0) + c3i(t) for large t, where c3(i−1)+ℓ(t) =
2|ς2(ℓ)|̺ie

[|µn| cos(arg(µn)+θ)]t cos([|µn| sin(arg(µn) +
θ)]t + ϕi + arg(ς2(ℓ))), i = 1, . . . , n, ℓ = 1, 2, 3.

Similar to the argument for the second statement, it

can be verified that
∥

∥[c3i−2(t), c3i−1(t), c3i(t)]
T
∥

∥ =

2̺ie
[|µn| cos(arg(µn)+θ)]t

√

a2
2 + a2

3 sin2( θ
2 ), which is growing

with time. It thus follows that all vehicles will eventually

move along logarithmic spiral curves. The statement then

follows directly.

Corollary 3.3: Suppose that weighted directed graph G
has a directed spanning tree. Let the control algorithm for (1)

be given by (3), where ri = [xi, yi]
T and C is the 2 × 2

rotation matrix given by R(θ) =

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

.

1) If |θ| < θc
s, where θc

s
△
= 3π

2 − arg(µn), the vehicles

will eventually rendezvous at position (pT x,pT y), where

x = [x1, . . . , xn]T , y = [y1, . . . , yn]T , and p is defined in

Lemma 3.2.

2) If |θ| = θc
s and arg(µn) is the unique maximum phase of

µi, all vehicles will eventually move on circular orbits with

center (pT x,pT y) and period 2π
|µn| . The radius of the orbit

for vehicle i is given by 2|wn(i)(
νT

n

νT
n wn

⊗ [ 12 ,− 1
2 ι])r(0)|. The

relative radius of the orbits is equal to the relative magnitude

of wn(i). The relative phase of the vehicles on their orbits is

equal to the relative phase of wn(i).

3) If arg(µn) is the unique maximum phase of µi and

θc
s < |θ| < 3π

2 − arg(µn−1), all vehicles will even-

tually move along logarithmic spiral curves with center

(pT x,pT y), growing rate |µn| cos(arg(µn) + |θ|), and

period 2π
|µn sin(arg(µn)+|θ|)| . The radius of the logarithmic

spiral curve for vehicle i is given by 2|wn(i)(
νT

n

νT
n wn

⊗

[ 12 ,− 1
2 ι])r(0)|e[|µn| cos(arg(µn)+|θ|)]t. The relative radius of

the logarithmic spiral curves is equal to the relative mag-

nitude of wn(i). The relative phase of the vehicles on their

curves is equal to the relative phase of wn(i).

Proof: The eigenvalues of R(θ) are given by eιθ and e−ιθ,

with associated right eigenvectors [1, ι]T and [1,−ι]T and

left eigenvectors [1,−ι]T and [1, ι]T , respectively. The rest

of the proof follows from that of Theorem 3.2.

Corollary 3.4: Suppose that weighted directed graph G is

a unidirectional ring (i.e., a cyclic pursuit topology). Also

suppose that aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Let

the control algorithm for (1) be given by (3), where ri and

C are given as in Corollary 3.3.

1) If |θ| < π
n , the vehicles will eventually rendezvous

at position (pT x,pT y), where x and y are given as in

Corollary 3.3.

2) If |θ| = π
n , all vehicles will eventually move on the

same circular orbit with center (pT x,pT y), period π
sin(π/n) ,

and radius 2|wn(i)(
νT

n

νT
n wn

⊗ [ 12 ,− 1
2 ι])r(0)|.3 In addition, the

vehicles will eventually be evenly distributed on the orbit.

3) If π
n < |θ| < 2π

n , all vehicles will eventually move along

logarithmic spiral curves with center (pT x,pT y), growing

rate 2 sin(π
n ) sin(|θ| − π

n ), period π
sin(π/n) cos(|θ|−π/n) , and

radius 2|wn(i)(
νT

n

νT
n wn

⊗ [ 12 ,− 1
2 ι])r(0)|e2 sin( π

n
) sin(|θ|−π

n
)t. In

addition, the phases of all vehicles will eventually be evenly

distributed.

Proof: Note that if weighted directed graph G is a unidirec-

tional ring and aij = 1 if (j, i) ∈ E and aij = 0 otherwise,

then L is a circulant matrix. Also note that a circulant matrix

can be diagonalized by a Fourier matrix. The proof then

follows Corollary 3.3 directly by use of the properties of the

eigenvalues of a circulant matrix and the properties of the

Fourier matrix.

Remark 3.5: Corollary 3.4 was proved in [6] by use

of parametric spectral analysis of some special types of

circulant matrices. Here we have shown that Corollary 3.4

is a special case of Corollary 3.3 and the convergence result

in [6] can be recovered by exploiting the properties of the

circulant matrices and the Kronecker product. Note that when

G is a unidirectional ring (i.e., a cyclic pursuit topology) but

different positive weights are chosen for aij when (j, i) ∈ E ,

all vehicles will move on orbits with different radii and their

phases will not be evenly distributed.

Example 3.6: To illustrate, consider four vehicles with

network topology G shown by Fig. 1. Let L associated with

G be given by








1.5 0 −1.1 −0.4
−1.2 1.2 0 0
−0.1 −0.5 0.6 0
−1 0 0 1









. (5)

It can be computed that θc
s = 3π

2 − arg(µ4) = 1.2975 rad,

where µ4 = −1.6737 − 0.4691ι and arg(µ4) ∈ (π, 3π
2 ).

Let R be the rotation matrix corresponding to Euler axis

a = 1
14 [1, 2, 3]T and Euler angle θ = θc

s. Figs. 2, 3, and 4

show, respectively, the eigenvalues of −L and −(L ⊗ R)
when θ = θc

s − 0.1, θ = θc
s, and θ = θc

s + 0.1. Note that the

eigenvalues of −(L ⊗ R) correspond to the eigenvalues of

−L rotated by angles 0, θ, and −θ. Note that in Fig. 2, all

3In this case, all wn(i), i = 1, . . . , n, have the same magnitude.
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nonzero eigenvalues of −(L ⊗ R) are in the open left half

plane. In Fig. 3, the eigenvalues of −(L⊗R) corresponding

to µ4 rotated by an angle θ and µ2 = µ4 rotated by an angle

−θ are located on the imaginary axis while all other nonzero

eigenvalues are located in the open left half plane. In Fig. 4,

the eigenvalues of −(L⊗R) corresponding to µ4 rotated by

an angle θ and µ2 = µ4 rotated by an angle −θ are located in

the open right half plane while all other nonzero eigenvalues

are located in the open left half plane.

'&%$Ã!"#1 //

²² ¹¹

'&%$Ã!"#2

¡¡¡¡
¡
¡
¡
¡
¡
¡

'&%$Ã!"#3

HH

'&%$Ã!"#4

VV

Fig. 1. Network topology for four vehicles. An arrow from j to i denotes
that vehicle i can receive information from vehicle j.
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Fig. 2. Eigenvalues of −L and −(L⊗R) with θ = θc
s−0.1. Circles denote

the eigenvalues of −L while x-marks denote the eigenvalues of −(L⊗R).
The eigenvalues of −(L⊗R) correspond to the eigenvalues of −L rotated
by angles 0, θ, and −θ, respectively. In particular, the eigenvalues obtained
by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid
line, the dashed line, and the dashdot line. Because θ < θc

s, all nonzero
eigenvalues of −(L ⊗ R) are in the open left half plane.

IV. SIMULATION

In this section, we study collective motions of four vehi-

cles using (3). Suppose that the network topology is given by

Fig. 1 and L is given by (5). Note that the right eigenvector

of −L associated with eigenvalue µ4 is w4 = [−0.2847 −
0.2820ι, 0.7213,−0.2501+0.1355ι, 0.4809+0.0837ι]T . Let

θc
s and a be given in Example 3.6.

Figs. 5, 6, and 7 show, respectively, the trajectories of

the four vehicles using (3) with θ =
θc

s

2 , θ = θc
s, and

θc
s + 0.1. Note that the vehicles eventually rendezvous when

θ =
θc

s

2 , move on circular orbits when θ = θc
s, and move

along logarithmic spiral curves when θ = θc
s + 0.1. Also

note that when θ = θc
s, the relative radius of the circular

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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1.5
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a

g
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a
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rt

Imaginary axis 

Imaginary axis 

Fig. 3. Eigenvalues of −L and −(L ⊗ R) with θ = θc
s. Circles denote

the eigenvalues of −L while x-marks denote the eigenvalues of −(L⊗R).
The eigenvalues of −(L⊗R) correspond to the eigenvalues of −L rotated
by angles 0, θ, and −θ, respectively. In particular, the eigenvalues obtained
by rotating µ4 by angles 0, θ, and −θ are shown by, respectively, the solid
line, the dashed line, and the dashdot line. Because θ = θc

s, two nonzero
eigenvalues of −(L ⊗ R) are on the imaginary axis.

orbits (respectively, the relative phase of the vehicles) is

equal to the relative magnitude (respectively, phase) of the

components of w4. In addition, the trajectories of the vehicles

are perpendicular to Euler axis a in all cases.

V. CONCLUSION AND FUTURE WORK

We have introduced Cartesian coordinate coupling to a

consensus algorithm by a rotation matrix in 3D for single-

integrator kinematics. We have shown conditions under

which rendezvous, circular patterns, and logarithmic spiral

patterns can be achieved using the algorithm with Cartesian

coordinate coupling under a general network topology and

quantitatively characterize the resulting collective motions.

We have also demonstrated collective motions of four ve-

hicles using the introduced algorithm in simulation. Future

work will apply the algorithm in experiments in motion

coordination of robotic networks.
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